From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
232 lines
8.1 KiB
232 lines
8.1 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 1, |
|
"id": "12ca6f8a", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# imports\n", |
|
"\n", |
|
"import os\n", |
|
"from dotenv import load_dotenv\n", |
|
"from openai import OpenAI\n", |
|
"import anthropic\n", |
|
"from IPython.display import Markdown, display, update_display" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 2, |
|
"id": "4b53a815", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"OpenAI API Key exists and begins sk-proj-\n", |
|
"Anthropic API Key exists and begins sk-ant-\n", |
|
"Google API Key not set\n" |
|
] |
|
} |
|
], |
|
"source": [ |
|
"# Load environment variables in a file called .env\n", |
|
"# Print the key prefixes to help with any debugging\n", |
|
"\n", |
|
"load_dotenv(override=True)\n", |
|
"openai_api_key = os.getenv('OPENAI_API_KEY')\n", |
|
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n", |
|
"google_api_key = os.getenv('GOOGLE_API_KEY')\n", |
|
"\n", |
|
"if openai_api_key:\n", |
|
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n", |
|
"else:\n", |
|
" print(\"OpenAI API Key not set\")\n", |
|
" \n", |
|
"if anthropic_api_key:\n", |
|
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n", |
|
"else:\n", |
|
" print(\"Anthropic API Key not set\")\n", |
|
"\n", |
|
"if google_api_key:\n", |
|
" print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n", |
|
"else:\n", |
|
" print(\"Google API Key not set\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "3d2b7cfe", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Connect to OpenAI, Anthropic\n", |
|
"\n", |
|
"openai = OpenAI()\n", |
|
"\n", |
|
"claude = anthropic.Anthropic()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "b7d88d4b", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"class ConversationManager:\n", |
|
" def __init__(self):\n", |
|
" self.conversation_history = []\n", |
|
" self.participants = {}\n", |
|
" \n", |
|
" def add_participant(self, name, chatbot):\n", |
|
" \"\"\"Add a model to the conversation\"\"\"\n", |
|
" self.participants[name] = chatbot\n", |
|
" \n", |
|
" def add_message(self, speaker, message):\n", |
|
" \"\"\"Add a message to the shared conversation history\"\"\"\n", |
|
" self.conversation_history.append({\n", |
|
" \"speaker\": speaker,\n", |
|
" \"role\": \"assistant\" if speaker in self.participants else \"user\",\n", |
|
" \"content\": message\n", |
|
" })\n", |
|
" \n", |
|
" def get_context_for_model(self, model_name):\n", |
|
" \"\"\"Create context appropriate for the given model\"\"\"\n", |
|
" # Convert the shared history to model-specific format\n", |
|
" messages = []\n", |
|
" for msg in self.conversation_history:\n", |
|
" if msg[\"speaker\"] == model_name:\n", |
|
" messages.append({\"role\": \"assistant\", \"content\": msg[\"content\"]})\n", |
|
" else:\n", |
|
" messages.append({\"role\": \"user\", \"content\": msg[\"content\"]})\n", |
|
" return messages\n", |
|
" \n", |
|
" def run_conversation(self, starting_message, turns=3, round_robin=True):\n", |
|
" \"\"\"Run a multi-model conversation for specified number of turns\"\"\"\n", |
|
" current_message = starting_message\n", |
|
" models = list(self.participants.keys())\n", |
|
" \n", |
|
" # Add initial message\n", |
|
" self.add_message(\"user\", current_message)\n", |
|
" \n", |
|
" for _ in range(turns):\n", |
|
" for model_name in models:\n", |
|
" # Get context appropriate for this model\n", |
|
" model_context = self.get_context_for_model(model_name)\n", |
|
" \n", |
|
" # Get response from this model\n", |
|
" chatbot = self.participants[model_name]\n", |
|
" response = chatbot.generate_response(model_context)\n", |
|
" \n", |
|
" # Add to conversation history\n", |
|
" self.add_message(model_name, response)\n", |
|
" \n", |
|
" print(f\"{model_name}:\\n{response}\\n\")\n", |
|
" \n", |
|
" if not round_robin:\n", |
|
" # If not round-robin, use this response as input to next model\n", |
|
" current_message = response" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "80c537c3", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"class ChatBot:\n", |
|
" def __init__(self, model_name, system_prompt, **kwargs):\n", |
|
" self.model_name = model_name\n", |
|
" self.system_prompt = system_prompt\n", |
|
" self.api_key = kwargs.get('api_key', None)\n", |
|
" self.base_url = kwargs.get('base_url', None)\n", |
|
" \n", |
|
" def generate_response(self, messages):\n", |
|
" \"\"\"Generate a response based on provided messages without storing history\"\"\"\n", |
|
" # Prepare messages including system prompt\n", |
|
" full_messages = [{\"role\": \"system\", \"content\": self.system_prompt}] + messages\n", |
|
" \n", |
|
" try:\n", |
|
" if \"claude\" in self.model_name.lower():\n", |
|
" # Format messages for Claude API\n", |
|
" claude_messages = [m for m in messages if m[\"role\"] != \"system\"]\n", |
|
" response = anthropic.Anthropic().messages.create(\n", |
|
" model=self.model_name,\n", |
|
" system=self.system_prompt,\n", |
|
" messages=claude_messages,\n", |
|
" max_tokens=200,\n", |
|
" )\n", |
|
" return response.content[0].text\n", |
|
" \n", |
|
" else:\n", |
|
" # Use OpenAI API (works for OpenAI, Gemini via OpenAI client, etc)\n", |
|
" openai_client = OpenAI(api_key=self.api_key, base_url=self.base_url)\n", |
|
" response = openai_client.chat.completions.create(\n", |
|
" model=self.model_name,\n", |
|
" messages=full_messages,\n", |
|
" max_tokens=200,\n", |
|
" )\n", |
|
" return response.choices[0].message.content\n", |
|
" \n", |
|
" except Exception as e:\n", |
|
" return f\"Error: {str(e)}\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "d197c3ef", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Initialize models\n", |
|
"gpt_bot = ChatBot(\"gpt-4o-mini\", \"You are witty and sarcastic.\")\n", |
|
"claude_bot = ChatBot(\"claude-3-haiku-20240307\", \"You are thoughtful and philosophical.\")\n", |
|
"\n", |
|
"model_name = \"qwen2.5:1.5b\"\n", |
|
"system_prompt = \"You are a helpful assistant that is very argumentative in a snarky way.\"\n", |
|
"kwargs = {\n", |
|
" \"api_key\": \"ollama\",\n", |
|
" \"base_url\": 'http://localhost:11434/v1'\n", |
|
"}\n", |
|
"qwen = ChatBot(model_name, system_prompt, **kwargs)\n", |
|
"\n", |
|
"# Set up conversation manager\n", |
|
"conversation = ConversationManager()\n", |
|
"conversation.add_participant(\"GPT\", gpt_bot)\n", |
|
"conversation.add_participant(\"Claude\", claude_bot)\n", |
|
"conversation.add_participant(\"Qwen\", qwen)\n", |
|
"\n", |
|
"# Run a multi-model conversation\n", |
|
"conversation.run_conversation(\"What's the most interesting technology trend right now?\", turns=2)" |
|
] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python (llms)", |
|
"language": "python", |
|
"name": "llms" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.11.9" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|