From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
493 lines
14 KiB
493 lines
14 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "markdown", |
|
"id": "3d3cb3c4-9046-4f64-9188-ee20ae324fd1", |
|
"metadata": {}, |
|
"source": [ |
|
"# Code Generator\n", |
|
"\n", |
|
"The requirement: use a Frontier model to generate high performance C++ code from Python code\n", |
|
"\n", |
|
"# Important Note\n", |
|
"Used an open-source model gemini-1.5-pro ,can try 2.0 flash too\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "6f2c3e03-f38a-4bf2-98e8-696fb3d428c9", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# imports\n", |
|
"\n", |
|
"import os\n", |
|
"import io\n", |
|
"import sys\n", |
|
"from dotenv import load_dotenv\n", |
|
"import google.generativeai\n", |
|
"from IPython.display import Markdown, display, update_display\n", |
|
"import gradio as gr\n", |
|
"import subprocess" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "e437f3d1-39c4-47fd-919f-c2119d602d72", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# environment\n", |
|
"\n", |
|
"load_dotenv()\n", |
|
"google_api_key = os.getenv('GOOGLE_API_KEY')\n", |
|
"if google_api_key:\n", |
|
" print(f\"Google API Key exists\")\n", |
|
"else:\n", |
|
" print(\"Google API Key not set\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "1724ddb6-0059-46a3-bcf9-587c0c93cb2a", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"google.generativeai.configure()\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "b62738c1-9857-40fc-91e8-dfd46483ea50", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"system_message = \"You are an assistant that reimplements Python code in high performance C++ for an Windows system. \"\n", |
|
"system_message += \"Respond only with C++ code; use comments sparingly and do not provide any explanation other than occasional comments. \"\n", |
|
"system_message += \"The C++ response needs to produce an identical output in the fastest possible time.\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "bd431141-8602-4c68-9a1d-a7c0a6f13fa3", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def user_prompt_for(python):\n", |
|
" user_prompt = \"Rewrite this Python code in C++ with the fastest possible implementation that produces identical output in the least time. \"\n", |
|
" user_prompt += \"Respond only with C++ code; do not explain your work other than a few comments. \"\n", |
|
" user_prompt += \"Pay attention to number types to ensure no int overflows. Remember to #include all necessary C++ packages such as iomanip.\\n\\n\"\n", |
|
" user_prompt += python\n", |
|
" return user_prompt" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "d5f48451-4cd4-46ea-a41d-531a3c7db2a8", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def messages_for(python):\n", |
|
" return [\n", |
|
" {\"role\": \"system\", \"content\": system_message},\n", |
|
" {\"role\": \"user\", \"content\": user_prompt_for(python)}\n", |
|
" ]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "83fd2170-14ea-4fb6-906e-c3c5cfce1ecc", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# write to a file called optimized.cpp\n", |
|
"\n", |
|
"def write_output(cpp):\n", |
|
" code = cpp.replace(\"```cpp\",\"\").replace(\"```\",\"\")\n", |
|
" with open(\"optimized.cpp\", \"w\") as f:\n", |
|
" f.write(code)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "1ff08067-c9df-4981-8ab5-99eb2c2fd2c7", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def optimize_google(python):\n", |
|
" # Initialize empty reply string\n", |
|
" reply = \"\"\n", |
|
" \n", |
|
" # The API for Gemini has a slightly different structure\n", |
|
" gemini = google.generativeai.GenerativeModel(\n", |
|
" model_name='gemini-1.5-pro',\n", |
|
" system_instruction=system_message\n", |
|
" )\n", |
|
" \n", |
|
" response = gemini.generate_content(\n", |
|
" user_prompt_for(python),\n", |
|
" stream=True\n", |
|
" )\n", |
|
" \n", |
|
" # Process the stream\n", |
|
" for chunk in response:\n", |
|
" # Extract text from the chunk\n", |
|
" if chunk.text:\n", |
|
" reply += chunk.text\n", |
|
" print(chunk.text, end=\"\", flush=True)\n", |
|
" \n", |
|
" # Write the complete response to output\n", |
|
" write_output(reply)\n", |
|
" \n", |
|
" # return reply" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "8e8c7ba2-4ee9-4523-b0f1-cc7a91798bba", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"pi = \"\"\"\n", |
