From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
448 lines
14 KiB
448 lines
14 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "markdown", |
|
"id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec", |
|
"metadata": {}, |
|
"source": [ |
|
"# Project - Airline AI Assistant\n", |
|
"\n", |
|
"We'll now bring together what we've learned to make an AI Customer Support assistant for an Airline" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 1, |
|
"id": "8b50bbe2-c0b1-49c3-9a5c-1ba7efa2bcb4", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# imports\n", |
|
"\n", |
|
"import os\n", |
|
"import json\n", |
|
"from dotenv import load_dotenv\n", |
|
"from openai import OpenAI\n", |
|
"import gradio as gr" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 2, |
|
"id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"OpenAI API Key exists and begins sk-proj-\n" |
|
] |
|
} |
|
], |
|
"source": [ |
|
"# Initialization\n", |
|
"\n", |
|
"load_dotenv(override=True)\n", |
|
"\n", |
|
"openai_api_key = os.getenv('OPENAI_API_KEY')\n", |
|
"if openai_api_key:\n", |
|
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n", |
|
"else:\n", |
|
" print(\"OpenAI API Key not set\")\n", |
|
" \n", |
|
"MODEL = \"gpt-4o-mini\"\n", |
|
"openai = OpenAI()\n", |
|
"\n", |
|
"# As an alternative, if you'd like to use Ollama instead of OpenAI\n", |
|
"# Check that Ollama is running for you locally (see week1/day2 exercise) then uncomment these next 2 lines\n", |
|
"# MODEL = \"llama3.2\"\n", |
|
"# openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 3, |
|
"id": "0a521d84-d07c-49ab-a0df-d6451499ed97", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n", |
|
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n", |
|
"system_message += \"Always be accurate. If you don't know the answer, say so.\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 5, |
|
"id": "61a2a15d-b559-4844-b377-6bd5cb4949f6", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"* Running on local URL: http://127.0.0.1:7877\n", |
|
"\n", |
|
"To create a public link, set `share=True` in `launch()`.\n" |
|
] |
|
}, |
|
{ |
|
"data": { |
|
"text/html": [ |
|
"<div><iframe src=\"http://127.0.0.1:7877/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>" |
|
], |
|
"text/plain": [ |
|
"<IPython.core.display.HTML object>" |
|
] |
|
}, |
|
"metadata": {}, |
|
"output_type": "display_data" |
|
}, |
|
{ |
|
"data": { |
|
"text/plain": [] |
|
}, |
|
"execution_count": 5, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n", |
|
"\n", |
|
"def chat(message, history):\n", |
|
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", |
|
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n", |
|
" return response.choices[0].message.content\n", |
|
"\n", |
|
"gr.ChatInterface(fn=chat, type=\"messages\").launch()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "36bedabf-a0a7-4985-ad8e-07ed6a55a3a4", |
|
"metadata": {}, |
|
"source": [ |
|
"## Tools\n", |
|
"\n", |
|
"Tools are an incredibly powerful feature provided by the frontier LLMs.\n", |
|
"\n", |
|
"With tools, you can write a function, and have the LLM call that function as part of its response.\n", |
|
"\n", |
|
"Sounds almost spooky.. we're giving it the power to run code on our machine?\n", |
|
"\n", |
|
"Well, kinda." |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 4, |
|
"id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Let's start by making a useful function\n", |
|
"\n", |
|
"ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n", |
|
"\n", |
|
"def get_ticket_price(destination_city):\n", |
|
" print(f\"Tool get_ticket_price called for {destination_city}\")\n", |
|
" city = destination_city.lower()\n", |
|
" return ticket_prices.get(city, \"Unknown\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 5, |
|
"id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"Tool get_ticket_price called for Berlin\n" |
|
] |
|
}, |
|
{ |
|
"data": { |
|
"text/plain": [ |
|
"'$499'" |
|
] |
|
}, |
|
"execution_count": 5, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"get_ticket_price(\"Berlin\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 29, |
