You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
651 lines
25 KiB
651 lines
25 KiB
#ifndef UNITY_BSDF_INCLUDED |
|
#define UNITY_BSDF_INCLUDED |
|
|
|
#if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3 |
|
#pragma warning (disable : 3205) // conversion of larger type to smaller |
|
#endif |
|
|
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl" |
|
|
|
// Note: All NDF and diffuse term have a version with and without divide by PI. |
|
// Version with divide by PI are use for direct lighting. |
|
// Version without divide by PI are use for image based lighting where often the PI cancel during importance sampling |
|
|
|
//----------------------------------------------------------------------------- |
|
// Help for BSDF evaluation |
|
//----------------------------------------------------------------------------- |
|
|
|
// Cosine-weighted BSDF (a BSDF taking the projected solid angle into account). |
|
// If some of the values are monochromatic, the compiler will optimize accordingly. |
|
struct CBSDF |
|
{ |
|
float3 diffR; // Diffuse reflection (T -> MS -> T, same sides) |
|
float3 specR; // Specular reflection (R, RR, TRT, etc) |
|
float3 diffT; // Diffuse transmission (rough T or TT, opposite sides) |
|
float3 specT; // Specular transmission (T, TT, TRRT, etc) |
|
}; |
|
|
|
//----------------------------------------------------------------------------- |
|
// Fresnel term |
|
//----------------------------------------------------------------------------- |
|
|
|
real F_Schlick(real f0, real f90, real u) |
|
{ |
|
real x = 1.0 - u; |
|
real x2 = x * x; |
|
real x5 = x * x2 * x2; |
|
return (f90 - f0) * x5 + f0; // sub mul mul mul sub mad |
|
} |
|
|
|
real F_Schlick(real f0, real u) |
|
{ |
|
return F_Schlick(f0, 1.0, u); // sub mul mul mul sub mad |
|
} |
|
|
|
real3 F_Schlick(real3 f0, real f90, real u) |
|
{ |
|
real x = 1.0 - u; |
|
real x2 = x * x; |
|
real x5 = x * x2 * x2; |
|
return f0 * (1.0 - x5) + (f90 * x5); // sub mul mul mul sub mul mad*3 |
|
} |
|
|
|
real3 F_Schlick(real3 f0, real u) |
|
{ |
|
return F_Schlick(f0, 1.0, u); // sub mul mul mul sub mad*3 |
|
} |
|
|
|
// Does not handle TIR. |
|
real F_Transm_Schlick(real f0, real f90, real u) |
|
{ |
|
real x = 1.0 - u; |
|
real x2 = x * x; |
|
real x5 = x * x2 * x2; |
|
return (1.0 - f90 * x5) - f0 * (1.0 - x5); // sub mul mul mul mad sub mad |
|
} |
|
|
|
// Does not handle TIR. |
|
real F_Transm_Schlick(real f0, real u) |
|
{ |
|
return F_Transm_Schlick(f0, 1.0, u); // sub mul mul mad mad |
|
} |
|
|
|
// Does not handle TIR. |
|
real3 F_Transm_Schlick(real3 f0, real f90, real u) |
|
{ |
|
real x = 1.0 - u; |
|
real x2 = x * x; |
|
real x5 = x * x2 * x2; |
|
return (1.0 - f90 * x5) - f0 * (1.0 - x5); // sub mul mul mul mad sub mad*3 |
|
} |
|
|
|
// Does not handle TIR. |
|
real3 F_Transm_Schlick(real3 f0, real u) |
|
{ |
|
return F_Transm_Schlick(f0, 1.0, u); // sub mul mul mad mad*3 |
|
} |
|
|
|
// Ref: https://seblagarde.wordpress.com/2013/04/29/memo-on-fresnel-equations/ |
|
// Fresnel dielectric / dielectric |
|
real F_FresnelDielectric(real ior, real u) |
|
{ |
|
real g = sqrt(Sq(ior) + Sq(u) - 1.0); |
|
|
|
// The "1.0 - saturate(1.0 - result)" formulation allows to recover form cases where g is undefined, for IORs < 1 |
