|
|
|
import torch
|
|
|
|
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
|
|
|
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
|
|
|
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
|
|
|
|
import comfy.model_management
|
|
|
|
import comfy.conds
|
|
|
|
import comfy.ops
|
|
|
|
from enum import Enum
|
|
|
|
import contextlib
|
|
|
|
from . import utils
|
|
|
|
|
|
|
|
class ModelType(Enum):
|
|
|
|
EPS = 1
|
|
|
|
V_PREDICTION = 2
|
|
|
|
V_PREDICTION_EDM = 3
|
|
|
|
|
|
|
|
|
|
|
|
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM
|
|
|
|
|
|
|
|
|
|
|
|
def model_sampling(model_config, model_type):
|
|
|
|
s = ModelSamplingDiscrete
|
|
|
|
|
|
|
|
if model_type == ModelType.EPS:
|
|
|
|
c = EPS
|
|
|
|
elif model_type == ModelType.V_PREDICTION:
|
|
|
|
c = V_PREDICTION
|
|
|
|
elif model_type == ModelType.V_PREDICTION_EDM:
|
|
|
|
c = V_PREDICTION
|
|
|
|
s = ModelSamplingContinuousEDM
|
|
|
|
|
|
|
|
class ModelSampling(s, c):
|
|
|
|
pass
|
|
|
|
|
|
|
|
return ModelSampling(model_config)
|
|
|
|
|
|
|
|
|
|
|
|
class BaseModel(torch.nn.Module):
|
|
|
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
unet_config = model_config.unet_config
|
|
|
|
self.latent_format = model_config.latent_format
|
|
|
|
self.model_config = model_config
|
|
|
|
self.manual_cast_dtype = model_config.manual_cast_dtype
|
|
|
|
|
|
|
|
if not unet_config.get("disable_unet_model_creation", False):
|
|
|
|
if self.manual_cast_dtype is not None:
|
|
|
|
operations = comfy.ops.manual_cast
|
|
|
|
else:
|
|
|
|
operations = comfy.ops.disable_weight_init
|
|
|
|
self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations)
|
|
|
|
self.model_type = model_type
|
|
|
|
self.model_sampling = model_sampling(model_config, model_type)
|
|
|
|
|
|
|
|
self.adm_channels = unet_config.get("adm_in_channels", None)
|
|
|
|
if self.adm_channels is None:
|
|
|
|
self.adm_channels = 0
|
|
|
|
self.inpaint_model = False
|
|
|
|
print("model_type", model_type.name)
|
|
|
|
print("adm", self.adm_channels)
|
|
|
|
|
|
|
|
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
|
|
|
sigma = t
|
|
|
|
xc = self.model_sampling.calculate_input(sigma, x)
|
|
|
|
if c_concat is not None:
|
|
|
|
xc = torch.cat([xc] + [c_concat], dim=1)
|
|
|
|
|
|
|
|
context = c_crossattn
|
|
|
|
dtype = self.get_dtype()
|
|
|
|
|
|
|
|
if self.manual_cast_dtype is not None:
|
|
|
|
dtype = self.manual_cast_dtype
|
|
|
|
|
|
|
|
xc = xc.to(dtype)
|
|
|
|
t = self.model_sampling.timestep(t).float()
|
|
|
|
context = context.to(dtype)
|
|
|
|
extra_conds = {}
|
|
|
|
for o in kwargs:
|
|
|
|
extra = kwargs[o]
|
|
|
|
if hasattr(extra, "to"):
|
|
|
|
extra = extra.to(dtype)
|
|
|
|
extra_conds[o] = extra
|
|
|
|
|
|
|
|
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
|
|
|
|
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
|
|
|
|
|
|
|
def get_dtype(self):
|
|
|
|
return self.diffusion_model.dtype
|
|
|
|
|
|
|
|
def is_adm(self):
|
|
|
|
return self.adm_channels > 0
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
return None
|
|
|
|
|
|
|
|
def extra_conds(self, **kwargs):
|
|
|
|
out = {}
|
|
|
|
if self.inpaint_model:
|
|
|
|
concat_keys = ("mask", "masked_image")
|
|
|
|
cond_concat = []
|
|
|
|
denoise_mask = kwargs.get("denoise_mask", None)
|
|
|
|
latent_image = kwargs.get("latent_image", None)
|
|
|
|
noise = kwargs.get("noise", None)
|
|
|
|
device = kwargs["device"]
|
|
|
|
|
|
|
|
