You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
6.6 KiB
173 lines
6.6 KiB
#ifndef UNITY_GEOMETRICTOOLS_INCLUDED |
|
#define UNITY_GEOMETRICTOOLS_INCLUDED |
|
|
|
//----------------------------------------------------------------------------- |
|
// Intersection functions |
|
//----------------------------------------------------------------------------- |
|
|
|
// return furthest near intersection in x and closest far intersection in y |
|
// if (intersections.y > intersections.x) the ray hit the box, else it miss it |
|
// Assume dir is normalize |
|
float2 BoxRayIntersect(float3 start, float3 dir, float3 boxMin, float3 boxMax) |
|
{ |
|
float3 invDir = 1.0 / dir; |
|
|
|
// Find the ray intersection with box plane |
|
float3 firstPlaneIntersect = (boxMin - start) * invDir; |
|
float3 secondPlaneIntersect = (boxMax - start) * invDir; |
|
|
|
// Get the closest/furthest of these intersections along the ray (Ok because x/0 give +inf and -x/0 give -inf ) |
|
float3 closestPlane = min(firstPlaneIntersect, secondPlaneIntersect); |
|
float3 furthestPlane = max(firstPlaneIntersect, secondPlaneIntersect); |
|
|
|
float2 intersections; |
|
// Find the furthest near intersection |
|
intersections.x = max(closestPlane.x, max(closestPlane.y, closestPlane.z)); |
|
// Find the closest far intersection |
|
intersections.y = min(min(furthestPlane.x, furthestPlane.y), furthestPlane.z); |
|
|
|
return intersections; |
|
} |
|
|
|
// This simplified version assume that we care about the result only when we are inside the box |
|
// Assume dir is normalize |
|
float BoxRayIntersectSimple(float3 start, float3 dir, float3 boxMin, float3 boxMax) |
|
{ |
|
float3 invDir = 1.0 / dir; |
|
|
|
// Find the ray intersection with box plane |
|
float3 rbmin = (boxMin - start) * invDir; |
|
float3 rbmax = (boxMax - start) * invDir; |
|
|
|
float3 rbminmax = (dir > 0.0) ? rbmax : rbmin; |
|
|
|
return min(min(rbminmax.x, rbminmax.y), rbminmax.z); |
|
} |
|
|
|
// Assume Sphere is at the origin (i.e start = position - spherePosition) |
|
float2 SphereRayIntersect(float3 start, float3 dir, float radius, out bool intersect) |
|
{ |
|
float a = dot(dir, dir); |
|
float b = dot(dir, start) * 2.0; |
|
float c = dot(start, start) - radius * radius; |
|
float discriminant = b * b - 4.0 * a * c; |
|
|
|
float2 intersections = float2(0.0, 0.0); |
|
intersect = false; |
|
if (discriminant < 0.0 || a == 0.0) |
|
{ |
|
intersections.x = 0.0; |
|
intersections.y = 0.0; |
|
} |
|
else |
|
{ |
|
float sqrtDiscriminant = sqrt(discriminant); |
|
intersections.x = (-b - sqrtDiscriminant) / (2.0 * a); |
|
intersections.y = (-b + sqrtDiscriminant) / (2.0 * a); |
|
intersect = true; |
|
} |
|
|
|
return intersections; |
|
} |
|
|
|
// This simplified version assume that we care about the result only when we are inside the sphere |
|
// Assume Sphere is at the origin (i.e start = position - spherePosition) and dir is normalized |
|
// Ref: http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html |
|
float SphereRayIntersectSimple(float3 start, float3 dir, float radius) |
|
{ |
|
float b = dot(dir, start) * 2.0; |
|
float c = dot(start, start) - radius * radius; |
|
float discriminant = b * b - 4.0 * c; |
|
|
|
return abs(sqrt(discriminant) - b) * 0.5; |
|
} |
|
|
|
float3 RayPlaneIntersect(in float3 rayOrigin, in float3 rayDirection, in float3 planeOrigin, in float3 planeNormal) |