|
return 1.0 - saturate(1.0 - 0.5 * Sq((g - u) / (g + u)) * (1.0 + Sq(((g + u) * u - 1.0) / ((g - u) * u + 1.0)))); |
|
} |
|
|
|
// Fresnel dieletric / conductor |
|
// Note: etak2 = etak * etak (optimization for Artist Friendly Metallic Fresnel below) |
|
// eta = eta_t / eta_i and etak = k_t / n_i |
|
real3 F_FresnelConductor(real3 eta, real3 etak2, real cosTheta) |
|
{ |
|
real cosTheta2 = cosTheta * cosTheta; |
|
real sinTheta2 = 1.0 - cosTheta2; |
|
real3 eta2 = eta * eta; |
|
|
|
real3 t0 = eta2 - etak2 - sinTheta2; |
|
real3 a2plusb2 = sqrt(t0 * t0 + 4.0 * eta2 * etak2); |
|
real3 t1 = a2plusb2 + cosTheta2; |
|
real3 a = sqrt(0.5 * (a2plusb2 + t0)); |
|
real3 t2 = 2.0 * a * cosTheta; |
|
real3 Rs = (t1 - t2) / (t1 + t2); |
|
|
|
real3 t3 = cosTheta2 * a2plusb2 + sinTheta2 * sinTheta2; |
|
real3 t4 = t2 * sinTheta2; |
|
real3 Rp = Rs * (t3 - t4) / (t3 + t4); |
|
|
|
return 0.5 * (Rp + Rs); |
|
} |
|
|
|
// Conversion FO/IOR |
|
|
|
TEMPLATE_2_REAL(IorToFresnel0, transmittedIor, incidentIor, return Sq((transmittedIor - incidentIor) / (transmittedIor + incidentIor)) ) |
|
// ior is a value between 1.0 and 3.0. 1.0 is air interface |
|
real IorToFresnel0(real transmittedIor) |
|
{ |
|
return IorToFresnel0(transmittedIor, 1.0); |
|
} |
|
|
|
// Assume air interface for top |
|
// Note: We don't handle the case fresnel0 == 1 |
|
//real Fresnel0ToIor(real fresnel0) |
|
//{ |
|
// real sqrtF0 = sqrt(fresnel0); |
|
// return (1.0 + sqrtF0) / (1.0 - sqrtF0); |
|
//} |
|
TEMPLATE_1_REAL(Fresnel0ToIor, fresnel0, return ((1.0 + sqrt(fresnel0)) / (1.0 - sqrt(fresnel0))) ) |
|
|
|
// This function is a coarse approximation of computing fresnel0 for a different top than air (here clear coat of IOR 1.5) when we only have fresnel0 with air interface |
|
// This function is equivalent to IorToFresnel0(Fresnel0ToIor(fresnel0), 1.5) |
|
// mean |
|
// real sqrtF0 = sqrt(fresnel0); |
|
// return Sq(1.0 - 5.0 * sqrtF0) / Sq(5.0 - sqrtF0); |
|
// Optimization: Fit of the function (3 mad) for range [0.04 (should return 0), 1 (should return 1)] |
|
TEMPLATE_1_REAL(ConvertF0ForAirInterfaceToF0ForClearCoat15, fresnel0, return saturate(-0.0256868 + fresnel0 * (0.326846 + (0.978946 - 0.283835 * fresnel0) * fresnel0))) |
|
|
|
// Even coarser approximation of ConvertF0ForAirInterfaceToF0ForClearCoat15 (above) for mobile (2 mad) |
|
TEMPLATE_1_REAL(ConvertF0ForAirInterfaceToF0ForClearCoat15Fast, fresnel0, return saturate(fresnel0 * (fresnel0 * 0.526868 + 0.529324) - 0.0482256)) |
|
|
|
// Artist Friendly Metallic Fresnel Ref: http://jcgt.org/published/0003/04/03/paper.pdf |
|
|
|
real3 GetIorN(real3 f0, real3 edgeTint) |
|
{ |
|
real3 sqrtF0 = sqrt(f0); |
|
return lerp((1.0 - f0) / (1.0 + f0), (1.0 + sqrtF0) / (1.0 - sqrt(f0)), edgeTint); |
|
} |
|
|
|
real3 getIorK2(real3 f0, real3 n) |
|
{ |
|
real3 nf0 = Sq(n + 1.0) * f0 - Sq(f0 - 1.0); |
|
return nf0 / (1.0 - f0); |
|
} |
|
|
|
// same as regular refract except there is not the test for total internal reflection + the vector is flipped for processing |
|
real3 CoatRefract(real3 X, real3 N, real ieta) |
|
{ |
|
real XdotN = saturate(dot(N, X)); |
|