def blank_inpaint_image_like(latent_image):
|
|
|
|
blank_image = torch.ones_like(latent_image)
|
|
|
|
# these are the values for "zero" in pixel space translated to latent space
|
|
|
|
blank_image[:,0] *= 0.8223
|
|
|
|
blank_image[:,1] *= -0.6876
|
|
|
|
blank_image[:,2] *= 0.6364
|
|
|
|
blank_image[:,3] *= 0.1380
|
|
|
|
return blank_image
|
|
|
|
|
|
|
|
for ck in concat_keys:
|
|
|
|
if denoise_mask is not None:
|
|
|
|
if ck == "mask":
|
|
|
|
cond_concat.append(denoise_mask[:,:1].to(device))
|
|
|
|
elif ck == "masked_image":
|
|
|
|
cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
|
|
|
else:
|
|
|
|
if ck == "mask":
|
|
|
|
cond_concat.append(torch.ones_like(noise)[:,:1])
|
|
|
|
elif ck == "masked_image":
|
|
|
|
cond_concat.append(blank_inpaint_image_like(noise))
|
|
|
|
data = torch.cat(cond_concat, dim=1)
|
|
|
|
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
|
|
|
|
|
|
|
|
adm = self.encode_adm(**kwargs)
|
|
|
|
if adm is not None:
|
|
|
|
out['y'] = comfy.conds.CONDRegular(adm)
|
|
|
|
|
|
|
|
cross_attn = kwargs.get("cross_attn", None)
|
|
|
|
if cross_attn is not None:
|
|
|
|
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
def load_model_weights(self, sd, unet_prefix=""):
|
|
|
|
to_load = {}
|
|
|
|
keys = list(sd.keys())
|
|
|
|
for k in keys:
|
|
|
|
if k.startswith(unet_prefix):
|
|
|
|
to_load[k[len(unet_prefix):]] = sd.pop(k)
|
|
|
|
|
|
|
|
to_load = self.model_config.process_unet_state_dict(to_load)
|
|
|
|
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
|
|
|
|
if len(m) > 0:
|
|
|
|
print("unet missing:", m)
|
|
|
|
|
|
|
|
if len(u) > 0:
|
|
|
|
print("unet unexpected:", u)
|
|
|
|
del to_load
|
|
|
|
return self
|
|
|
|
|
|
|
|
def process_latent_in(self, latent):
|
|
|
|
return self.latent_format.process_in(latent)
|
|
|
|
|
|
|
|
def process_latent_out(self, latent):
|
|
|
|
return self.latent_format.process_out(latent)
|
|
|
|
|
|
|
|
def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
|
|
|
|
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
|
|
|
|
unet_sd = self.diffusion_model.state_dict()
|
|
|
|
unet_state_dict = {}
|
|
|
|
for k in unet_sd:
|
|
|
|
unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
|
|
|
|
|
|
|
|
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
|
|
|
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
|
|
|
|
if self.get_dtype() == torch.float16:
|
|
|
|
clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
|
|
|
|
vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
|
|
|
|
|
|
|
|
if self.model_type == ModelType.V_PREDICTION:
|
|
|
|
unet_state_dict["v_pred"] = torch.tensor([])
|
|
|
|
|
|
|
|
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
|
|
|
|
|
|
|
|
def set_inpaint(self):
|
|
|
|
self.inpaint_model = True
|
|
|
|
|
|
|
|
def memory_required(self, input_shape):
|
|
|
|
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
|
|
|
|
dtype = self.get_dtype()
|
|
|
|
if self.manual_cast_dtype is not None:
|
|
|
|
dtype = self.manual_cast_dtype
|
|
|
|
#TODO: this needs to be tweaked
|
|
|
|
area = input_shape[0] * input_shape[2] * input_shape[3]
|
|
|
|
return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
|
|
|
|
else:
|
|
|
|
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
|
|
|
|
area = input_shape[0] * input_shape[2] * input_shape[3]
|
|
|
|
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
|
|
|
|
|
|
|
|
|
|
|
|
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
|
|
|
|
