comfyanonymous
9 months ago
10 changed files with 430 additions and 8 deletions
@ -0,0 +1,257 @@
|
||||
""" |
||||
This file is part of ComfyUI. |
||||
Copyright (C) 2024 Stability AI |
||||
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <https://www.gnu.org/licenses/>. |
||||
""" |
||||
|
||||
import math |
||||
import numpy as np |
||||
import torch |
||||
from torch import nn |
||||
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock |
||||
|
||||
class StageB(nn.Module): |
||||
def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280], |
||||
nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], |
||||
block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280, |
||||
c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True, |
||||
t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None): |
||||
super().__init__() |
||||
self.dtype = dtype |
||||
self.c_r = c_r |
||||
self.t_conds = t_conds |
||||
self.c_clip_seq = c_clip_seq |
||||
if not isinstance(dropout, list): |
||||
dropout = [dropout] * len(c_hidden) |
||||
if not isinstance(self_attn, list): |
||||
self_attn = [self_attn] * len(c_hidden) |
||||
|
||||
# CONDITIONING |
||||
self.effnet_mapper = nn.Sequential( |
||||
operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device), |
||||
nn.GELU(), |
||||
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device), |
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
||||
) |
||||
self.pixels_mapper = nn.Sequential( |
||||
operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device), |
||||
nn.GELU(), |
||||
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device), |
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
||||
) |
||||
self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device) |
||||
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
||||
|
||||
self.embedding = nn.Sequential( |
||||
nn.PixelUnshuffle(patch_size), |
||||
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device), |
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
||||
) |
||||
|
||||
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True): |
||||
if block_type == 'C': |
||||
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations) |
||||
elif block_type == 'A': |
||||
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations) |
||||
elif block_type == 'F': |
||||
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations) |
||||
elif block_type == 'T': |
||||
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations) |
||||
else: |
||||
raise Exception(f'Block type {block_type} not supported') |
||||
|
||||
# BLOCKS |
||||
# -- down blocks |
||||
self.down_blocks = nn.ModuleList() |
||||
self.down_downscalers = nn.ModuleList() |
||||
self.down_repeat_mappers = nn.ModuleList() |
||||
for i in range(len(c_hidden)): |
||||
if i > 0: |
||||
self.down_downscalers.append(nn.Sequential( |
||||
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), |
||||
operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device), |
||||
)) |
||||
else: |
||||
self.down_downscalers.append(nn.Identity()) |
||||
down_block = nn.ModuleList() |
||||
for _ in range(blocks[0][i]): |
||||
for block_type in level_config[i]: |
||||
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i]) |
||||
down_block.append(block) |
||||
self.down_blocks.append(down_block) |
||||
if block_repeat is not None: |
||||
block_repeat_mappers = nn.ModuleList() |
||||
for _ in range(block_repeat[0][i] - 1): |
||||
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) |
||||
self.down_repeat_mappers.append(block_repeat_mappers) |
||||
|
||||
# -- up blocks |
||||
self.up_blocks = nn.ModuleList() |
||||
self.up_upscalers = nn.ModuleList() |
||||
self.up_repeat_mappers = nn.ModuleList() |
||||
for i in reversed(range(len(c_hidden))): |
||||
if i > 0: |
||||
self.up_upscalers.append(nn.Sequential( |
||||
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), |
||||
operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device), |
||||
)) |
||||
else: |
||||
self.up_upscalers.append(nn.Identity()) |
||||
up_block = nn.ModuleList() |
||||
for j in range(blocks[1][::-1][i]): |
||||
for k, block_type in enumerate(level_config[i]): |
||||
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 |
||||
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], |
||||
self_attn=self_attn[i]) |
||||
up_block.append(block) |
||||
self.up_blocks.append(up_block) |
||||
if block_repeat is not None: |
||||
block_repeat_mappers = nn.ModuleList() |
||||
for _ in range(block_repeat[1][::-1][i] - 1): |
||||
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) |
||||
self.up_repeat_mappers.append(block_repeat_mappers) |
||||
|
||||
# OUTPUT |
||||
self.clf = nn.Sequential( |
||||
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), |
||||
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device), |
||||
nn.PixelShuffle(patch_size), |
||||
) |
||||
|
||||
# --- WEIGHT INIT --- |
||||
# self.apply(self._init_weights) # General init |
||||
# nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings |
||||
# nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings |
||||
# nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings |
||||
# nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings |
||||
# nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings |
||||
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs |
||||
# nn.init.constant_(self.clf[1].weight, 0) # outputs |
||||
# |
||||
# # blocks |
||||
# for level_block in self.down_blocks + self.up_blocks: |
||||
# for block in level_block: |
||||
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock): |
||||
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0])) |
||||
# elif isinstance(block, TimestepBlock): |
||||
# for layer in block.modules(): |
||||
# if isinstance(layer, nn.Linear): |
||||
# nn.init.constant_(layer.weight, 0) |
||||
# |
||||
# def _init_weights(self, m): |
||||
# if isinstance(m, (nn.Conv2d, nn.Linear)): |
||||