return ieta * X + (sqrt(1 + ieta * ieta * (XdotN * XdotN - 1)) - ieta * XdotN) * N; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Specular BRDF |
|
//----------------------------------------------------------------------------- |
|
|
|
float Lambda_GGX(float roughness, float3 V) |
|
{ |
|
return 0.5 * (sqrt(1.0 + (Sq(roughness * V.x) + Sq(roughness * V.y)) / Sq(V.z)) - 1.0); |
|
} |
|
|
|
real D_GGXNoPI(real NdotH, real roughness) |
|
{ |
|
real a2 = Sq(roughness); |
|
real s = (NdotH * a2 - NdotH) * NdotH + 1.0; |
|
|
|
// If roughness is 0, returns (NdotH == 1 ? 1 : 0). |
|
// That is, it returns 1 for perfect mirror reflection, and 0 otherwise. |
|
return SafeDiv(a2, s * s); |
|
} |
|
|
|
real D_GGX(real NdotH, real roughness) |
|
{ |
|
return INV_PI * D_GGXNoPI(NdotH, roughness); |
|
} |
|
|
|
// Ref: Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs, p. 19, 29. |
|
// p. 84 (37/60) |
|
real G_MaskingSmithGGX(real NdotV, real roughness) |
|
{ |
|
// G1(V, H) = HeavisideStep(VdotH) / (1 + Lambda(V)). |
|
// Lambda(V) = -0.5 + 0.5 * sqrt(1 + 1 / a^2). |
|
// a = 1 / (roughness * tan(theta)). |
|
// 1 + Lambda(V) = 0.5 + 0.5 * sqrt(1 + roughness^2 * tan^2(theta)). |
|
// tan^2(theta) = (1 - cos^2(theta)) / cos^2(theta) = 1 / cos^2(theta) - 1. |
|
// Assume that (VdotH > 0), e.i. (acos(LdotV) < Pi). |
|
|
|
return 1.0 / (0.5 + 0.5 * sqrt(1.0 + Sq(roughness) * (1.0 / Sq(NdotV) - 1.0))); |
|
} |
|
|
|
// Precompute part of lambdaV |
|
real GetSmithJointGGXPartLambdaV(real NdotV, real roughness) |
|
{ |
|
real a2 = Sq(roughness); |
|
return sqrt((-NdotV * a2 + NdotV) * NdotV + a2); |
|
} |
|
|
|
// Note: V = G / (4 * NdotL * NdotV) |
|
// Ref: http://jcgt.org/published/0003/02/03/paper.pdf |
|
real V_SmithJointGGX(real NdotL, real NdotV, real roughness, real partLambdaV) |
|
{ |
|
real a2 = Sq(roughness); |
|
|
|
// Original formulation: |
|
// lambda_v = (-1 + sqrt(a2 * (1 - NdotL2) / NdotL2 + 1)) * 0.5 |
|
// lambda_l = (-1 + sqrt(a2 * (1 - NdotV2) / NdotV2 + 1)) * 0.5 |
|
// G = 1 / (1 + lambda_v + lambda_l); |
|
|
|
// Reorder code to be more optimal: |
|
real lambdaV = NdotL * partLambdaV; |
|
real lambdaL = NdotV * sqrt((-NdotL * a2 + NdotL) * NdotL + a2); |
|
|
|
// Simplify visibility term: (2.0 * NdotL * NdotV) / ((4.0 * NdotL * NdotV) * (lambda_v + lambda_l)) |
|
return 0.5 / max(lambdaV + lambdaL, REAL_MIN); |
|
} |
|
|
|
real V_SmithJointGGX(real NdotL, real NdotV, real roughness) |
|
{ |
|
real partLambdaV = GetSmithJointGGXPartLambdaV(NdotV, roughness); |
|
return V_SmithJointGGX(NdotL, NdotV, roughness, partLambdaV); |
|
} |
|
|
|
// Inline D_GGX() * V_SmithJointGGX() together for better code generation. |
|
real DV_SmithJointGGX(real NdotH, real NdotL, real NdotV, real roughness, real partLambdaV) |
|
{ |
|
real a2 = Sq(roughness); |
|
real s = (NdotH * a2 - NdotH) * NdotH + 1.0; |
|
|
|
real lambdaV = NdotL * partLambdaV; |
|
real lambdaL = NdotV * sqrt((-NdotL * a2 + NdotL) * NdotL + a2); |
|
|
|
real2 D = real2(a2, s * s); // Fraction without the multiplier (1/Pi) |
|
real2 G = real2(1, lambdaV + lambdaL); // Fraction without the multiplier (1/2) |
|
|
|
// This function is only used for direct lighting. |
|
// If roughness is 0, the probability of hitting a punctual or directional light is also 0. |
|
