You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1436 lines
56 KiB
1436 lines
56 KiB
/** |
|
* Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com) |
|
* Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com) |
|
* Copyright (C) 2013 Belen Masia (bmasia@unizar.es) |
|
* Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com) |
|
* Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es) |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
|
* this software and associated documentation files (the "Software"), to deal in |
|
* the Software without restriction, including without limitation the rights to |
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
|
* of the Software, and to permit persons to whom the Software is furnished to |
|
* do so, subject to the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be included in |
|
* all copies or substantial portions of the Software. As clarification, there |
|
* is no requirement that the copyright notice and permission be included in |
|
* binary distributions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
* SOFTWARE. |
|
*/ |
|
|
|
|
|
/** |
|
* _______ ___ ___ ___ ___ |
|
* / || \/ | / \ / \ |
|
* | (---- | \ / | / ^ \ / ^ \ |
|
* \ \ | |\/| | / /_\ \ / /_\ \ |
|
* ----) | | | | | / _____ \ / _____ \ |
|
* |_______/ |__| |__| /__/ \__\ /__/ \__\ |
|
* |
|
* E N H A N C E D |
|
* S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G |
|
* |
|
* http://www.iryoku.com/smaa/ |
|
* |
|
* Hi, welcome aboard! |
|
* |
|
* Here you'll find instructions to get the shader up and running as fast as |
|
* possible. |
|
* |
|
* IMPORTANTE NOTICE: when updating, remember to update both this file and the |
|
* precomputed textures! They may change from version to version. |
|
* |
|
* The shader has three passes, chained together as follows: |
|
* |
|
* |input|------------------ |
|
* v | |
|
* [ SMAA*EdgeDetection ] | |
|
* v | |
|
* |edgesTex| | |
|
* v | |
|
* [ SMAABlendingWeightCalculation ] | |
|
* v | |
|
* |blendTex| | |
|
* v | |
|
* [ SMAANeighborhoodBlending ] <------ |
|
* v |
|
* |output| |
|
* |
|
* Note that each [pass] has its own vertex and pixel shader. Remember to use |
|
* oversized triangles instead of quads to avoid overshading along the |
|
* diagonal. |
|
* |
|
* You've three edge detection methods to choose from: luma, color or depth. |
|
* They represent different quality/performance and anti-aliasing/sharpness |
|
* tradeoffs, so our recommendation is for you to choose the one that best |
|
* suits your particular scenario: |
|
* |
|
* - Depth edge detection is usually the fastest but it may miss some edges. |
|
* |
|
* - Luma edge detection is usually more expensive than depth edge detection, |
|
* but catches visible edges that depth edge detection can miss. |
|
* |
|
* - Color edge detection is usually the most expensive one but catches |
|
* chroma-only edges. |
|
* |
|
* For quickstarters: just use luma edge detection. |
|
* |
|
* The general advice is to not rush the integration process and ensure each |
|
* step is done correctly (don't try to integrate SMAA T2x with predicated edge |
|
* detection from the start!). Ok then, let's go! |
|
* |
|
* 1. The first step is to create two RGBA temporal render targets for holding |
|
* |edgesTex| and |blendTex|. |
|
* |
|
* In DX10 or DX11, you can use a RG render target for the edges texture. |
|
* In the case of NVIDIA GPUs, using RG render targets seems to actually be |
|
* slower. |
|
* |
|
* On the Xbox 360, you can use the same render target for resolving both |
|
* |edgesTex| and |blendTex|, as they aren't needed simultaneously. |
|
* |
|
* 2. Both temporal render targets |edgesTex| and |blendTex| must be cleared |
|
* each frame. Do not forget to clear the alpha channel! |
|
* |
|
* 3. The next step is loading the two supporting precalculated textures, |
|
* 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as |
|
* C++ headers, and also as regular DDS files. They'll be needed for the |
|
* 'SMAABlendingWeightCalculation' pass. |
|
* |
|
* If you use the C++ headers, be sure to load them in the format specified |
|
* inside of them. |
|
* |
|
* You can also compress 'areaTex' and 'searchTex' using BC5 and BC4 |
|
* respectively, if you have that option in your content processor pipeline. |
|
* When compressing then, you get a non-perceptible quality decrease, and a |
|
* marginal performance increase. |
|
* |
|
* 4. All samplers must be set to linear filtering and clamp. |
|
* |
|
* After you get the technique working, remember that 64-bit inputs have |
|
* half-rate linear filtering on GCN. |
|
* |
|
* If SMAA is applied to 64-bit color buffers, switching to point filtering |
|
* when accesing them will increase the performance. Search for |
|
* 'SMAASamplePoint' to see which textures may benefit from point |
|
* filtering, and where (which is basically the color input in the edge |
|
* detection and resolve passes). |
|
* |
|
* 5. All texture reads and buffer writes must be non-sRGB, with the exception |
|
* of the input read and the output write in |
|
* 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in |
|
* this last pass are not possible, the technique will work anyway, but |
|
* will perform antialiasing in gamma space. |
|
* |
|
* IMPORTANT: for best results the input read for the color/luma edge |
|
* detection should *NOT* be sRGB. |
|
* |
|
* 6. Before including SMAA.h you'll have to setup the render target metrics, |
|
* the target and any optional configuration defines. Optionally you can |
|
* use a preset. |
|
* |
|
* You have the following targets available: |
|
* SMAA_HLSL_3 |
|
* SMAA_HLSL_4 |
|
* SMAA_HLSL_4_1 |
|
* SMAA_GLSL_3 * |
|
* SMAA_GLSL_4 * |
|
* |
|
* * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below). |
|
* |
|
* And four presets: |
|
* SMAA_PRESET_LOW (%60 of the quality) |
|
* SMAA_PRESET_MEDIUM (%80 of the quality) |
|
* SMAA_PRESET_HIGH (%95 of the quality) |
|
* SMAA_PRESET_ULTRA (%99 of the quality) |
|
* |
|
* For example: |
|
* #define SMAA_RT_METRICS float4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0) |
|
* #define SMAA_HLSL_4 |
|
* #define SMAA_PRESET_HIGH |
|
* #include "SMAA.h" |
|
* |
|
* Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a |
|
* uniform variable. The code is designed to minimize the impact of not |
|
* using a constant value, but it is still better to hardcode it. |
|
* |
|
* Depending on how you encoded 'areaTex' and 'searchTex', you may have to |
|
* add (and customize) the following defines before including SMAA.h: |
|
* #define SMAA_AREATEX_SELECT(sample) sample.rg |
|
* #define SMAA_SEARCHTEX_SELECT(sample) sample.r |
|
* |
|
* If your engine is already using porting macros, you can define |
|
* SMAA_CUSTOM_SL, and define the porting functions by yourself. |
|
* |
|
* 7. Then, you'll have to setup the passes as indicated in the scheme above. |
|