adm_inputs = []
|
|
|
|
weights = []
|
|
|
|
noise_aug = []
|
|
|
|
for unclip_cond in unclip_conditioning:
|
|
|
|
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
|
|
|
weight = unclip_cond["strength"]
|
|
|
|
noise_augment = unclip_cond["noise_augmentation"]
|
|
|
|
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
|
|
|
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
|
|
|
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
|
|
|
weights.append(weight)
|
|
|
|
noise_aug.append(noise_augment)
|
|
|
|
adm_inputs.append(adm_out)
|
|
|
|
|
|
|
|
if len(noise_aug) > 1:
|
|
|
|
adm_out = torch.stack(adm_inputs).sum(0)
|
|
|
|
noise_augment = noise_augment_merge
|
|
|
|
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
|
|
|
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
|
|
|
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
|
|
|
|
|
|
|
return adm_out
|
|
|
|
|
|
|
|
class SD21UNCLIP(BaseModel):
|
|
|
|
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
|
|
|
|
super().__init__(model_config, model_type, device=device)
|
|
|
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
|
|
|
device = kwargs["device"]
|
|
|
|
if unclip_conditioning is None:
|
|
|
|
return torch.zeros((1, self.adm_channels))
|
|
|
|
else:
|
|
|
|
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
|
|
|
|
|
|
|
|
def sdxl_pooled(args, noise_augmentor):
|
|
|
|
if "unclip_conditioning" in args:
|
|
|
|
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
|
|
|
|
else:
|
|
|
|
return args["pooled_output"]
|
|
|
|
|
|
|
|
class SDXLRefiner(BaseModel):
|
|
|
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
|
|
|
super().__init__(model_config, model_type, device=device)
|
|
|
|
self.embedder = Timestep(256)
|
|
|
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
|
|
|
width = kwargs.get("width", 768)
|
|
|
|
height = kwargs.get("height", 768)
|
|
|
|
crop_w = kwargs.get("crop_w", 0)
|
|
|
|
crop_h = kwargs.get("crop_h", 0)
|
|
|
|
|
|
|
|
if kwargs.get("prompt_type", "") == "negative":
|
|
|
|
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
|
|
|
|
else:
|
|
|
|
aesthetic_score = kwargs.get("aesthetic_score", 6)
|
|
|
|
|
|
|
|
out = []
|
|
|
|
out.append(self.embedder(torch.Tensor([height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([width])))
|
|
|
|
out.append(self.embedder(torch.Tensor([crop_h])))
|
|
|
|
out.append(self.embedder(torch.Tensor([crop_w])))
|
|
|
|
out.append(self.embedder(torch.Tensor([aesthetic_score])))
|
|
|
|
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
|
|
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
|
|
|
|
|
|
|
class SDXL(BaseModel):
|
|
|
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
|
|
|
super().__init__(model_config, model_type, device=device)
|
|
|
|
self.embedder = Timestep(256)
|
|
|
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
|
|
|
width = kwargs.get("width", 768)
|
|
|
|
height = kwargs.get("height", 768)
|
|
|
|
crop_w = kwargs.get("crop_w", 0)
|
|
|
|
crop_h = kwargs.get("crop_h", 0)
|
|
|
|
target_width = kwargs.get("target_width", width)
|
|
|
|
target_height = kwargs.get("target_height", height)
|
|
|
|
|
|
|
|
out = []
|
|
|
|
out.append(self.embedder(torch.Tensor([height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([width])))
|
|
|
|
out.append(self.embedder(torch.Tensor([crop_h])))
|
|
|
|
out.append(self.embedder(torch.Tensor([crop_w])))
|
|
|
|