|
"import time\n", |
|
"\n", |
|
"def calculate(iterations, param1, param2):\n", |
|
" result = 1.0\n", |
|
" for i in range(1, iterations+1):\n", |
|
" j = i * param1 - param2\n", |
|
" result -= (1/j)\n", |
|
" j = i * param1 + param2\n", |
|
" result += (1/j)\n", |
|
" return result\n", |
|
"\n", |
|
"start_time = time.time()\n", |
|
"result = calculate(100_000_000, 4, 1) * 4\n", |
|
"end_time = time.time()\n", |
|
"\n", |
|
"print(f\"Result: {result:.12f}\")\n", |
|
"print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n", |
|
"\"\"\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "78d1afb7-ed6b-4a03-b36d-4ce8249c592e", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"exec(pi)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "1fe1d0b6-7cc7-423b-bc4b-741a0c48c106", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"optimize_google(pi)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "d28b4ac9-0909-4b35-aee1-97613a133e8e", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"exec(pi) #Execution Time: 16.209231 seconds" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "7d0443a3-3ca2-4a7a-a6c3-c94d0aa54603", |
|
"metadata": {}, |
|
"source": [ |
|
"# Compiling C++ and executing\n", |
|
"\n", |
|
"This next cell contains the command to compile a C++ file on Windows system. \n", |
|
"It compiles the file `optimized.cpp` into an executable called `optimized` \n", |
|
"Then it runs the program called `optimized`\n", |
|
"\n", |
|
"The way to compile for mac users is \\\n", |
|
"!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp \\\n", |
|
"!./optimized" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "9b5cfc70-df1f-44a7-b4ae-fd934f715930", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"!g++ -o optimized optimized.cpp\n", |
|
"!.\\optimized #Execution Time: 3.661196 seconds" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "e30fcbdf-82cf-4d50-9690-92dae69d5127", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"python_hard = \"\"\"\n", |
|
"def lcg(seed, a=1664525, c=1013904223, m=2**32):\n", |
|
" value = seed\n", |
|
" while True:\n", |
|
" value = (a * value + c) % m\n", |
|
" yield value\n", |
|
" \n", |
|
"def max_subarray_sum(n, seed, min_val, max_val):\n", |
|
" lcg_gen = lcg(seed)\n", |
|
" random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n", |
|
" max_sum = float('-inf')\n", |
|
" for i in range(n):\n", |
|
" current_sum = 0\n", |
|
" for j in range(i, n):\n", |
|
" current_sum += random_numbers[j]\n", |
|
" if current_sum > max_sum:\n", |
|
" max_sum = current_sum\n", |
|
" return max_sum\n", |
|
"\n", |
|
"def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n", |
|
" total_sum = 0\n", |
|
" lcg_gen = lcg(initial_seed)\n", |
|
" for _ in range(20):\n", |
|
" seed = next(lcg_gen)\n", |
|
" total_sum += max_subarray_sum(n, seed, min_val, max_val)\n", |
|
" return total_sum\n", |
|
"\n", |
|
"# Parameters\n", |
|
"n = 10000 # Number of random numbers\n", |
|
"initial_seed = 42 # Initial seed for the LCG\n", |
|
"min_val = -10 # Minimum value of random numbers\n", |
|
"max_val = 10 # Maximum value of random numbers\n", |
|
"\n", |
|
"# Timing the function\n", |
|
"import time\n", |
|
"start_time = time.time()\n", |
|
"result = total_max_subarray_sum(n, initial_seed, min_val, max_val)\n", |
|
"end_time = time.time()\n", |
|
"\n", |
|
"print(\"Total Maximum Subarray Sum (20 runs):\", result)\n", |
|
"print(\"Execution Time: {:.6f} seconds\".format(end_time - start_time))\n", |
|
"\"\"\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "2e8e111c-6f69-4ed0-8f86-8ed5982aa065", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"exec(python_hard) #Execution Time: 62.297366 seconds" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "38038ac1-5cdf-49d7-a286-a5871d5af583", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"optimize_google(python_hard)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "08cb9619-b8ae-42e7-9375-4b3918c37fd0", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"!g++ -o optimized optimized.cpp\n", |
|
"!.\\optimized" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "acd17a0d-f9f1-45a6-8151-916d8e6b9e4f", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def stream_google(python):\n", |
|
" # Initialize empty reply string\n", |