* You can take a look into SMAA.fx, to see how we did it for our demo. |
|
* Checkout the function wrappers, you may want to copy-paste them! |
|
* |
|
* 8. It's recommended to validate the produced |edgesTex| and |blendTex|. |
|
* You can use a screenshot from your engine to compare the |edgesTex| |
|
* and |blendTex| produced inside of the engine with the results obtained |
|
* with the reference demo. |
|
* |
|
* 9. After you get the last pass to work, it's time to optimize. You'll have |
|
* to initialize a stencil buffer in the first pass (discard is already in |
|
* the code), then mask execution by using it the second pass. The last |
|
* pass should be executed in all pixels. |
|
* |
|
* |
|
* After this point you can choose to enable predicated thresholding, |
|
* temporal supersampling and motion blur integration: |
|
* |
|
* a) If you want to use predicated thresholding, take a look into |
|
* SMAA_PREDICATION; you'll need to pass an extra texture in the edge |
|
* detection pass. |
|
* |
|
* b) If you want to enable temporal supersampling (SMAA T2x): |
|
* |
|
* 1. The first step is to render using subpixel jitters. I won't go into |
|
* detail, but it's as simple as moving each vertex position in the |
|
* vertex shader, you can check how we do it in our DX10 demo. |
|
* |
|
* 2. Then, you must setup the temporal resolve. You may want to take a look |
|
* into SMAAResolve for resolving 2x modes. After you get it working, you'll |
|
* probably see ghosting everywhere. But fear not, you can enable the |
|
* CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro. |
|
* Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded. |
|
* |
|
* 3. The next step is to apply SMAA to each subpixel jittered frame, just as |
|
* done for 1x. |
|
* |
|
* 4. At this point you should already have something usable, but for best |
|
* results the proper area textures must be set depending on current jitter. |
|
* For this, the parameter 'subsampleIndices' of |
|
* 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x |
|
* mode: |
|
* |
|
* @SUBSAMPLE_INDICES |
|
* |
|
* | S# | Camera Jitter | subsampleIndices | |
|
* +----+------------------+---------------------+ |
|
* | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) | |
|
* | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) | |
|
* |
|
* These jitter positions assume a bottom-to-top y axis. S# stands for the |
|
* sample number. |
|
* |
|
* More information about temporal supersampling here: |
|
* http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf |
|
* |
|
* c) If you want to enable spatial multisampling (SMAA S2x): |
|
* |
|
* 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be |
|
* created with: |
|
* - DX10: see below (*) |
|
* - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or |
|
* - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN |
|
* |
|
* This allows to ensure that the subsample order matches the table in |
|
* @SUBSAMPLE_INDICES. |
|
* |
|
* (*) In the case of DX10, we refer the reader to: |
|
* - SMAA::detectMSAAOrder and |
|
* - SMAA::msaaReorder |
|
* |
|
* These functions allow to match the standard multisample patterns by |
|
* detecting the subsample order for a specific GPU, and reordering |
|
* them appropriately. |
|
* |
|
* 2. A shader must be run to output each subsample into a separate buffer |
|
* (DX10 is required). You can use SMAASeparate for this purpose, or just do |
|
* it in an existing pass (for example, in the tone mapping pass, which has |
|
* the advantage of feeding tone mapped subsamples to SMAA, which will yield |
|
* better results). |
|
* |
|
* 3. The full SMAA 1x pipeline must be run for each separated buffer, storing |
|
* the results in the final buffer. The second run should alpha blend with |
|
* the existing final buffer using a blending factor of 0.5. |
|
* 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point |
|
* b). |
|
* |
|
* d) If you want to enable temporal supersampling on top of SMAA S2x |
|
* (which actually is SMAA 4x): |
|
* |
|
* 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is |
|
* to calculate SMAA S2x for current frame. In this case, 'subsampleIndices' |
|
* must be set as follows: |
|
* |
|
* | F# | S# | Camera Jitter | Net Jitter | subsampleIndices | |
|
* +----+----+--------------------+-------------------+----------------------+ |
|
* | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) | |
|
* | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) | |
|
* +----+----+--------------------+-------------------+----------------------+ |
|
* | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) | |
|
* | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) | |
|
* |
|
* These jitter positions assume a bottom-to-top y axis. F# stands for the |
|
* frame number. S# stands for the sample number. |
|
* |
|
* 2. After calculating SMAA S2x for current frame (with the new subsample |
|
* indices), previous frame must be reprojected as in SMAA T2x mode (see |
|
* point b). |
|
* |
|
* e) If motion blur is used, you may want to do the edge detection pass |
|
* together with motion blur. This has two advantages: |
|
* |
|
* 1. Pixels under heavy motion can be omitted from the edge detection process. |
|
* For these pixels we can just store "no edge", as motion blur will take |
|
* care of them. |
|
* 2. The center pixel tap is reused. |
|
* |
|
* Note that in this case depth testing should be used instead of stenciling, |
|
* as we have to write all the pixels in the motion blur pass. |
|
* |
|
* That's it! |
|
*/ |
|
|
|
//----------------------------------------------------------------------------- |
|
// SMAA Presets |
|
|
|
/** |
|
* Note that if you use one of these presets, the following configuration |
|
* macros will be ignored if set in the "Configurable Defines" section. |
|
*/ |
|
|
|
#if defined(SMAA_PRESET_LOW) |
|
#define SMAA_THRESHOLD 0.15 |
|
#define SMAA_MAX_SEARCH_STEPS 4 |
|
#define SMAA_DISABLE_DIAG_DETECTION |
|
#define SMAA_DISABLE_CORNER_DETECTION |
|
#elif defined(SMAA_PRESET_MEDIUM) |
|
#define SMAA_THRESHOLD 0.1 |
|
#define SMAA_MAX_SEARCH_STEPS 8 |
|
#define SMAA_DISABLE_DIAG_DETECTION |
|
#define SMAA_DISABLE_CORNER_DETECTION |
|
#elif defined(SMAA_PRESET_HIGH) |
|
#define SMAA_THRESHOLD 0.1 |
|
#define SMAA_MAX_SEARCH_STEPS 16 |
|
#define SMAA_MAX_SEARCH_STEPS_DIAG 8 |
|
#define SMAA_CORNER_ROUNDING 25 |
|
#elif defined(SMAA_PRESET_ULTRA) |
|
#define SMAA_THRESHOLD 0.05 |
|
#define SMAA_MAX_SEARCH_STEPS 32 |
|
#define SMAA_MAX_SEARCH_STEPS_DIAG 16 |
|
#define SMAA_CORNER_ROUNDING 25 |
|
#endif |
|
|
|
//----------------------------------------------------------------------------- |
|
// Configurable Defines |
|
|
|
/** |
|
* SMAA_THRESHOLD specifies the threshold or sensitivity to edges. |
|
* Lowering this value you will be able to detect more edges at the expense of |
|
* performance. |
|
* |
|
* Range: [0, 0.5] |
|
* 0.1 is a reasonable value, and allows to catch most visible edges. |