// Therefore, we return 0. The most efficient way to do it is with a max(). |
|
return INV_PI * 0.5 * (D.x * G.x) / max(D.y * G.y, REAL_MIN); |
|
} |
|
|
|
real DV_SmithJointGGX(real NdotH, real NdotL, real NdotV, real roughness) |
|
{ |
|
real partLambdaV = GetSmithJointGGXPartLambdaV(NdotV, roughness); |
|
return DV_SmithJointGGX(NdotH, NdotL, NdotV, roughness, partLambdaV); |
|
} |
|
|
|
// Precompute a part of LambdaV. |
|
// Note on this linear approximation. |
|
// Exact for roughness values of 0 and 1. Also, exact when the cosine is 0 or 1. |
|
// Otherwise, the worst case relative error is around 10%. |
|
// https://www.desmos.com/calculator/wtp8lnjutx |
|
real GetSmithJointGGXPartLambdaVApprox(real NdotV, real roughness) |
|
{ |
|
real a = roughness; |
|
return NdotV * (1 - a) + a; |
|
} |
|
|
|
real V_SmithJointGGXApprox(real NdotL, real NdotV, real roughness, real partLambdaV) |
|
{ |
|
real a = roughness; |
|
|
|
real lambdaV = NdotL * partLambdaV; |
|
real lambdaL = NdotV * (NdotL * (1 - a) + a); |
|
|
|
return 0.5 / (lambdaV + lambdaL); |
|
} |
|
|
|
real V_SmithJointGGXApprox(real NdotL, real NdotV, real roughness) |
|
{ |
|
real partLambdaV = GetSmithJointGGXPartLambdaVApprox(NdotV, roughness); |
|
return V_SmithJointGGXApprox(NdotL, NdotV, roughness, partLambdaV); |
|
} |
|
|
|
// roughnessT -> roughness in tangent direction |
|
// roughnessB -> roughness in bitangent direction |
|
real D_GGXAnisoNoPI(real TdotH, real BdotH, real NdotH, real roughnessT, real roughnessB) |
|
{ |
|
real a2 = roughnessT * roughnessB; |
|
real3 v = real3(roughnessB * TdotH, roughnessT * BdotH, a2 * NdotH); |
|
real s = dot(v, v); |
|
|
|
// If roughness is 0, returns (NdotH == 1 ? 1 : 0). |
|
// That is, it returns 1 for perfect mirror reflection, and 0 otherwise. |
|
return SafeDiv(a2 * a2 * a2, s * s); |
|
} |
|
|
|
real D_GGXAniso(real TdotH, real BdotH, real NdotH, real roughnessT, real roughnessB) |
|
{ |
|
return INV_PI * D_GGXAnisoNoPI(TdotH, BdotH, NdotH, roughnessT, roughnessB); |
|
} |
|
|
|
real GetSmithJointGGXAnisoPartLambdaV(real TdotV, real BdotV, real NdotV, real roughnessT, real roughnessB) |
|
{ |
|
return length(real3(roughnessT * TdotV, roughnessB * BdotV, NdotV)); |
|
} |
|
|
|
// Note: V = G / (4 * NdotL * NdotV) |
|
// Ref: https://cedec.cesa.or.jp/2015/session/ENG/14698.html The Rendering Materials of Far Cry 4 |
|
real V_SmithJointGGXAniso(real TdotV, real BdotV, real NdotV, real TdotL, real BdotL, real NdotL, real roughnessT, real roughnessB, real partLambdaV) |
|
{ |
|
real lambdaV = NdotL * partLambdaV; |
|
real lambdaL = NdotV * length(real3(roughnessT * TdotL, roughnessB * BdotL, NdotL)); |
|
|
|
return 0.5 / (lambdaV + lambdaL); |
|
} |
|
|
|
real V_SmithJointGGXAniso(real TdotV, real BdotV, real NdotV, real TdotL, real BdotL, real NdotL, real roughnessT, real roughnessB) |
|
{ |
|
real partLambdaV = GetSmithJointGGXAnisoPartLambdaV(TdotV, BdotV, NdotV, roughnessT, roughnessB); |
|
return V_SmithJointGGXAniso(TdotV, BdotV, NdotV, TdotL, BdotL, NdotL, roughnessT, roughnessB, partLambdaV); |
|
} |
|
|
|
// Inline D_GGXAniso() * V_SmithJointGGXAniso() together for better code generation. |
|
real DV_SmithJointGGXAniso(real TdotH, real BdotH, real NdotH, real NdotV, |
|