|
{ |
|
float dist = dot(planeNormal, planeOrigin - rayOrigin) / dot(planeNormal, rayDirection); |
|
return rayOrigin + rayDirection * dist; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Miscellaneous functions |
|
//----------------------------------------------------------------------------- |
|
|
|
// Box is AABB |
|
float DistancePointBox(float3 position, float3 boxMin, float3 boxMax) |
|
{ |
|
return length(max(max(position - boxMax, boxMin - position), float3(0.0, 0.0, 0.0))); |
|
} |
|
|
|
float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal) |
|
{ |
|
return position - (dot(position - planePosition, planeNormal) * planeNormal); |
|
} |
|
|
|
// Plane equation: {(a, b, c) = N, d = -dot(N, P)}. |
|
// Returns the distance from the plane to the point 'p' along the normal. |
|
// Positive -> in front (above), negative -> behind (below). |
|
float DistanceFromPlane(float3 p, float4 plane) |
|
{ |
|
return dot(float4(p, 1.0), plane); |
|
} |
|
|
|
// Returns 'true' if the triangle is outside of the frustum. |
|
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle. |
|
bool CullTriangleFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes) |
|
{ |
|
bool outside = false; |
|
|
|
for (int i = 0; i < numPlanes; i++) |
|
{ |
|
// If all 3 points are behind any of the planes, we cull. |
|
outside = outside || Max3(DistanceFromPlane(p0, frustumPlanes[i]), |
|
DistanceFromPlane(p1, frustumPlanes[i]), |
|
DistanceFromPlane(p2, frustumPlanes[i])) < epsilon; |
|
} |
|
|
|
return outside; |
|
} |
|
|
|
// Returns 'true' if the edge of the triangle is outside of the frustum. |
|
// The edges are defined s.t. they are on the opposite side of the point with the given index. |
|
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle. |
|
bool3 CullTriangleEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes) |
|
{ |
|
bool3 edgesOutside = false; |
|
|
|
for (int i = 0; i < numPlanes; i++) |
|
{ |
|
bool3 pointsOutside = bool3(DistanceFromPlane(p0, frustumPlanes[i]) < epsilon, |
|
DistanceFromPlane(p1, frustumPlanes[i]) < epsilon, |
|
DistanceFromPlane(p2, frustumPlanes[i]) < epsilon); |
|
|
|
// If both points of the edge are behind any of the planes, we cull. |
|
edgesOutside.x = edgesOutside.x || (pointsOutside.y && pointsOutside.z); |
|
edgesOutside.y = edgesOutside.y || (pointsOutside.x && pointsOutside.z); |
|
edgesOutside.z = edgesOutside.z || (pointsOutside.x && pointsOutside.y); |
|
} |
|
|
|
return edgesOutside; |
|
} |
|
|
|
// Returns 'true' if a triangle defined by 3 vertices is back-facing. |
|
// 'epsilon' is the (negative) value of dot(N, V) below which we cull the triangle. |
|
// 'winding' can be used to change the order: pass 1 for (p0 -> p1 -> p2), or -1 for (p0 -> p2 -> p1). |
|
bool CullTriangleBackFace(float3 p0, float3 p1, float3 p2, float epsilon, float3 viewPos, float winding) |
|
{ |
|
float3 edge1 = p1 - p0; |
|
float3 edge2 = p2 - p0; |
|
|
|
float3 N = cross(edge1, edge2); |
|
float3 V = viewPos - p0; |
|
float NdotV = dot(N, V) * winding; |
|
|
|
// Optimize: |
|
// NdotV / (length(N) * length(V)) < Epsilon |
|
// NdotV < Epsilon * length(N) * length(V) |
|
// NdotV < Epsilon * sqrt(dot(N, N)) * sqrt(dot(V, V)) |
|
// NdotV < Epsilon * sqrt(dot(N, N) * dot(V, V)) |
|
return NdotV < epsilon * sqrt(dot(N, N) * dot(V, V)); |
|
} |
|
|
|
#endif // UNITY_GEOMETRICTOOLS_INCLUDED
|
|
|