|
* 0.05 is a rather overkill value, that allows to catch 'em all. |
|
* |
|
* If temporal supersampling is used, 0.2 could be a reasonable value, as low |
|
* contrast edges are properly filtered by just 2x. |
|
*/ |
|
#ifndef SMAA_THRESHOLD |
|
#define SMAA_THRESHOLD 0.1 |
|
#endif |
|
|
|
/** |
|
* SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection. |
|
* |
|
* Range: depends on the depth range of the scene. |
|
*/ |
|
#ifndef SMAA_DEPTH_THRESHOLD |
|
#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD) |
|
#endif |
|
|
|
/** |
|
* SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the |
|
* horizontal/vertical pattern searches, at each side of the pixel. |
|
* |
|
* In number of pixels, it's actually the double. So the maximum line length |
|
* perfectly handled by, for example 16, is 64 (by perfectly, we meant that |
|
* longer lines won't look as good, but still antialiased). |
|
* |
|
* Range: [0, 112] |
|
*/ |
|
#ifndef SMAA_MAX_SEARCH_STEPS |
|
#define SMAA_MAX_SEARCH_STEPS 16 |
|
#endif |
|
|
|
/** |
|
* SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the |
|
* diagonal pattern searches, at each side of the pixel. In this case we jump |
|
* one pixel at time, instead of two. |
|
* |
|
* Range: [0, 20] |
|
* |
|
* On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16 |
|
* steps), but it can have a significant impact on older machines. |
|
* |
|
* Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing. |
|
*/ |
|
#ifndef SMAA_MAX_SEARCH_STEPS_DIAG |
|
#define SMAA_MAX_SEARCH_STEPS_DIAG 8 |
|
#endif |
|
|
|
/** |
|
* SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded. |
|
* |
|
* Range: [0, 100] |
|
* |
|
* Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing. |
|
*/ |
|
#ifndef SMAA_CORNER_ROUNDING |
|
#define SMAA_CORNER_ROUNDING 25 |
|
#endif |
|
|
|
/** |
|
* If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times |
|
* bigger contrast than current edge, current edge will be discarded. |
|
* |
|
* This allows to eliminate spurious crossing edges, and is based on the fact |
|
* that, if there is too much contrast in a direction, that will hide |
|
* perceptually contrast in the other neighbors. |
|
*/ |
|
#ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR |
|
#define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0 |
|
#endif |
|
|
|
/** |
|
* Predicated thresholding allows to better preserve texture details and to |
|
* improve performance, by decreasing the number of detected edges using an |
|
* additional buffer like the light accumulation buffer, object ids or even the |
|
* depth buffer (the depth buffer usage may be limited to indoor or short range |
|
* scenes). |
|
* |
|
* It locally decreases the luma or color threshold if an edge is found in an |
|
* additional buffer (so the global threshold can be higher). |
|
* |
|
* This method was developed by Playstation EDGE MLAA team, and used in |
|
* Killzone 3, by using the light accumulation buffer. More information here: |
|
* http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx |
|
*/ |
|
#ifndef SMAA_PREDICATION |
|
#define SMAA_PREDICATION 0 |
|
#endif |
|
|
|
/** |
|
* Threshold to be used in the additional predication buffer. |
|
* |
|
* Range: depends on the input, so you'll have to find the magic number that |
|
* works for you. |
|
*/ |
|
#ifndef SMAA_PREDICATION_THRESHOLD |
|
#define SMAA_PREDICATION_THRESHOLD 0.01 |
|
#endif |
|
|
|
/** |
|
* How much to scale the global threshold used for luma or color edge |
|
* detection when using predication. |
|
* |
|
* Range: [1, 5] |
|
*/ |
|
#ifndef SMAA_PREDICATION_SCALE |
|
#define SMAA_PREDICATION_SCALE 2.0 |
|
#endif |
|
|
|
/** |
|
* How much to locally decrease the threshold. |
|
* |
|
* Range: [0, 1] |
|
*/ |
|
#ifndef SMAA_PREDICATION_STRENGTH |
|
#define SMAA_PREDICATION_STRENGTH 0.4 |
|
#endif |
|
|
|
/** |
|
* Temporal reprojection allows to remove ghosting artifacts when using |
|
* temporal supersampling. We use the CryEngine 3 method which also introduces |
|
* velocity weighting. This feature is of extreme importance for totally |
|
* removing ghosting. More information here: |
|
* http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf |
|
* |
|
* Note that you'll need to setup a velocity buffer for enabling reprojection. |
|
* For static geometry, saving the previous depth buffer is a viable |
|
* alternative. |
|
*/ |
|
#ifndef SMAA_REPROJECTION |
|
#define SMAA_REPROJECTION 0 |
|
#endif |
|
|
|
/** |
|
* Temporal reprojection allows to remove ghosting artifacts when using |
|
* temporal supersampling. However, the default reprojection requires a velocity buffer |
|
* in order to function properly. |
|
* |
|
* A velocity buffer might not always be available (hi Unity 5!). To handle such cases |
|
* we provide a UV-based approximation for calculating motion vectors on the fly. |
|
*/ |
|
#ifndef SMAA_UV_BASED_REPROJECTION |
|
#define SMAA_UV_BASED_REPROJECTION 0 |
|
#endif |
|
|
|
/** |
|
* SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to |
|
* remove ghosting trails behind the moving object, which are not removed by |
|
* just using reprojection. Using low values will exhibit ghosting, while using |
|
* high values will disable temporal supersampling under motion. |
|
* |
|
* Behind the scenes, velocity weighting removes temporal supersampling when |
|
* the velocity of the subsamples differs (meaning they are different objects). |
|
* |
|
* Range: [0, 80] |
|
*/ |
|
#ifndef SMAA_REPROJECTION_WEIGHT_SCALE |
|
#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0 |
|
#endif |
|
|
|
/** |
|
* On some compilers, discard cannot be used in vertex shaders. Thus, they need |
|
* to be compiled separately. |
|
*/ |
|
#ifndef SMAA_INCLUDE_VS |
|
#define SMAA_INCLUDE_VS 1 |
|
#endif |
|
#ifndef SMAA_INCLUDE_PS |
|
#define SMAA_INCLUDE_PS 1 |
|
#endif |
|
|
|
//----------------------------------------------------------------------------- |
|
// Texture Access Defines |
|
|
|
#ifndef SMAA_AREATEX_SELECT |
|
#if defined(SMAA_HLSL_3) |
|
#define SMAA_AREATEX_SELECT(sample) sample.ra |
|
#else |
|
#define SMAA_AREATEX_SELECT(sample) sample.rg |
|
#endif |
|
#endif |
|
|
|
#ifndef SMAA_SEARCHTEX_SELECT |
|
#define SMAA_SEARCHTEX_SELECT(sample) sample.r |
|
#endif |
|
|
|
#ifndef SMAA_DECODE_VELOCITY |
|
#define SMAA_DECODE_VELOCITY(sample) sample.rg |
|
#endif |
|
|
|
//----------------------------------------------------------------------------- |
|
// Non-Configurable Defines |
|
|
|
#define SMAA_AREATEX_MAX_DISTANCE 16 |
|
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20 |
|
#define SMAA_AREATEX_PIXEL_SIZE (1.0 / float2(160.0, 560.0)) |
|
#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0) |
|
#define SMAA_SEARCHTEX_SIZE float2(66.0, 33.0) |
|
#define SMAA_SEARCHTEX_PACKED_SIZE float2(64.0, 16.0) |
|
#define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0) |
|
|
|