real TdotL, real BdotL, real NdotL, |
|
real roughnessT, real roughnessB, real partLambdaV) |
|
{ |
|
real a2 = roughnessT * roughnessB; |
|
real3 v = real3(roughnessB * TdotH, roughnessT * BdotH, a2 * NdotH); |
|
real s = dot(v, v); |
|
|
|
real lambdaV = NdotL * partLambdaV; |
|
real lambdaL = NdotV * length(real3(roughnessT * TdotL, roughnessB * BdotL, NdotL)); |
|
|
|
real2 D = real2(a2 * a2 * a2, s * s); // Fraction without the multiplier (1/Pi) |
|
real2 G = real2(1, lambdaV + lambdaL); // Fraction without the multiplier (1/2) |
|
|
|
// This function is only used for direct lighting. |
|
// If roughness is 0, the probability of hitting a punctual or directional light is also 0. |
|
// Therefore, we return 0. The most efficient way to do it is with a max(). |
|
return (INV_PI * 0.5) * (D.x * G.x) / max(D.y * G.y, REAL_MIN); |
|
} |
|
|
|
real DV_SmithJointGGXAniso(real TdotH, real BdotH, real NdotH, |
|
real TdotV, real BdotV, real NdotV, |
|
real TdotL, real BdotL, real NdotL, |
|
real roughnessT, real roughnessB) |
|
{ |
|
real partLambdaV = GetSmithJointGGXAnisoPartLambdaV(TdotV, BdotV, NdotV, roughnessT, roughnessB); |
|
return DV_SmithJointGGXAniso(TdotH, BdotH, NdotH, NdotV, |
|
TdotL, BdotL, NdotL, |
|
roughnessT, roughnessB, partLambdaV); |
|
} |
|
|
|
// Get projected roughness for a certain normalized direction V in tangent space |
|
// and an anisotropic roughness |
|
// Ref: Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs, Heitz 2014, pp. 86, 88 - 39/60, 41/60 |
|
float GetProjectedRoughness(float TdotV, float BdotV, float NdotV, float roughnessT, float roughnessB) |
|
{ |
|
float2 roughness = float2(roughnessT, roughnessB); |
|
float sinTheta2 = max((1 - Sq(NdotV)), FLT_MIN); |
|
// if sinTheta^2 = 0, NdotV = 1, TdotV = BdotV = 0 and roughness is arbitrary, no real azimuth |
|
// as there's a breakdown of the spherical parameterization, so we clamp under by FLT_MIN in any case |
|
// for safe division |
|
// Note: |
|
// sin(thetaV)^2 * cos(phiV)^2 = (TdotV)^2 |
|
// sin(thetaV)^2 * sin(phiV)^2 = (BdotV)^2 |
|
float2 vProj2 = Sq(float2(TdotV, BdotV)) * rcp(sinTheta2); |
|
// vProj2 = (cos^2(phi), sin^2(phi)) |
|
float projRoughness = sqrt(dot(vProj2, roughness*roughness)); |
|
return projRoughness; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Diffuse BRDF - diffuseColor is expected to be multiply by the caller |
|
//----------------------------------------------------------------------------- |
|
|
|
real LambertNoPI() |
|
{ |
|
return 1.0; |
|
} |
|
|
|
real Lambert() |
|
{ |
|
return INV_PI; |
|
} |
|
|
|
real DisneyDiffuseNoPI(real NdotV, real NdotL, real LdotV, real perceptualRoughness) |
|
{ |
|
// (2 * LdotH * LdotH) = 1 + LdotV |
|
// real fd90 = 0.5 + (2 * LdotH * LdotH) * perceptualRoughness; |
|
real fd90 = 0.5 + (perceptualRoughness + perceptualRoughness * LdotV); |
|
// Two schlick fresnel term |
|
real lightScatter = F_Schlick(1.0, fd90, NdotL); |
|
real viewScatter = F_Schlick(1.0, fd90, NdotV); |
|
|
|
// Normalize the BRDF for polar view angles of up to (Pi/4). |
|
// We use the worst case of (roughness = albedo = 1), and, for each view angle, |
|
// integrate (brdf * cos(theta_light)) over all light directions. |
|
