From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
274 lines
7.4 KiB
274 lines
7.4 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "41136d6f-07bc-4f6f-acba-784b8e5707b1", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# imports\n", |
|
"\n", |
|
"import requests\n", |
|
"from bs4 import BeautifulSoup\n", |
|
"from IPython.display import Markdown, display" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "8612b4f7-5c31-48f3-8423-261914509617", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Constants\n", |
|
"\n", |
|
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n", |
|
"HEADERS = {\"Content-Type\": \"application/json\"}\n", |
|
"MODEL = \"llama3.2\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "508bd442-7860-4215-b0f2-57f7adefd807", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Create a messages list using the same format that we used for OpenAI\n", |
|
"\n", |
|
"messages = [\n", |
|
" {\"role\": \"user\", \"content\": \"Describe some of the business applications of Generative AI\"}\n", |
|
"]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "cc7e8ada-4f8d-4090-be64-4aa72e03ac58", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Let's just make sure the model is loaded\n", |
|
"\n", |
|
"!ollama pull llama3.2" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "4afd2e56-191a-4e31-949e-9b9376a39b5a", |
|
"metadata": { |
|
"scrolled": true |
|
}, |
|
"outputs": [], |
|
"source": [ |
|
"# There's actually an alternative approach that some people might prefer\n", |
|
"# You can use the OpenAI client python library to call Ollama:\n", |
|
"\n", |
|
"from openai import OpenAI\n", |
|
"ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", |
|
"\n", |
|
"response = ollama_via_openai.chat.completions.create(\n", |
|
" model=MODEL,\n", |
|
" messages=messages\n", |
|
")\n", |
|
"\n", |
|
"print(response.choices[0].message.content)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "365f3d83-2601-42fb-89cc-98a4e1f79e0d", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"message = \"Hello, GPT! This is my first ever message to you! Hi!\"\n", |
|
"response = ollama_via_openai.chat.completions.create(model=MODEL, messages=[{\"role\":\"user\", \"content\":message}])\n", |
|
"print(response.choices[0].message.content)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "29c383ae-bf5b-41bc-b5af-a22f851745dc", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# A class to represent a Webpage\n", |
|
"# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n", |
|
"\n", |
|
"# Some websites need you to use proper headers when fetching them:\n", |
|
"headers = {\n", |
|
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n", |
|
"}\n", |
|
"\n", |
|
"class Website:\n", |
|
"\n", |
|
" def __init__(self, url):\n", |
|
" \"\"\"\n", |
|
" Create this Website object from the given url using the BeautifulSoup library\n", |
|
" \"\"\"\n", |
|
" self.url = url\n", |
|
" response = requests.get(url, headers=headers)\n", |
|
" soup = BeautifulSoup(response.content, 'html.parser')\n", |
|
" self.title = soup.title.string if soup.title else \"No title found\"\n", |
|
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", |
|
" irrelevant.decompose()\n", |
|
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "dc61e30f-653f-4554-b1cd-6e61a0e2430a", |
|
"metadata": { |
|
"scrolled": true |
|
}, |
|
"outputs": [], |
|
"source": [ |
|
"ed = Website(\"https://edwarddonner.com\")\n", |
|
"print(ed.title)\n", |
|
"print(ed.text)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "db2066fb-3079-4775-832a-dcc0f19beb6e", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"\n", |
|
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n", |
|
"and provides a short summary, ignoring text that might be navigation related. \\\n", |
|
"Respond in markdown.\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "af81b070-b6fe-4b18-aa0b-c03cd76a0adf", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def user_prompt_for(website):\n", |
|
" user_prompt = f\"You are looking at a website titled {website.title}\"\n", |
|
" user_prompt += \"\\nThe contents of this website is as follows; \\\n", |
|
"please provide a short summary of this website in markdown. \\\n", |
|
"If it includes news or announcements, then summarize these too.\\n\\n\"\n", |
|
" user_prompt += website.text\n", |
|
" return user_prompt" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "4e66291b-23b1-4915-b6a3-11a4b6a4db66", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"messages = [\n", |
|
" {\"role\": \"system\", \"content\": \"You are a snarky assistant\"},\n", |
|
" {\"role\": \"user\", \"content\": \"What is 2 + 2?\"}\n", |
|
"]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "67c92f47-4a3b-491f-af00-07fda470087e", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def messages_for(website):\n", |
|
" return [\n", |
|
" {\"role\": \"system\", \"content\": system_prompt},\n", |
|
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n", |
|
" ]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "db1b9085-e5e7-4ec9-a264-acc389085ada", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"messages_for(ed)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "677bfc2f-19ac-46a0-b67e-a2b2ddf9cf6b", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def summarize(url):\n", |
|
" website = Website(url)\n", |
|
" response = ollama_via_openai.chat.completions.create(\n", |
|
" model = MODEL,\n", |
|
" messages = messages_for(website)\n", |
|
" )\n", |
|
" return response.choices[0].message.content" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "ee3242ba-b695-4b1e-8a91-2fdeb536c2e7", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"summarize(\"https://edwarddonner.com\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "85142cb8-ce0c-4c31-8b26-bb1744cf99ec", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def display_summary(url):\n", |
|
" summary = summarize(url)\n", |
|
" display(Markdown(summary))" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "63db51a7-dd03-4514-8954-57156967f82c", |
|
"metadata": { |
|
"scrolled": true |
|
}, |
|
"outputs": [], |
|
"source": [ |
|
"display_summary(\"https://app.daily.dev/posts/bregman-arie-devops-exercises-linux-jenkins-aws-sre-prometheus-docker-python-ansible-git-k-yli9wthnf\")" |
|
] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python [conda env:base] *", |
|
"language": "python", |
|
"name": "conda-base-py" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.12.7" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|