//----------------------------------------------------------------------------- |
|
// Porting Functions |
|
|
|
#if defined(SMAA_HLSL_3) |
|
#define SMAATexture2D(tex) sampler2D tex |
|
#define SMAATexturePass2D(tex) tex |
|
#define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0)) |
|
#define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0)) |
|
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_RT_METRICS.xy, 0.0, 0.0)) |
|
#define SMAASample(tex, coord) tex2D(tex, coord) |
|
#define SMAASamplePoint(tex, coord) tex2D(tex, coord) |
|
#define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_RT_METRICS.xy) |
|
//#define SMAA_FLATTEN [flatten] |
|
//#define SMAA_BRANCH [branch] |
|
#define SMAA_FLATTEN |
|
#define SMAA_BRANCH |
|
#endif |
|
#if defined(SMAA_HLSL_4) || defined(SMAA_HLSL_4_1) |
|
//SamplerState LinearSampler { Filter = MIN_MAG_LINEAR_MIP_POINT; AddressU = Clamp; AddressV = Clamp; }; |
|
//SamplerState PointSampler { Filter = MIN_MAG_MIP_POINT; AddressU = Clamp; AddressV = Clamp; }; |
|
#define SMAATexture2D(tex) TEXTURE2D_X(tex) |
|
#define SMAATexture2D_Non_Array(tex) Texture2D tex |
|
#define SMAATexturePass2D(tex) tex |
|
#define SMAASampleLevelZero(tex, coord) SAMPLE_TEXTURE2D_X_LOD(tex, LinearSampler, coord, 0) |
|
#define SMAASampleLevelZeroNoRescale(tex, coord) tex.SampleLevel(LinearSampler, coord, 0) |
|
#define SMAASampleLevelZeroPoint(tex, coord) SAMPLE_TEXTURE2D_X_LOD(tex, PointSampler, coord, 0) |
|
#define SMAASampleLevelZeroOffset(tex, coord, offset) SAMPLE_TEXTURE2D_X_LOD(tex, LinearSampler, coord + offset * SMAA_RT_METRICS.xy, 0) |
|
#define SMAASample(tex, coord) SAMPLE_TEXTURE2D_X(tex, LinearSampler, coord) |
|
#define SMAASamplePoint(tex, coord) SAMPLE_TEXTURE2D_X(tex, PointSampler, coord) |
|
#define SMAASampleOffset(tex, coord, offset) SAMPLE_TEXTURE2D_X(tex, LinearSampler, coord + offset * SMAA_RT_METRICS.xy) |
|
#define SMAA_FLATTEN [flatten] |
|
#define SMAA_BRANCH [branch] |
|
#define SMAATexture2DMS2(tex) Texture2DMS<float4, 2> tex |
|
#define SMAALoad(tex, pos, sample) tex.Load(pos, sample) |
|
#endif |
|
#if defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4) |
|
#define SMAATexture2D(tex) sampler2D tex |
|
#define SMAATexturePass2D(tex) tex |
|
#define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0) |
|
#define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0) |
|
#define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset) |
|
#define SMAASample(tex, coord) texture(tex, coord) |
|
#define SMAASamplePoint(tex, coord) texture(tex, coord) |
|
#define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset) |
|
#define SMAA_FLATTEN |
|
#define SMAA_BRANCH |
|
#define lerp(a, b, t) mix(a, b, t) |
|
#define saturate(a) clamp(a, 0.0, 1.0) |
|
#if defined(SMAA_GLSL_4) |
|
#define mad(a, b, c) fma(a, b, c) |
|
#define SMAAGather(tex, coord) textureGather(tex, coord) |
|
#else |
|
#define mad(a, b, c) ((a) * (b) + (c)) |
|
#endif |
|
#define float2 vec2 |
|
#define float3 vec3 |
|
#define float4 vec4 |
|
#define int2 ivec2 |
|
#define int3 ivec3 |
|
#define int4 ivec4 |
|
#define bool2 bvec2 |
|
#define bool3 bvec3 |
|
#define bool4 bvec4 |
|
#endif |
|
|
|
#if !defined(SMAA_HLSL_3) && !defined(SMAA_HLSL_4) && !defined(SMAA_HLSL_4_1) && !defined(SMAA_GLSL_3) && !defined(SMAA_GLSL_4) && !defined(SMAA_CUSTOM_SL) |
|
#error you must define the shading language: SMAA_HLSL_*, SMAA_GLSL_* or SMAA_CUSTOM_SL |
|
#endif |
|
|
|
//----------------------------------------------------------------------------- |
|
// Misc functions |
|
|
|
/** |
|
* Gathers current pixel, and the top-left neighbors. |
|
*/ |
|
float3 SMAAGatherNeighbours(float2 texcoord, |
|
float4 offset[3], |
|
SMAATexture2D(tex)) { |
|
#ifdef SMAAGather |
|
return SMAAGather(tex, texcoord + SMAA_RT_METRICS.xy * float2(-0.5, -0.5)).grb; |
|
#else |
|
float P = SMAASamplePoint(tex, texcoord).r; |
|
float Pleft = SMAASamplePoint(tex, offset[0].xy).r; |
|
float Ptop = SMAASamplePoint(tex, offset[0].zw).r; |
|
return float3(P, Pleft, Ptop); |
|
#endif |
|
} |
|
|
|
/** |
|
* Adjusts the threshold by means of predication. |
|
*/ |
|
float2 SMAACalculatePredicatedThreshold(float2 texcoord, |
|
float4 offset[3], |
|
SMAATexture2D(predicationTex)) { |
|
float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(predicationTex)); |
|
float2 delta = abs(neighbours.xx - neighbours.yz); |
|
float2 edges = step(SMAA_PREDICATION_THRESHOLD, delta); |
|
return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges); |
|
} |
|
|
|
/** |
|
* Conditional move: |
|
*/ |
|
void SMAAMovc(bool2 cond, inout float2 variable, float2 value) { |
|
SMAA_FLATTEN if (cond.x) variable.x = value.x; |
|
SMAA_FLATTEN if (cond.y) variable.y = value.y; |
|
} |
|
|
|
void SMAAMovc(bool4 cond, inout float4 variable, float4 value) { |
|
SMAAMovc(cond.xy, variable.xy, value.xy); |
|
SMAAMovc(cond.zw, variable.zw, value.zw); |
|
} |
|
|
|
|
|
#if SMAA_INCLUDE_VS |
|
//----------------------------------------------------------------------------- |
|
// Vertex Shaders |
|
|
|
/** |
|
* Edge Detection Vertex Shader |
|
*/ |
|
void SMAAEdgeDetectionVS(float2 texcoord, |
|
out float4 offset[3]) { |
|
offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-1.0, 0.0, 0.0, -1.0), texcoord.xyxy); |
|
offset[1] = mad(SMAA_RT_METRICS.xyxy, float4(1.0, 0.0, 0.0, 1.0), texcoord.xyxy); |
|
offset[2] = mad(SMAA_RT_METRICS.xyxy, float4(-2.0, 0.0, 0.0, -2.0), texcoord.xyxy); |
|
} |
|
|
|
/** |
|
* Blend Weight Calculation Vertex Shader |
|
*/ |
|
void SMAABlendingWeightCalculationVS(float2 texcoord, |
|
out float2 pixcoord, |
|
out float4 offset[3]) { |
|
pixcoord = texcoord * SMAA_RT_METRICS.zw; |
|
|
|
// We will use these offsets for the searches later on (see @PSEUDO_GATHER4): |
|
offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-0.25, -0.125, 1.25, -0.125), texcoord.xyxy); |
|
offset[1] = mad(SMAA_RT_METRICS.xyxy, float4(-0.125, -0.25, -0.125, 1.25), texcoord.xyxy); |
|
|
|
// And these for the searches, they indicate the ends of the loops: |
|
offset[2] = mad(SMAA_RT_METRICS.xxyy, |
|
float4(-2.0, 2.0, -2.0, 2.0) * float(SMAA_MAX_SEARCH_STEPS), |
|
float4(offset[0].xz, offset[1].yw)); |
|
} |
|
|
|
/** |
|
* Neighborhood Blending Vertex Shader |
|
*/ |
|
void SMAANeighborhoodBlendingVS(float2 texcoord, |
|
out float4 offset) { |
|
offset = mad(SMAA_RT_METRICS.xyxy, float4(1.0, 0.0, 0.0, 1.0), texcoord.xyxy); |
|
} |
|
#endif // SMAA_INCLUDE_VS |
|
|
|
#if SMAA_INCLUDE_PS |
|
//----------------------------------------------------------------------------- |
|
// Edge Detection Pixel Shaders (First Pass) |
|
|
|
/** |
|
* Luma Edge Detection |
|
* |
|
* IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and |
|
* thus 'colorTex' should be a non-sRGB texture. |
|
*/ |
|
float2 SMAALumaEdgeDetectionPS(float2 texcoord, |
|
float4 offset[3], |
|
SMAATexture2D(colorTex) |
|
#if SMAA_PREDICATION |
|
, SMAATexture2D(predicationTex) |
|