// The resulting value is for (theta_view = 0), which is actually a little bit larger |
|
// than the value of the integral for (theta_view = Pi/4). |
|
// Hopefully, the compiler folds the constant together with (1/Pi). |
|
return rcp(1.03571) * (lightScatter * viewScatter); |
|
} |
|
|
|
#ifndef BUILTIN_TARGET_API |
|
real DisneyDiffuse(real NdotV, real NdotL, real LdotV, real perceptualRoughness) |
|
{ |
|
return INV_PI * DisneyDiffuseNoPI(NdotV, NdotL, LdotV, perceptualRoughness); |
|
} |
|
#endif |
|
|
|
// Ref: Diffuse Lighting for GGX + Smith Microsurfaces, p. 113. |
|
real3 DiffuseGGXNoPI(real3 albedo, real NdotV, real NdotL, real NdotH, real LdotV, real roughness) |
|
{ |
|
real facing = 0.5 + 0.5 * LdotV; // (LdotH)^2 |
|
real rough = facing * (0.9 - 0.4 * facing) * (0.5 / NdotH + 1); |
|
real transmitL = F_Transm_Schlick(0, NdotL); |
|
real transmitV = F_Transm_Schlick(0, NdotV); |
|
real smooth = transmitL * transmitV * 1.05; // Normalize F_t over the hemisphere |
|
real single = lerp(smooth, rough, roughness); // Rescaled by PI |
|
real multiple = roughness * (0.1159 * PI); // Rescaled by PI |
|
|
|
return single + albedo * multiple; |
|
} |
|
|
|
real3 DiffuseGGX(real3 albedo, real NdotV, real NdotL, real NdotH, real LdotV, real roughness) |
|
{ |
|
// Note that we could save 2 cycles by inlining the multiplication by INV_PI. |
|
return INV_PI * DiffuseGGXNoPI(albedo, NdotV, NdotL, NdotH, LdotV, roughness); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Iridescence |
|
//----------------------------------------------------------------------------- |
|
|
|
// Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html |
|
// Evaluation XYZ sensitivity curves in Fourier space |
|
real3 EvalSensitivity(real opd, real shift) |
|
{ |
|
// Use Gaussian fits, given by 3 parameters: val, pos and var |
|
real phase = 2.0 * PI * opd * 1e-6; |
|
real3 val = real3(5.4856e-13, 4.4201e-13, 5.2481e-13); |
|
real3 pos = real3(1.6810e+06, 1.7953e+06, 2.2084e+06); |
|
real3 var = real3(4.3278e+09, 9.3046e+09, 6.6121e+09); |
|
real3 xyz = val * sqrt(2.0 * PI * var) * cos(pos * phase + shift) * exp(-var * phase * phase); |
|
xyz.x += 9.7470e-14 * sqrt(2.0 * PI * 4.5282e+09) * cos(2.2399e+06 * phase + shift) * exp(-4.5282e+09 * phase * phase); |
|
xyz /= 1.0685e-7; |
|
|
|
// Convert to linear sRGb color space here. |
|
// EvalIridescence works in linear sRGB color space and does not switch... |
|
real3 srgb = mul(XYZ_2_REC709_MAT, xyz); |
|
return srgb; |
|
} |
|
|
|
// Evaluate the reflectance for a thin-film layer on top of a dielectric medum. |
|
real3 EvalIridescence(real eta_1, real cosTheta1, real iridescenceThickness, real3 baseLayerFresnel0, real iorOverBaseLayer = 0.0) |
|
{ |
|
real3 I; |
|
|
|
// iridescenceThickness unit is micrometer for this equation here. Mean 0.5 is 500nm. |
|
real Dinc = 3.0 * iridescenceThickness; |
|
|
|
// Note: Unlike the code provide with the paper, here we use schlick approximation |
|
// Schlick is a very poor approximation when dealing with iridescence to the Fresnel |
|
// term and there is no "neutral" value in this unlike in the original paper. |
|
// We use Iridescence mask here to allow to have neutral value |
|
|
|
