You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

63 lines
2.3 KiB

# imports
import os
import re
import math
import json
from typing import List
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import chromadb
from items import Item
from testing import Tester
class FrontierAgent:
MODEL = "gpt-4o-mini"
def __init__(self, collection):
self.openai = OpenAI()
self.collection = collection
self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def make_context(self, similars: List[str], prices: List[float]):
message = "To provide some context, here are some other items that might be similar to the item you need to estimate.\n\n"
for similar, price in zip(similars, prices):
message += f"Potentially related product:\n{similar}\nPrice is ${price:.2f}\n\n"
return message
def messages_for(self, description: str, similars: List[str], prices: List[float]):
system_message = "You estimate prices of items. Reply only with the price, no explanation"
user_prompt = self.make_context(similars, prices)
user_prompt += "And now the question for you:\n\n"
user_prompt += "How much does this cost?\n\n" + description
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt},
{"role": "assistant", "content": "Price is $"}
]
def find_similars(self, description: str):
vector = self.model.encode([description])
results = self.collection.query(query_embeddings=vector.astype(float).tolist(), n_results=5)
documents = results['documents'][0][:]
prices = [m['price'] for m in results['metadatas'][0][:]]
return documents, prices
def get_price(self, s) -> float:
s = s.replace('$','').replace(',','')
match = re.search(r"[-+]?\d*\.\d+|\d+", s)
return float(match.group()) if match else 0.0
def price(self, description: str) -> float:
documents, prices = self.find_similars(description)
response = self.openai.chat.completions.create(
model=self.MODEL,
messages=self.messages_for(description, documents, prices),
seed=42,
max_tokens=5
)
reply = response.choices[0].message.content
return self.get_price(reply)