# torch.nn.init.xavier_uniform_(m.weight) |
||||
# if m.bias is not None: |
||||
# nn.init.constant_(m.bias, 0) |
||||
|
||||
def gen_r_embedding(self, r, max_positions=10000): |
||||
r = r * max_positions |
||||
half_dim = self.c_r // 2 |
||||
emb = math.log(max_positions) / (half_dim - 1) |
||||
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() |
||||
emb = r[:, None] * emb[None, :] |
||||
emb = torch.cat([emb.sin(), emb.cos()], dim=1) |
||||
if self.c_r % 2 == 1: # zero pad |
||||
emb = nn.functional.pad(emb, (0, 1), mode='constant') |
||||
return emb |
||||
|
||||
def gen_c_embeddings(self, clip): |
||||
if len(clip.shape) == 2: |
||||
clip = clip.unsqueeze(1) |
||||
clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1) |
||||
clip = self.clip_norm(clip) |
||||
return clip |
||||
|
||||
def _down_encode(self, x, r_embed, clip): |
||||
level_outputs = [] |
||||
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) |
||||
for down_block, downscaler, repmap in block_group: |
||||
x = downscaler(x) |
||||
for i in range(len(repmap) + 1): |
||||
for block in down_block: |
||||
if isinstance(block, ResBlock) or ( |
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
||||
ResBlock)): |
||||
x = block(x) |
||||
elif isinstance(block, AttnBlock) or ( |
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
||||
AttnBlock)): |
||||
x = block(x, clip) |
||||
elif isinstance(block, TimestepBlock) or ( |
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
||||
TimestepBlock)): |
||||
x = block(x, r_embed) |
||||
else: |
||||
x = block(x) |
||||
if i < len(repmap): |
||||
x = repmap[i](x) |
||||
level_outputs.insert(0, x) |
||||
return level_outputs |
||||
|
||||
def _up_decode(self, level_outputs, r_embed, clip): |
||||
x = level_outputs[0] |
||||
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) |
||||
for i, (up_block, upscaler, repmap) in enumerate(block_group): |
||||
for j in range(len(repmap) + 1): |
||||
for k, block in enumerate(up_block): |
||||
if isinstance(block, ResBlock) or ( |
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
||||
ResBlock)): |
||||
skip = level_outputs[i] if k == 0 and i > 0 else None |
||||
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): |
||||
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear', |
||||
align_corners=True) |
||||
x = block(x, skip) |
||||
elif isinstance(block, AttnBlock) or ( |
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
||||
AttnBlock)): |
||||
x = block(x, clip) |
||||
elif isinstance(block, TimestepBlock) or ( |
||||
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, |
||||
TimestepBlock)): |
||||
x = block(x, r_embed) |
||||
else: |
||||
x = block(x) |
||||
if j < len(repmap): |
||||
x = repmap[j](x) |
||||
x = upscaler(x) |
||||
return x |
||||
|
||||
def forward(self, x, r, effnet, clip, pixels=None, **kwargs): |
||||
if pixels is None: |
||||
pixels = x.new_zeros(x.size(0), 3, 8, 8) |
||||
|
||||
# Process the conditioning embeddings |
||||
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype) |
||||
for c in self.t_conds: |
||||
t_cond = kwargs.get(c, torch.zeros_like(r)) |
||||
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1) |
||||
clip = self.gen_c_embeddings(clip) |
||||
|
||||
# Model Blocks |
||||
x = self.embedding(x) |
||||
x = x + self.effnet_mapper( |
||||
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True)) |
||||
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear', |
||||
align_corners=True) |
||||
level_outputs = self._down_encode(x, r_embed, clip) |
||||
x = self._up_decode(level_outputs, r_embed, clip) |
||||
return self.clf(x) |
||||
|
||||
def update_weights_ema(self, src_model, beta=0.999): |
||||
for self_params, src_params in zip(self.parameters(), src_model.parameters()): |
||||
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta) |
||||
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()): |
||||
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta) |
@ -0,0 +1,74 @@
|
||||
""" |
||||
This file is part of ComfyUI. |
||||
Copyright (C) 2024 Stability AI |
||||
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <https://www.gnu.org/licenses/>. |
||||
""" |
||||
|
||||
import torch |
||||
import nodes |
||||
|
||||
|
||||
class StableCascade_EmptyLatentImage: |
||||
def __init__(self, device="cpu"): |
||||
self.device = device |
||||
|
||||
@classmethod |
||||
def INPUT_TYPES(s): |
||||
return {"required": { |
||||
"width": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}), |
||||
"height": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}), |
||||
"compression": ("INT", {"default": 42, "min": 32, "max": 64, "step": 1}), |
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}) |
||||
}} |
||||
RETURN_TYPES = ("LATENT", "LATENT") |
||||
RETURN_NAMES = ("stage_c", "stage_b") |
||||
FUNCTION = "generate" |
||||
|
||||
CATEGORY = "_for_testing/stable_cascade" |
||||
|
||||
def generate(self, width, height, compression, batch_size=1): |
||||
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression]) |
||||
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4]) |
||||
return ({ |
||||
"samples": c_latent, |
||||
}, { |
||||
"samples": b_latent, |
||||
}) |
||||
|
||||
class StableCascade_StageB_Conditioning: |
||||
@classmethod |
||||
def INPUT_TYPES(s): |
||||
return {"required": { "conditioning": ("CONDITIONING",), |
||||
"stage_c": ("LATENT",), |
||||
}} |
||||
RETURN_TYPES = ("CONDITIONING",) |
||||
|
||||
FUNCTION = "set_prior" |
||||
|
||||
CATEGORY = "_for_testing/stable_cascade" |
||||
|
||||
def set_prior(self, conditioning, stage_c): |
||||
c = [] |
||||
for t in conditioning: |
||||
d = t[1].copy() |
||||
d['stable_cascade_prior'] = stage_c['samples'] |
||||
n = [t[0], d] |
||||
c.append(n) |
||||
return (c, ) |
||||
|
||||
NODE_CLASS_MAPPINGS = { |
||||
"StableCascade_EmptyLatentImage": StableCascade_EmptyLatentImage, |
||||
"StableCascade_StageB_Conditioning": StableCascade_StageB_Conditioning, |
||||
} |
Loading…
Reference in new issue