// Hack: In order to use only one parameter (DInc), we deduced the ior of iridescence from current Dinc iridescenceThickness |
|
// and we use mask instead to fade out the effect |
|
real eta_2 = lerp(2.0, 1.0, iridescenceThickness); |
|
// Following line from original code is not needed for us, it create a discontinuity |
|
// Force eta_2 -> eta_1 when Dinc -> 0.0 |
|
// real eta_2 = lerp(eta_1, eta_2, smoothstep(0.0, 0.03, Dinc)); |
|
// Evaluate the cosTheta on the base layer (Snell law) |
|
real sinTheta2Sq = Sq(eta_1 / eta_2) * (1.0 - Sq(cosTheta1)); |
|
|
|
// Handle TIR: |
|
// (Also note that with just testing sinTheta2Sq > 1.0, (1.0 - sinTheta2Sq) can be negative, as emitted instructions |
|
// can eg be a mad giving a small negative for (1.0 - sinTheta2Sq), while sinTheta2Sq still testing equal to 1.0), so we actually |
|
// test the operand [cosTheta2Sq := (1.0 - sinTheta2Sq)] < 0 directly:) |
|
real cosTheta2Sq = (1.0 - sinTheta2Sq); |
|
// Or use this "artistic hack" to get more continuity even though wrong (no TIR, continue the effect by mirroring it): |
|
// if( cosTheta2Sq < 0.0 ) => { sinTheta2Sq = 2 - sinTheta2Sq; => so cosTheta2Sq = sinTheta2Sq - 1 } |
|
// ie don't test and simply do |
|
// real cosTheta2Sq = abs(1.0 - sinTheta2Sq); |
|
if (cosTheta2Sq < 0.0) |
|
I = real3(1.0, 1.0, 1.0); |
|
else |
|
{ |
|
|
|
real cosTheta2 = sqrt(cosTheta2Sq); |
|
|
|
// First interface |
|
real R0 = IorToFresnel0(eta_2, eta_1); |
|
real R12 = F_Schlick(R0, cosTheta1); |
|
real R21 = R12; |
|
real T121 = 1.0 - R12; |
|
real phi12 = 0.0; |
|
real phi21 = PI - phi12; |
|
|
|
// Second interface |
|
// The f0 or the base should account for the new computed eta_2 on top. |
|
// This is optionally done if we are given the needed current ior over the base layer that is accounted for |
|
// in the baseLayerFresnel0 parameter: |
|
if (iorOverBaseLayer > 0.0) |
|
{ |
|
// Fresnel0ToIor will give us a ratio of baseIor/topIor, hence we * iorOverBaseLayer to get the baseIor |
|
real3 baseIor = iorOverBaseLayer * Fresnel0ToIor(baseLayerFresnel0 + 0.0001); // guard against 1.0 |
|
baseLayerFresnel0 = IorToFresnel0(baseIor, eta_2); |
|
} |
|
|
|
real3 R23 = F_Schlick(baseLayerFresnel0, cosTheta2); |
|
real phi23 = 0.0; |
|
|
|
// Phase shift |
|
real OPD = Dinc * cosTheta2; |
|
real phi = phi21 + phi23; |
|
|
|
// Compound terms |
|
real3 R123 = clamp(R12 * R23, 1e-5, 0.9999); |
|
real3 r123 = sqrt(R123); |
|
real3 Rs = Sq(T121) * R23 / (real3(1.0, 1.0, 1.0) - R123); |
|
|
|
// Reflectance term for m = 0 (DC term amplitude) |
|
real3 C0 = R12 + Rs; |
|
I = C0; |
|
|
|
// Reflectance term for m > 0 (pairs of diracs) |
|
real3 Cm = Rs - T121; |
|
for (int m = 1; m <= 2; ++m) |
|
{ |
|
Cm *= r123; |
|
real3 Sm = 2.0 * EvalSensitivity(m * OPD, m * phi); |
|
//vec3 SmP = 2.0 * evalSensitivity(m*OPD, m*phi2.y); |
|
I += Cm * Sm; |
|
} |
|
|
|
// Since out of gamut colors might be produced, negative color values are clamped to 0. |
|
I = max(I, float3(0.0, 0.0, 0.0)); |
|
} |
|
|
|
return I; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Fabric |
|
//----------------------------------------------------------------------------- |
|
|
|
// Ref: https://knarkowicz.wordpress.com/2018/01/04/cloth-shading/ |
|
real D_CharlieNoPI(real NdotH, real roughness) |
