|
|
|
import torch
|
|
|
|
|
|
|
|
class LatentFormat:
|
|
|
|
scale_factor = 1.0
|
|
|
|
latent_rgb_factors = None
|
|
|
|
taesd_decoder_name = None
|
|
|
|
|
|
|
|
def process_in(self, latent):
|
|
|
|
return latent * self.scale_factor
|
|
|
|
|
|
|
|
def process_out(self, latent):
|
|
|
|
return latent / self.scale_factor
|
|
|
|
|
|
|
|
class SD15(LatentFormat):
|
|
|
|
def __init__(self, scale_factor=0.18215):
|
|
|
|
self.scale_factor = scale_factor
|
|
|
|
self.latent_rgb_factors = [
|
|
|
|
# R G B
|
|
|
|
[ 0.3512, 0.2297, 0.3227],
|
|
|
|
[ 0.3250, 0.4974, 0.2350],
|
|
|
|
[-0.2829, 0.1762, 0.2721],
|
|
|
|
[-0.2120, -0.2616, -0.7177]
|
|
|
|
]
|
|
|
|
self.taesd_decoder_name = "taesd_decoder"
|
|
|
|
|
|
|
|
class SDXL(LatentFormat):
|
|
|
|
def __init__(self):
|
|
|
|
self.scale_factor = 0.13025
|
|
|
|
self.latent_rgb_factors = [
|
|
|
|
# R G B
|
|
|
|
[ 0.3920, 0.4054, 0.4549],
|
|
|
|
[-0.2634, -0.0196, 0.0653],
|
|
|
|
[ 0.0568, 0.1687, -0.0755],
|
|
|
|
[-0.3112, -0.2359, -0.2076]
|
|
|
|
]
|
|
|
|
self.taesd_decoder_name = "taesdxl_decoder"
|
|
|
|
|
|
|
|
class SDXL_Playground_2_5(LatentFormat):
|
|
|
|
def __init__(self):
|
|
|
|
self.scale_factor = 0.5
|
|
|
|
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
|
|
|
|
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
|
|
|
|
|
|
|
|
self.latent_rgb_factors = [
|
|
|
|
# R G B
|
|
|
|
[ 0.3920, 0.4054, 0.4549],
|
|
|
|
[-0.2634, -0.0196, 0.0653],
|
|
|
|
[ 0.0568, 0.1687, -0.0755],
|
|
|
|
[-0.3112, -0.2359, -0.2076]
|
|
|
|
]
|
|
|
|
self.taesd_decoder_name = "taesdxl_decoder"
|
|
|
|
|
|
|
|
def process_in(self, latent):
|
|
|
|
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
|
|
|
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
|
|
|
return (latent - latents_mean) * self.scale_factor / latents_std
|
|
|
|
|
|
|
|
def process_out(self, latent):
|
|
|
|
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
|
|
|
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
|
|
|
return latent * latents_std / self.scale_factor + latents_mean
|
|
|
|
|
|
|
|
|
|
|
|
class SD_X4(LatentFormat):
|
|
|
|
def __init__(self):
|
|
|
|
self.scale_factor = 0.08333
|
|
|
|
self.latent_rgb_factors = [
|
|
|
|
[-0.2340, -0.3863, -0.3257],
|
|
|
|
[ 0.0994, 0.0885, -0.0908],
|
|
|
|
[-0.2833, -0.2349, -0.3741],
|
|
|
|
[ 0.2523, -0.0055, -0.1651]
|
|
|
|
]
|
|
|
|
|
|
|
|
class SC_Prior(LatentFormat):
|
|
|
|
def __init__(self):
|
|
|
|
self.scale_factor = 1.0
|
|
|
|
self.latent_rgb_factors = [
|
|
|
|
[-0.0326, -0.0204, -0.0127],
|
|
|
|
[-0.1592, -0.0427, 0.0216],
|
|
|
|
[ 0.0873, 0.0638, -0.0020],
|
|
|
|
[-0.0602, 0.0442, 0.1304],
|
|
|
|
[ 0.0800, -0.0313, -0.1796],
|
|
|
|
[-0.0810, -0.0638, -0.1581],
|
|
|
|
[ 0.1791, 0.1180, 0.0967],
|
|
|
|
[ 0.0740, 0.1416, 0.0432],
|
|
|
|
[-0.1745, -0.1888, -0.1373],
|
|
|
|
[ 0.2412, 0.1577, 0.0928],
|
|
|
|
[ 0.1908, 0.0998, 0.0682],
|
|
|
|
[ 0.0209, 0.0365, -0.0092],
|
|
|
|
[ 0.0448, -0.0650, -0.1728],
|
|
|
|
[-0.1658, -0.1045, -0.1308],
|
|
|
|
[ 0.0542, 0.1545, 0.1325],
|
|
|
|
[-0.0352, -0.1672, -0.2541]
|
|
|
|
]
|
|
|
|
|
|
|
|
class SC_B(LatentFormat):
|
|
|
|
def __init__(self):
|
|
|
|
self.scale_factor = 1.0
|
|
|
|
self.latent_rgb_factors = [
|
|
|
|
[ 0.1121, 0.2006, 0.1023],
|
|
|
|
[-0.2093, -0.0222, -0.0195],
|
|
|
|
[-0.3087, -0.1535, 0.0366],
|
|
|
|
[ 0.0290, -0.1574, -0.4078]
|
|
|
|
]
|