From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
4.6 KiB
183 lines
4.6 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "markdown", |
|
"id": "de3b5d4c", |
|
"metadata": {}, |
|
"source": [ |
|
"# 🧠 Grafana Dashboard Summarizer\n", |
|
"Simulate reading a Grafana dashboard JSON and summarize its panels using GPT or plain logic." |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "0abf3aaf", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"import os\n", |
|
"from dotenv import load_dotenv\n", |
|
"from IPython.display import Markdown, display\n", |
|
"from openai import OpenAI\n", |
|
"import json\n", |
|
"import pandas as pd" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "ad82ca65", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"\n", |
|
"\n", |
|
"with open(\"mock_grafana_dashboard.json\", \"r\") as f:\n", |
|
" data = json.load(f)\n", |
|
"\n", |
|
"dashboard = data[\"dashboard\"]\n", |
|
"panels = dashboard[\"panels\"]\n", |
|
"print(f\"Dashboard Title: {dashboard['title']}\")\n", |
|
"print(f\"Total Panels: {len(panels)}\\n\")\n", |
|
"for p in panels:\n", |
|
" print(f\"- {p['title']} ({p['type']})\")\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "1bf45c0f", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Extracting panel data\n", |
|
"\n", |
|
"panel_data = []\n", |
|
"for p in panels:\n", |
|
" thresholds = p.get(\"fieldConfig\", {}).get(\"defaults\", {}).get(\"thresholds\", {}).get(\"steps\", [])\n", |
|
" panel_data.append({\n", |
|
" \"Title\": p[\"title\"],\n", |
|
" \"Type\": p[\"type\"],\n", |
|
" \"Unit\": p.get(\"fieldConfig\", {}).get(\"defaults\", {}).get(\"unit\", \"N/A\"),\n", |
|
" \"Thresholds\": thresholds\n", |
|
" })\n", |
|
"\n", |
|
"df = pd.DataFrame(panel_data)\n", |
|
"df\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "90b67133", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"\n", |
|
"summary_prompt = f\"\"\"\n", |
|
"You are a helpful assistant summarizing a system monitoring dashboard.\n", |
|
"\n", |
|
"Dashboard: {dashboard['title']}\n", |
|
"Panels:\n", |
|
"\"\"\"\n", |
|
"for idx, row in df.iterrows():\n", |
|
" summary_prompt += f\"- {row['Title']} [{row['Type']}] - Unit: {row['Unit']}, Thresholds: {row['Thresholds']}\\n\"\n", |
|
"\n", |
|
"print(summary_prompt)\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "69a4208c", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"\n", |
|
"\n", |
|
"load_dotenv(override=True)\n", |
|
"api_key = os.getenv('OPENAI_API_KEY')\n", |
|
"# Check the key\n", |
|
"\n", |
|
"if not api_key:\n", |
|
" print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n", |
|
"elif not api_key.startswith(\"sk-proj-\"):\n", |
|
" print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n", |
|
"elif api_key.strip() != api_key:\n", |
|
" print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n", |
|
"else:\n", |
|
" print(\"API key found and looks good so far!\")\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "2eee5a32", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"openai = OpenAI()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "660eedb7", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def summarize():\n", |
|
" response = openai.chat.completions.create(\n", |
|
" model=\"gpt-4o-mini\",\n", |
|
" messages=[\n", |
|
" {\"role\": \"system\", \"content\": \"You are a Grafana dashboard summarizer.\"},\n", |
|
" {\"role\": \"user\", \"content\": summary_prompt}\n", |
|
" ]\n", |
|
")\n", |
|
" return response.choices[0].message.content" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "55f57d56", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"\n", |
|
"summary = summarize()\n", |
|
"display(Markdown(summary))" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "10dbfd6c", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "arunllms", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.11.11" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|