#endif |
|
) { |
|
// Calculate the threshold: |
|
#if SMAA_PREDICATION |
|
float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, SMAATexturePass2D(predicationTex)); |
|
#else |
|
float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); |
|
#endif |
|
|
|
// Calculate lumas: |
|
float3 weights = float3(0.2126, 0.7152, 0.0722); |
|
float L = dot(SMAASamplePoint(colorTex, texcoord).rgb, weights); |
|
|
|
float Lleft = dot(SMAASamplePoint(colorTex, offset[0].xy).rgb, weights); |
|
float Ltop = dot(SMAASamplePoint(colorTex, offset[0].zw).rgb, weights); |
|
|
|
// We do the usual threshold: |
|
float4 delta; |
|
delta.xy = abs(L - float2(Lleft, Ltop)); |
|
float2 edges = step(threshold, delta.xy); |
|
|
|
// Then discard if there is no edge: |
|
if (dot(edges, float2(1.0, 1.0)) == 0.0) |
|
discard; |
|
|
|
// Calculate right and bottom deltas: |
|
float Lright = dot(SMAASamplePoint(colorTex, offset[1].xy).rgb, weights); |
|
float Lbottom = dot(SMAASamplePoint(colorTex, offset[1].zw).rgb, weights); |
|
delta.zw = abs(L - float2(Lright, Lbottom)); |
|
|
|
// Calculate the maximum delta in the direct neighborhood: |
|
float2 maxDelta = max(delta.xy, delta.zw); |
|
|
|
// Calculate left-left and top-top deltas: |
|
float Lleftleft = dot(SMAASamplePoint(colorTex, offset[2].xy).rgb, weights); |
|
float Ltoptop = dot(SMAASamplePoint(colorTex, offset[2].zw).rgb, weights); |
|
delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop)); |
|
|
|
// Calculate the final maximum delta: |
|
maxDelta = max(maxDelta.xy, delta.zw); |
|
float finalDelta = max(maxDelta.x, maxDelta.y); |
|
|
|
// Local contrast adaptation: |
|
#if !defined(SHADER_API_GLCORE) || defined(SHADER_API_SWITCH) // TODO: Bug workaround, switch defines GLCORE when it shouldn't |
|
edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); |
|
#endif |
|
|
|
return edges; |
|
} |
|
|
|
/** |
|
* Color Edge Detection |
|
* |
|
* IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and |
|
* thus 'colorTex' should be a non-sRGB texture. |
|
*/ |
|
float2 SMAAColorEdgeDetectionPS(float2 texcoord, |
|
float4 offset[3], |
|
SMAATexture2D(colorTex) |
|
#if SMAA_PREDICATION |
|
, SMAATexture2D(predicationTex) |
|
#endif |
|
) { |
|
// Calculate the threshold: |
|
#if SMAA_PREDICATION |
|
float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex); |
|
#else |
|
float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); |
|
#endif |
|
|
|
// Calculate color deltas: |
|
float4 delta; |
|
float3 C = PositivePow(SMAASamplePoint(colorTex, texcoord).rgb, GAMMA_FOR_EDGE_DETECTION); |
|
|
|
float3 Cleft = PositivePow(SMAASamplePoint(colorTex, offset[0].xy).rgb, GAMMA_FOR_EDGE_DETECTION); |
|
float3 t = abs(C - Cleft); |
|
delta.x = max(max(t.r, t.g), t.b); |
|
|
|
float3 Ctop = PositivePow(SMAASamplePoint(colorTex, offset[0].zw).rgb, GAMMA_FOR_EDGE_DETECTION); |
|
t = abs(C - Ctop); |
|
delta.y = max(max(t.r, t.g), t.b); |
|
|
|
// We do the usual threshold: |
|
float2 edges = step(threshold, delta.xy); |
|
|
|
// Then discard if there is no edge: |
|
if (dot(edges, float2(1.0, 1.0)) == 0.0) |
|
discard; |
|
|
|
// Calculate right and bottom deltas: |
|
float3 Cright = PositivePow(SMAASamplePoint(colorTex, offset[1].xy).rgb, GAMMA_FOR_EDGE_DETECTION); |
|
t = abs(C - Cright); |
|
delta.z = max(max(t.r, t.g), t.b); |
|
|
|
float3 Cbottom = PositivePow(SMAASamplePoint(colorTex, offset[1].zw).rgb, GAMMA_FOR_EDGE_DETECTION); |
|
t = abs(C - Cbottom); |
|
delta.w = max(max(t.r, t.g), t.b); |
|
|
|
// Calculate the maximum delta in the direct neighborhood: |
|
float2 maxDelta = max(delta.xy, delta.zw); |
|
|
|
// Calculate left-left and top-top deltas: |
|
float3 Cleftleft = PositivePow(SMAASamplePoint(colorTex, offset[2].xy).rgb, GAMMA_FOR_EDGE_DETECTION); |
|
t = abs(Cleft - Cleftleft); |
|
delta.z = max(max(t.r, t.g), t.b); |
|
|
|
float3 Ctoptop = PositivePow(SMAASamplePoint(colorTex, offset[2].zw).rgb, GAMMA_FOR_EDGE_DETECTION); |
|
t = abs(Ctop - Ctoptop); |
|
delta.w = max(max(t.r, t.g), t.b); |
|
|
|
// Calculate the final maximum delta: |
|
maxDelta = max(maxDelta.xy, delta.zw); |
|
float finalDelta = max(maxDelta.x, maxDelta.y); |
|
|
|
// Local contrast adaptation: |
|
#if !defined(SHADER_API_GLCORE) || defined(SHADER_API_SWITCH) // TODO: Bug workaround, switch defines GLCORE when it shouldn't |
|
edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); |
|
#endif |
|
|
|
return edges; |
|
} |
|
|
|
/** |
|
* Depth Edge Detection |
|
*/ |
|
float2 SMAADepthEdgeDetectionPS(float2 texcoord, |
|
float4 offset[3], |
|
SMAATexture2D(depthTex)) { |
|
float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(depthTex)); |
|
float2 delta = abs(neighbours.xx - float2(neighbours.y, neighbours.z)); |
|
float2 edges = step(SMAA_DEPTH_THRESHOLD, delta); |
|
|
|
if (dot(edges, float2(1.0, 1.0)) == 0.0) |
|
discard; |
|
|
|
return edges; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Diagonal Search Functions |
|
|
|
#if !defined(SMAA_DISABLE_DIAG_DETECTION) |
|
|
|
/** |
|
* Allows to decode two binary values from a bilinear-filtered access. |
|
*/ |
|
float2 SMAADecodeDiagBilinearAccess(float2 e) { |
|
// Bilinear access for fetching 'e' have a 0.25 offset, and we are |
|
// interested in the R and G edges: |
|
// |
|
// +---G---+-------+ |
|
// | x o R x | |
|
// +-------+-------+ |
|
// |
|
// Then, if one of these edge is enabled: |
|
// Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0 |
|
// Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0 |
|
// |
|
// This function will unpack the values (mad + mul + round): |
|
// wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1 |
|
e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); |
|
return round(e); |
|
} |
|
|
|
float4 SMAADecodeDiagBilinearAccess(float4 e) { |
|
e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); |
|
return round(e); |
|
} |
|
|
|
/** |
|
* These functions allows to perform diagonal pattern searches. |
|
*/ |
|
float2 SMAASearchDiag1(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) { |
|
float4 coord = float4(texcoord, -1.0, 1.0); |
|
float3 t = float3(SMAA_RT_METRICS.xy, 1.0); |
|
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && |
|
coord.w > 0.9) { |
|
coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); |
|
e = SMAASampleLevelZero(edgesTex, coord.xy).rg; |
|
coord.w = dot(e, float2(0.5, 0.5)); |
|
} |
|
return coord.zw; |
|
} |
|
|
|
float2 SMAASearchDiag2(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) { |
|
float4 coord = float4(texcoord, -1.0, 1.0); |
|
coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization |
|
float3 t = float3(SMAA_RT_METRICS.xy, 1.0); |
|
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && |
|
coord.w > 0.9) { |
|
coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); |
|
|
|
// @SearchDiag2Optimization |
|
// Fetch both edges at once using bilinear filtering: |
|
e = SMAASampleLevelZero(edgesTex, coord.xy).rg; |