out.append(self.embedder(torch.Tensor([target_height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([target_width])))
|
|
|
|
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
|
|
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
|
|
|
|
|
|
|
class SVD_img2vid(BaseModel):
|
|
|
|
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
|
|
|
|
super().__init__(model_config, model_type, device=device)
|
|
|
|
self.embedder = Timestep(256)
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
fps_id = kwargs.get("fps", 6) - 1
|
|
|
|
motion_bucket_id = kwargs.get("motion_bucket_id", 127)
|
|
|
|
augmentation = kwargs.get("augmentation_level", 0)
|
|
|
|
|
|
|
|
out = []
|
|
|
|
out.append(self.embedder(torch.Tensor([fps_id])))
|
|
|
|
out.append(self.embedder(torch.Tensor([motion_bucket_id])))
|
|
|
|
out.append(self.embedder(torch.Tensor([augmentation])))
|
|
|
|
|
|
|
|
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
|
|
|
|
return flat
|
|
|
|
|
|
|
|
def extra_conds(self, **kwargs):
|
|
|
|
out = {}
|
|
|
|
adm = self.encode_adm(**kwargs)
|
|
|
|
if adm is not None:
|
|
|
|
out['y'] = comfy.conds.CONDRegular(adm)
|
|
|
|
|
|
|
|
latent_image = kwargs.get("concat_latent_image", None)
|
|
|
|
noise = kwargs.get("noise", None)
|
|
|
|
device = kwargs["device"]
|
|
|
|
|
|
|
|
if latent_image is None:
|
|
|
|
latent_image = torch.zeros_like(noise)
|
|
|
|
|
|
|
|
if latent_image.shape[1:] != noise.shape[1:]:
|
|
|
|
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
|
|
|
|
A different way of handling multiple images passed to SVD.
Previously when a list of 3 images [0, 1, 2] was used for a 6 frame video
they were concated like this:
[0, 1, 2, 0, 1, 2]
now they are concated like this:
[0, 0, 1, 1, 2, 2]
12 months ago
|
|
|
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
|
|
|
|
|
|
|
|
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
|
|
|
|
|
|
|
|
cross_attn = kwargs.get("cross_attn", None)
|
|
|
|
if cross_attn is not None:
|
|
|
|
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
|
|
|
|
|
|
|
if "time_conditioning" in kwargs:
|
|
|
|
out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])
|
|
|
|
|
|
|
|
out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device))
|
|
|
|
out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
|
|
|
|
return out
|
|
|
|
|
|
|
|
class Stable_Zero123(BaseModel):
|
|
|
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
|
|
|
|
super().__init__(model_config, model_type, device=device)
|
|
|
|
self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
|
|
|
|
self.cc_projection.weight.copy_(cc_projection_weight)
|
|
|
|
self.cc_projection.bias.copy_(cc_projection_bias)
|
|
|
|
|
|
|
|
def extra_conds(self, **kwargs):
|
|
|
|
out = {}
|
|
|
|
|
|
|
|
latent_image = kwargs.get("concat_latent_image", None)
|
|
|
|
noise = kwargs.get("noise", None)
|
|
|
|
|
|
|
|
if latent_image is None:
|
|
|
|
latent_image = torch.zeros_like(noise)
|
|
|
|
|
|
|
|
if latent_image.shape[1:] != noise.shape[1:]:
|
|
|
|
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
|
|
|
|
|
|
|
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
|
|
|
|
|
|
|
|
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
|
|
|
|
|
|
|
|
cross_attn = kwargs.get("cross_attn", None)
|
|
|
|
if cross_attn is not None:
|
|
|
|
if cross_attn.shape[-1] != 768:
|
|
|
|
cross_attn = self.cc_projection(cross_attn)
|
|
|
|
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
|
|
|
return out
|