|
{ |
|
float invR = rcp(roughness); |
|
float cos2h = NdotH * NdotH; |
|
float sin2h = 1.0 - cos2h; |
|
// Note: We have sin^2 so multiply by 0.5 to cancel it |
|
return (2.0 + invR) * PositivePow(sin2h, invR * 0.5) / 2.0; |
|
} |
|
|
|
real D_Charlie(real NdotH, real roughness) |
|
{ |
|
return INV_PI * D_CharlieNoPI(NdotH, roughness); |
|
} |
|
|
|
real CharlieL(real x, real r) |
|
{ |
|
r = saturate(r); |
|
r = 1.0 - (1.0 - r) * (1.0 - r); |
|
|
|
float a = lerp(25.3245, 21.5473, r); |
|
float b = lerp(3.32435, 3.82987, r); |
|
float c = lerp(0.16801, 0.19823, r); |
|
float d = lerp(-1.27393, -1.97760, r); |
|
float e = lerp(-4.85967, -4.32054, r); |
|
|
|
return a / (1. + b * PositivePow(x, c)) + d * x + e; |
|
} |
|
|
|
// Note: This version don't include the softening of the paper: Production Friendly Microfacet Sheen BRDF |
|
real V_Charlie(real NdotL, real NdotV, real roughness) |
|
{ |
|
real lambdaV = NdotV < 0.5 ? exp(CharlieL(NdotV, roughness)) : exp(2.0 * CharlieL(0.5, roughness) - CharlieL(1.0 - NdotV, roughness)); |
|
real lambdaL = NdotL < 0.5 ? exp(CharlieL(NdotL, roughness)) : exp(2.0 * CharlieL(0.5, roughness) - CharlieL(1.0 - NdotL, roughness)); |
|
|
|
return 1.0 / ((1.0 + lambdaV + lambdaL) * (4.0 * NdotV * NdotL)); |
|
} |
|
|
|
// We use V_Ashikhmin instead of V_Charlie in practice for game due to the cost of V_Charlie |
|
real V_Ashikhmin(real NdotL, real NdotV) |
|
{ |
|
// Use soft visibility term introduce in: Crafting a Next-Gen Material Pipeline for The Order : 1886 |
|
return 1.0 / (4.0 * (NdotL + NdotV - NdotL * NdotV)); |
|
} |
|
|
|
// A diffuse term use with fabric done by tech artist - empirical |
|
real FabricLambertNoPI(real roughness) |
|
{ |
|
return lerp(1.0, 0.5, roughness); |
|
} |
|
|
|
real FabricLambert(real roughness) |
|
{ |
|
return INV_PI * FabricLambertNoPI(roughness); |
|
} |
|
|
|
real G_CookTorrance(real NdotH, real NdotV, real NdotL, real HdotV) |
|
{ |
|
return min(1.0, 2.0 * NdotH * min(NdotV, NdotL) / HdotV); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Hair |
|
//----------------------------------------------------------------------------- |
|
|
|
//http://web.engr.oregonstate.edu/~mjb/cs519/Projects/Papers/HairRendering.pdf |
|
real3 ShiftTangent(real3 T, real3 N, real shift) |
|
{ |
|
return normalize(T + N * shift); |
|
} |
|
|
|
// Note: this is Blinn-Phong, the original paper uses Phong. |
|
real3 D_KajiyaKay(real3 T, real3 H, real specularExponent) |
|
{ |
|
real TdotH = dot(T, H); |
|
real sinTHSq = saturate(1.0 - TdotH * TdotH); |
|
|
|
real dirAttn = saturate(TdotH + 1.0); // Evgenii: this seems like a hack? Do we really need this? |
|
|
|
// Note: Kajiya-Kay is not energy conserving. |
|
// We attempt at least some energy conservation by approximately normalizing Blinn-Phong NDF. |
|
// We use the formulation with the NdotL. |
|
// See http://www.thetenthplanet.de/archives/255. |
|
real n = specularExponent; |
|
real norm = (n + 2) * rcp(2 * PI); |
|
|
|
return dirAttn * norm * PositivePow(sinTHSq, 0.5 * n); |
|
} |
|
|
|
#if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3 |
|
#pragma warning (enable : 3205) // conversion of larger type to smaller |
|
#endif |
|
|
|
#endif // UNITY_BSDF_INCLUDED
|
|
|