|
e = SMAADecodeDiagBilinearAccess(e); |
|
|
|
// Non-optimized version: |
|
// e.g = SMAASampleLevelZero(edgesTex, coord.xy).g; |
|
// e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0)).r; |
|
|
|
coord.w = dot(e, float2(0.5, 0.5)); |
|
} |
|
return coord.zw; |
|
} |
|
|
|
/** |
|
* Similar to SMAAArea, this calculates the area corresponding to a certain |
|
* diagonal distance and crossing edges 'e'. |
|
*/ |
|
float2 SMAAAreaDiag(SMAATexture2D_Non_Array(areaTex), float2 dist, float2 e, float offset) { |
|
float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist); |
|
|
|
// We do a scale and bias for mapping to texel space: |
|
texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); |
|
|
|
// Diagonal areas are on the second half of the texture: |
|
texcoord.x += 0.5; |
|
|
|
// Move to proper place, according to the subpixel offset: |
|
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; |
|
|
|
// Do it! |
|
return SMAA_AREATEX_SELECT(SMAASampleLevelZeroNoRescale(areaTex, texcoord)); |
|
} |
|
|
|
/** |
|
* This searches for diagonal patterns and returns the corresponding weights. |
|
*/ |
|
float2 SMAACalculateDiagWeights(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(areaTex), float2 texcoord, float2 e, float4 subsampleIndices) { |
|
float2 weights = float2(0.0, 0.0); |
|
|
|
// Search for the line ends: |
|
float4 d; |
|
float2 end; |
|
if (e.r > 0.0) { |
|
d.xz = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, 1.0), end); |
|
d.x += float(end.y > 0.9); |
|
} |
|
else |
|
d.xz = float2(0.0, 0.0); |
|
d.yw = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, -1.0), end); |
|
|
|
SMAA_BRANCH |
|
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 |
|
// Fetch the crossing edges: |
|
float4 coords = mad(float4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy); |
|
float4 c; |
|
c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).rg; |
|
c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1, 0)).rg; |
|
c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw); |
|
|
|
// Non-optimized version: |
|
// float4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); |
|
// float4 c; |
|
// c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; |
|
// c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0)).r; |
|
// c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).g; |
|
// c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r; |
|
|
|
// Merge crossing edges at each side into a single value: |
|
float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw); |
|
|
|
// Remove the crossing edge if we didn't found the end of the line: |
|
SMAAMovc(bool2(step(float2(0.9, 0.9), d.zw)), cc, float2(0.0, 0.0)); |
|
|
|
// Fetch the areas for this line: |
|
weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.z); |
|
} |
|
|
|
// Search for the line ends: |
|
d.xz = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, -1.0), end); |
|
if (SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r > 0.0) { |
|
d.yw = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, 1.0), end); |
|
d.y += float(end.y > 0.9); |
|
} |
|
else |
|
d.yw = float2(0.0, 0.0); |
|
|
|
SMAA_BRANCH |
|
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 |
|
// Fetch the crossing edges: |
|
float4 coords = mad(float4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); |
|
float4 c; |
|
c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; |
|
c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(0, -1)).r; |
|
c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1, 0)).gr; |
|
float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw); |
|
|
|
// Remove the crossing edge if we didn't found the end of the line: |
|
SMAAMovc(bool2(step(float2(0.9, 0.9), d.zw)), cc, float2(0.0, 0.0)); |
|
|
|
// Fetch the areas for this line: |
|
weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.w).gr; |
|
} |
|
|
|
return weights; |
|
} |
|
#endif |
|
|
|
//----------------------------------------------------------------------------- |
|
// Horizontal/Vertical Search Functions |
|
|
|
/** |
|
* This allows to determine how much length should we add in the last step |
|
* of the searches. It takes the bilinearly interpolated edge (see |
|
* @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and |
|
* crossing edges are active. |
|
*/ |
|
float SMAASearchLength(SMAATexture2D_Non_Array(searchTex), float2 e, float offset) { |
|
// The texture is flipped vertically, with left and right cases taking half |
|
// of the space horizontally: |
|
float2 scale = SMAA_SEARCHTEX_SIZE * float2(0.5, -1.0); |
|
float2 bias = SMAA_SEARCHTEX_SIZE * float2(offset, 1.0); |
|
|
|
// Scale and bias to access texel centers: |
|
scale += float2(-1.0, 1.0); |
|
bias += float2(0.5, -0.5); |
|
|
|
// Convert from pixel coordinates to texcoords: |
|
// (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped) |
|
scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; |
|
bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; |
|
|
|
// Lookup the search texture: |
|
return SMAA_SEARCHTEX_SELECT(SMAASampleLevelZeroNoRescale(searchTex, mad(scale, e, bias))); |
|
} |
|
|
|
/** |
|
* Horizontal/vertical search functions for the 2nd pass. |
|
*/ |
|
float SMAASearchXLeft(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(searchTex), float2 texcoord, float end) { |
|
/** |
|
* @PSEUDO_GATHER4 |
|
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to |
|
* sample between edge, thus fetching four edges in a row. |
|
* Sampling with different offsets in each direction allows to disambiguate |
|
* which edges are active from the four fetched ones. |
|
*/ |
|
float2 e = float2(0.0, 1.0); |
|
while (texcoord.x > end && |
|
e.g > 0.8281 && // Is there some edge not activated? |
|
e.r == 0.0) { // Or is there a crossing edge that breaks the line? |
|
e = SMAASampleLevelZero(edgesTex, texcoord).rg; |
|
texcoord = mad(-float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); |
|
} |
|
|
|
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0), 3.25); |
|
return mad(SMAA_RT_METRICS.x, offset, texcoord.x); |
|
|
|
// Non-optimized version: |
|
// We correct the previous (-0.25, -0.125) offset we applied: |
|
// texcoord.x += 0.25 * SMAA_RT_METRICS.x; |
|
|
|
// The searches are bias by 1, so adjust the coords accordingly: |
|
// texcoord.x += SMAA_RT_METRICS.x; |
|
|
|
// Disambiguate the length added by the last step: |
|
// texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step |
|
// texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0); |
|
// return mad(SMAA_RT_METRICS.x, offset, texcoord.x); |
|
} |
|
|
|
float SMAASearchXRight(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(searchTex), float2 texcoord, float end) { |
|
float2 e = float2(0.0, 1.0); |
|
while (texcoord.x < end && |
|
e.g > 0.8281 && // Is there some edge not activated? |
|
e.r == 0.0) { // Or is there a crossing edge that breaks the line? |