|
" reply = \"\"\n", |
|
" \n", |
|
" # The API for Gemini has a slightly different structure\n", |
|
" gemini = google.generativeai.GenerativeModel(\n", |
|
" model_name='gemini-1.5-pro',\n", |
|
" system_instruction=system_message\n", |
|
" )\n", |
|
" \n", |
|
" response = gemini.generate_content(\n", |
|
" user_prompt_for(python),\n", |
|
" stream=True\n", |
|
" )\n", |
|
" \n", |
|
" # Process the stream\n", |
|
" for chunk in response:\n", |
|
" # Extract text from the chunk\n", |
|
" if chunk.text:\n", |
|
" reply += chunk.text\n", |
|
" yield reply.replace('```cpp\\n','').replace('```','')\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "c3177229-d6cf-4df2-81a7-9e1f3b229c19", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def optimize(python, model):\n", |
|
" result=stream_google(python)\n", |
|
" for stream_so_far in result:\n", |
|
" yield stream_so_far " |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "c2476c2d-9218-4d30-bcc9-9cc5271c3a00", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"with gr.Blocks() as ui:\n", |
|
" with gr.Row():\n", |
|
" python = gr.Textbox(label=\"Python code:\", lines=10, value=pi)\n", |
|
" cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n", |
|
" with gr.Row():\n", |
|
" model = gr.Dropdown([\"Google\"], label=\"Select model\", value=\"Google\")\n", |
|
" convert = gr.Button(\"Convert code\")\n", |
|
"\n", |
|
" convert.click(optimize, inputs=[python, model], outputs=[cpp])\n", |
|
"\n", |
|
"ui.launch(inbrowser=True)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "a30de175-af4e-428a-8942-1c41997c01f1", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def execute_python(code):\n", |
|
" try:\n", |
|
" output = io.StringIO()\n", |
|
" sys.stdout = output\n", |
|
" exec(code)\n", |
|
" finally:\n", |
|
" sys.stdout = sys.__stdout__\n", |
|
" return output.getvalue()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "20c6316d-b090-42c5-9be9-7d5a178b97b3", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def execute_cpp(code):\n", |
|
" write_output(code)\n", |
|
" try:\n", |
|
" # compile_cmd = [\"clang++\", \"-Ofast\", \"-std=c++17\", \"-march=armv8.5-a\", \"-mtune=apple-m1\", \"-mcpu=apple-m1\", \"-o\", \"optimized\", \"optimized.cpp\"]\n", |
|
" compile_cmd = [\"g++\", \"-o\", \"optimized\", \"optimized.cpp\"]\n", |
|
" compile_result = subprocess.run(compile_cmd, check=True, text=True, capture_output=True)\n", |
|
" run_cmd = [\"./optimized\"]\n", |
|
" run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)\n", |
|
" return run_result.stdout\n", |
|
" except subprocess.CalledProcessError as e:\n", |
|
" return f\"An error occurred:\\n{e.stderr}\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "950a459f-3ef6-4afd-9e83-f01c032aa21b", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"css = \"\"\"\n", |
|
".python {background-color: #306998;}\n", |
|
".cpp {background-color: #050;}\n", |
|
"\"\"\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "bc3d90ba-716c-4b8f-989f-46c2447c42fa", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"with gr.Blocks(css=css) as ui:\n", |
|
" gr.Markdown(\"## Convert code from Python to C++\")\n", |
|
" with gr.Row():\n", |
|
" python = gr.Textbox(label=\"Python code:\", value=pi, lines=10)\n", |
|
" cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n", |
|
" with gr.Row():\n", |
|
" model = gr.Dropdown([\"Google\"], label=\"Select model\", value=\"Google\")\n", |
|
" with gr.Row():\n", |
|
" convert = gr.Button(\"Convert code\")\n", |
|
" with gr.Row():\n", |
|
" python_run = gr.Button(\"Run Python\")\n", |
|
" cpp_run = gr.Button(\"Run C++\")\n", |
|
" with gr.Row():\n", |
|
" python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n", |
|
" cpp_out = gr.TextArea(label=\"C++ result:\", elem_classes=[\"cpp\"])\n", |
|
"\n", |
|
" convert.click(optimize, inputs=[python, model], outputs=[cpp])\n", |
|
" python_run.click(execute_python, inputs=[python], outputs=[python_out])\n", |
|
" cpp_run.click(execute_cpp, inputs=[cpp], outputs=[cpp_out])\n", |
|
"\n", |
|
"ui.launch(inbrowser=True)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "c12f6115-e8a9-494e-95ce-2566854c0aa2", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3 (ipykernel)", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.11.11" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|