|
e = SMAASampleLevelZero(edgesTex, texcoord).rg; |
|
texcoord = mad(float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); |
|
} |
|
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.5), 3.25); |
|
return mad(-SMAA_RT_METRICS.x, offset, texcoord.x); |
|
} |
|
|
|
float SMAASearchYUp(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(searchTex), float2 texcoord, float end) { |
|
float2 e = float2(1.0, 0.0); |
|
while (texcoord.y > end && |
|
e.r > 0.8281 && // Is there some edge not activated? |
|
e.g == 0.0) { // Or is there a crossing edge that breaks the line? |
|
e = SMAASampleLevelZero(edgesTex, texcoord).rg; |
|
texcoord = mad(-float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); |
|
} |
|
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.0), 3.25); |
|
return mad(SMAA_RT_METRICS.y, offset, texcoord.y); |
|
} |
|
|
|
float SMAASearchYDown(SMAATexture2D(edgesTex), SMAATexture2D_Non_Array(searchTex), float2 texcoord, float end) { |
|
float2 e = float2(1.0, 0.0); |
|
while (texcoord.y < end && |
|
e.r > 0.8281 && // Is there some edge not activated? |
|
e.g == 0.0) { // Or is there a crossing edge that breaks the line? |
|
e = SMAASampleLevelZero(edgesTex, texcoord).rg; |
|
texcoord = mad(float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); |
|
} |
|
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.5), 3.25); |
|
return mad(-SMAA_RT_METRICS.y, offset, texcoord.y); |
|
} |
|
|
|
/** |
|
* Ok, we have the distance and both crossing edges. So, what are the areas |
|
* at each side of current edge? |
|
*/ |
|
float2 SMAAArea(SMAATexture2D_Non_Array(areaTex), float2 dist, float e1, float e2, float offset) { |
|
// Rounding prevents precision errors of bilinear filtering: |
|
float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * float2(e1, e2)), dist); |
|
|
|
// We do a scale and bias for mapping to texel space: |
|
texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); |
|
|
|
// Move to proper place, according to the subpixel offset: |
|
texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y); |
|
|
|
// Do it! |
|
return SMAA_AREATEX_SELECT(SMAASampleLevelZeroNoRescale(areaTex, texcoord)); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Corner Detection Functions |
|
|
|
void SMAADetectHorizontalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) { |
|
#if !defined(SMAA_DISABLE_CORNER_DETECTION) |
|
float2 leftRight = step(d.xy, d.yx); |
|
float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; |
|
|
|
rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line. |
|
|
|
float2 factor = float2(1.0, 1.0); |
|
factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, 1)).r; |
|
factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).r; |
|
factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, -2)).r; |
|
factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, -2)).r; |
|
|
|
weights *= saturate(factor); |
|
#endif |
|
} |
|
|
|
void SMAADetectVerticalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) { |
|
#if !defined(SMAA_DISABLE_CORNER_DETECTION) |
|
float2 leftRight = step(d.xy, d.yx); |
|
float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; |
|
|
|
rounding /= leftRight.x + leftRight.y; |
|
|
|
float2 factor = float2(1.0, 1.0); |
|
factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(1, 0)).g; |
|
factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).g; |
|
factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(-2, 0)).g; |
|
factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(-2, 1)).g; |
|
|
|
weights *= saturate(factor); |
|
#endif |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Blending Weight Calculation Pixel Shader (Second Pass) |
|
|
|
float4 SMAABlendingWeightCalculationPS(float2 texcoord, |
|
float2 pixcoord, |
|
float4 offset[3], |
|
SMAATexture2D(edgesTex), |
|
SMAATexture2D_Non_Array(areaTex), |
|
SMAATexture2D_Non_Array(searchTex), |
|
float4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. |
|
float4 weights = float4(0.0, 0.0, 0.0, 0.0); |
|
|
|
float2 e = SMAASample(edgesTex, texcoord).rg; |
|
|
|
SMAA_BRANCH |
|
if (e.g > 0.0) { // Edge at north |
|
#if !defined(SMAA_DISABLE_DIAG_DETECTION) |
|
// Diagonals have both north and west edges, so searching for them in |
|
// one of the boundaries is enough. |
|
weights.rg = SMAACalculateDiagWeights(SMAATexturePass2D(edgesTex), SMAATexturePass2D(areaTex), texcoord, e, subsampleIndices); |
|
|
|
// We give priority to diagonals, so if we find a diagonal we skip |
|
// horizontal/vertical processing. |
|
SMAA_BRANCH |
|
if (weights.r == -weights.g) { // weights.r + weights.g == 0.0 |
|
#endif |
|
|
|
float2 d; |
|
|
|
// Find the distance to the left: |
|
float3 coords; |
|
coords.x = SMAASearchXLeft(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].xy, offset[2].x); |
|
coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET) |
|
d.x = coords.x; |
|
|
|
// Now fetch the left crossing edges, two at a time using bilinear |
|
// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to |
|
// discern what value each edge has: |
|
float e1 = SMAASampleLevelZero(edgesTex, coords.xy).r; |
|
|
|
// Find the distance to the right: |
|
coords.z = SMAASearchXRight(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].zw, offset[2].y); |
|
d.y = coords.z; |
|
|
|
// We want the distances to be in pixel units (doing this here allow to |
|
// better interleave arithmetic and memory accesses): |
|
d = abs(round(mad(SMAA_RT_METRICS.zz, d, -pixcoord.xx))); |
|
|
|
// SMAAArea below needs a sqrt, as the areas texture is compressed |
|
// quadratically: |
|
float2 sqrt_d = sqrt(d); |
|
|
|
// Fetch the right crossing edges: |
|
float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.zy, int2(1, 0)).r; |
|
|
|
// Ok, we know how this pattern looks like, now it is time for getting |
|
// the actual area: |
|
weights.rg = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.y); |
|
|
|
// Fix corners: |
|
coords.y = texcoord.y; |
|
SMAADetectHorizontalCornerPattern(SMAATexturePass2D(edgesTex), weights.rg, coords.xyzy, d); |
|
|
|
#if !defined(SMAA_DISABLE_DIAG_DETECTION) |
|
} |
|
else |
|
e.r = 0.0; // Skip vertical processing. |
|
#endif |
|
} |
|
|
|
SMAA_BRANCH |
|
if (e.r > 0.0) { // Edge at west |
|
float2 d; |
|
|
|
// Find the distance to the top: |
|
float3 coords; |
|
coords.y = SMAASearchYUp(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].xy, offset[2].z); |
|
coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x; |
|
d.x = coords.y; |
|
|
|
// Fetch the top crossing edges: |
|
float e1 = SMAASampleLevelZero(edgesTex, coords.xy).g; |
|
|
|
// Find the distance to the bottom: |
|
coords.z = SMAASearchYDown(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].zw, offset[2].w); |
|
d.y = coords.z; |
|
|
|
// We want the distances to be in pixel units: |
|
d = abs(round(mad(SMAA_RT_METRICS.ww, d, -pixcoord.yy))); |
|
|
|
// SMAAArea below needs a sqrt, as the areas texture is compressed |
|
// quadratically: |
|
float2 sqrt_d = sqrt(d); |
|
|
|
// Fetch the bottom crossing edges: |
|
float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.xz, int2(0, 1)).g; |
|
|
|
// Get the area for this direction: |
|
weights.ba = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.x); |
|
|
|
// Fix corners: |
|
coords.x = texcoord.x; |
|
SMAADetectVerticalCornerPattern(SMAATexturePass2D(edgesTex), weights.ba, coords.xyxz, d); |
|
} |
|
|
|
return weights; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// UV-based reprojection functions |
|
|
|
#if SMAA_UV_BASED_REPROJECTION |
|
float2 SMAAReproject(float2 texcoord) |
|
{ |
|
// UV to clip-position: |
|
// -- This must be sampled at exactly mip 0 due to possible gradient divergence |
|
// -- as this function is called within a control flow block down below. |
|
float depth = SMAASampleLevelZero(_CameraDepthTexture, texcoord).r; |
|
float3 clipPosition = float3(2. * texcoord - 1., depth); |
|
|
|
// Reproject |
|
float4 previousClipPosition = mul(_ReprojectionMatrix, float4(clipPosition, 1.)); |
|
previousClipPosition.xyz /= previousClipPosition.w; |
|
|
|
// Clip-position to UV |
|
return (.5 * previousClipPosition.xy + .5); |
|
} |
|
#endif |
|
|
|
//----------------------------------------------------------------------------- |
|
// Neighborhood Blending Pixel Shader (Third Pass) |
|
|
|
float4 SMAANeighborhoodBlendingPS(float2 texcoord, |
|
float4 offset, |
|
SMAATexture2D(colorTex), |
|
SMAATexture2D(blendTex) |
|
#if SMAA_REPROJECTION |
|
, SMAATexture2D(velocityTex) |
|
#endif |
|
) { |
|
// Fetch the blending weights for current pixel: |
|
float4 a; |
|
a.x = SMAASample(blendTex, offset.xy).a; // Right |
|
a.y = SMAASample(blendTex, offset.zw).g; // Top |
|
a.wz = SMAASample(blendTex, texcoord).xz; // Bottom / Left |
|
|
|
// Is there any blending weight with a value greater than 0.0? |
|
SMAA_BRANCH |
|
if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5) { |
|
float4 color = SMAASampleLevelZero(colorTex, texcoord); |
|
|
|
#if SMAA_REPROJECTION |
|
float2 velocity = SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, texcoord)); |
|
#elif SMAA_UV_BASED_REPROJECTION |
|
float2 velocity = texcoord - SMAAReproject(texcoord); |
|
#endif |
|
|
|
#if (SMAA_REPROJECTION || SMAA_UV_BASED_REPROJECTION) |
|
// Pack velocity into the alpha channel: |
|
color.a = sqrt(5.0 * length(velocity)); |
|
#endif |
|
|
|
return color; |
|
} |
|
else { |
|
bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical) |
|
|
|
// Calculate the blending offsets: |
|
float4 blendingOffset = float4(0.0, a.y, 0.0, a.w); |
|
float2 blendingWeight = a.yw; |
|
SMAAMovc(bool4(h, h, h, h), blendingOffset, float4(a.x, 0.0, a.z, 0.0)); |
|
SMAAMovc(bool2(h, h), blendingWeight, a.xz); |
|
blendingWeight /= dot(blendingWeight, float2(1.0, 1.0)); |
|
|
|
// Calculate the texture coordinates: |
|
float4 blendingCoord = mad(blendingOffset, float4(SMAA_RT_METRICS.xy, -SMAA_RT_METRICS.xy), texcoord.xyxy); |
|
|
|
// We exploit bilinear filtering to mix current pixel with the chosen |
|
// neighbor: |
|
float4 color = blendingWeight.x * SMAASampleLevelZero(colorTex, blendingCoord.xy); |
|
color += blendingWeight.y * SMAASampleLevelZero(colorTex, blendingCoord.zw); |
|
|
|
#if SMAA_REPROJECTION |
|
// Antialias velocity for proper reprojection in a later stage: |
|
float2 velocity = blendingWeight.x * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.xy)); |
|
velocity += blendingWeight.y * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.zw)); |
|
#elif SMAA_UV_BASED_REPROJECTION |
|
// Antialias velocity for proper reprojection in a later stage: |
|
float2 velocity = blendingWeight.x * (blendingCoord.xy - SMAAReproject(blendingCoord.xy)); |
|
velocity += blendingWeight.y * (blendingCoord.zw - SMAAReproject(blendingCoord.zw)); |
|
#endif |
|
|
|
#if (SMAA_REPROJECTION || SMAA_UV_BASED_REPROJECTION) |
|
// Pack velocity into the alpha channel: |
|
color.a = sqrt(5.0 * length(velocity)); |
|
#endif |
|
|
|
return color; |
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Temporal Resolve Pixel Shader (Optional Pass) |
|
|
|
float4 SMAAResolvePS(float2 texcoord, |
|
SMAATexture2D(currentColorTex), |
|
SMAATexture2D(previousColorTex) |
|
#if SMAA_REPROJECTION |
|
, SMAATexture2D(velocityTex) |
|
#endif |
|
) { |
|
#if SMAA_REPROJECTION |
|
// Velocity is assumed to be calculated for motion blur, so we need to |
|
// inverse it for reprojection: |
|
float2 velocity = -SMAA_DECODE_VELOCITY(SMAASamplePoint(velocityTex, texcoord).rg); |
|
#elif SMAA_UV_BASED_REPROJECTION |
|
float2 velocity = SMAAReproject(texcoord) - texcoord; |
|
#endif |
|
|
|
#if (SMAA_REPROJECTION || SMAA_UV_BASED_REPROJECTION) |
|
// Fetch current pixel: |
|
float4 current = SMAASamplePoint(currentColorTex, texcoord); |
|
|
|
// Reproject current coordinates and fetch previous pixel: |
|
float4 previous = SMAASamplePoint(previousColorTex, texcoord + velocity); |
|
|
|
// Attenuate the previous pixel if the velocity is different: |
|
float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0; |
|
float weight = 0.5 * saturate(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE); |
|
|
|
// Blend the pixels according to the calculated weight: |
|
// return lerp(current, previous, weight); |
|
|
|
// Neighbour clamp |
|
// Contributed by pommak |
|
float4 n0 = SMAASampleOffset(currentColorTex, texcoord, float2(-1, -1)); |
|
float4 n1 = SMAASampleOffset(currentColorTex, texcoord, float2(+1, -1)); |
|
float4 n2 = SMAASampleOffset(currentColorTex, texcoord, float2(-1, +1)); |
|
float4 n3 = SMAASampleOffset(currentColorTex, texcoord, float2(+1, +1)); |
|
float4 cmax = max(n0, max(n1, max(n2, n3))); |
|
float4 cmin = min(n0, min(n1, min(n2, n3))); |
|
float4 avg = 0.25 * (n0 + n1 + n2 + n3); |
|
float4 wk = abs(avg - current); |
|
float blend = saturate(lerp(0.35, 0.85, wk)); |
|
|
|
// Clamp previous to neighbours colors |
|
float4 previousClamped = clamp(previous, cmin, cmax); |
|
|
|
float4 color = lerp(lerp(current, previousClamped, 0.5*weight), previousClamped, weight); |
|
return color; |
|
#else |
|
// Just blend the pixels: |
|
float4 current = SMAASamplePoint(currentColorTex, texcoord); |
|
float4 previous = SMAASamplePoint(previousColorTex, texcoord); |
|
return lerp(current, previous, 0.5); |
|
#endif |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Separate Multisamples Pixel Shader (Optional Pass) |
|
|
|
#ifdef SMAALoad |
|
void SMAASeparatePS(float4 position, |
|
float2 texcoord, |
|
out float4 target0, |
|
out float4 target1, |
|
SMAATexture2DMS2(colorTexMS)) { |
|
int2 pos = int2(position.xy); |
|
target0 = SMAALoad(colorTexMS, pos, 0); |
|
target1 = SMAALoad(colorTexMS, pos, 1); |
|
} |
|
#endif |
|
|
|
//----------------------------------------------------------------------------- |
|
#endif // SMAA_INCLUDE_PS
|
|
|