|
"id": "0757cba1", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"import random\n", |
|
"\n", |
|
"# Create a function for the booking system\n", |
|
"def get_booking(destination_city):\n", |
|
" print(f\"Tool get_booking called for {destination_city}\")\n", |
|
" city = destination_city.lower()\n", |
|
" \n", |
|
" # Example data for different cities\n", |
|
" flight_info = {\n", |
|
" \"london\": {\"flight_number\": \"BA123\", \"departure_time\": \"10:00 AM\", \"gate\": \"A12\"},\n", |
|
" \"paris\": {\"flight_number\": \"AF456\", \"departure_time\": \"12:00 PM\", \"gate\": \"B34\"},\n", |
|
" \"tokyo\": {\"flight_number\": \"JL789\", \"departure_time\": \"02:00 PM\", \"gate\": \"C56\"},\n", |
|
" \"berlin\": {\"flight_number\": \"LH101\", \"departure_time\": \"04:00 PM\", \"gate\": \"D78\"}\n", |
|
" }\n", |
|
" \n", |
|
" if city in flight_info:\n", |
|
" info = flight_info[city]\n", |
|
" status = random.choice([\"available\", \"not available\"])\n", |
|
" return f\"Flight {info['flight_number']} to {destination_city.lower()} is {status}. Departure time: {info['departure_time']}, Gate: {info['gate']}.\"\n", |
|
" else:\n", |
|
" return \"Unknown destination city.\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 13, |
|
"id": "d5413a96", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"Tool get_booking called for Berlin\n" |
|
] |
|
}, |
|
{ |
|
"data": { |
|
"text/plain": [ |
|
"'Flight LH101 to berlin is cancelled. Departure time: 04:00 PM, Gate: D78.'" |
|
] |
|
}, |
|
"execution_count": 13, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"get_booking(\"Berlin\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 30, |
|
"id": "4afceded-7178-4c05-8fa6-9f2085e6a344", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# There's a particular dictionary structure that's required to describe our function:\n", |
|
"\n", |
|
"price_function = {\n", |
|
" \"name\": \"get_ticket_price\",\n", |
|
" \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n", |
|
" \"parameters\": {\n", |
|
" \"type\": \"object\",\n", |
|
" \"properties\": {\n", |
|
" \"destination_city\": {\n", |
|
" \"type\": \"string\",\n", |
|
" \"description\": \"The city that the customer wants to travel to\",\n", |
|
" },\n", |
|
" },\n", |
|
" \"required\": [\"destination_city\"],\n", |
|
" \"additionalProperties\": False\n", |
|
" }\n", |
|
"}\n", |
|
"\n", |
|
"# Book flight function description and properties\n", |
|
"\n", |
|
"book_flight_function = {\n", |
|
" \"name\": \"book_flight\",\n", |
|
" \"description\": \"Book a flight to the destination city. Call this whenever a customer wants to book a flight.\",\n", |
|
" \"parameters\": {\n", |
|
" \"type\": \"object\",\n", |
|
" \"properties\": {\n", |
|
" \"destination_city\": {\n", |
|
" \"type\": \"string\",\n", |
|
" \"description\": \"The city that the customer wants to travel to\",\n", |
|
" },\n", |
|
" \"departure_date\": {\n", |
|
" \"type\": \"string\",\n", |
|
" \"description\": \"The date of departure (YYYY-MM-DD)\",\n", |
|
" },\n", |
|
" \"return_date\": {\n", |
|
" \"type\": \"string\",\n", |
|
" \"description\": \"The date of return (YYYY-MM-DD)\",\n", |
|
" },\n", |
|
" \"passenger_name\": {\n", |
|
" \"type\": \"string\",\n", |
|
" \"description\": \"The name of the passenger\",\n", |
|
" },\n", |
|
" },\n", |
|
" \"required\": [\"destination_city\", \"departure_date\", \"return_date\", \"passenger_name\"],\n", |
|
" \"additionalProperties\": False\n", |
|
" }\n", |
|
"}" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 31, |
|
"id": "bdca8679-935f-4e7f-97e6-e71a4d4f228c", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# And this is included in a list of tools:\n", |
|
"\n", |
|
"tools = [{\"type\": \"function\", \"function\": price_function}, {\"type\": \"function\", \"function\": book_flight_function}]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "c3d3554f-b4e3-4ce7-af6f-68faa6dd2340", |
|
"metadata": {}, |
|
"source": [ |
|
"## Getting OpenAI to use our Tool\n", |
|
"\n", |
|
"There's some fiddly stuff to allow OpenAI \"to call our tool\"\n", |
|
"\n", |
|
"What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n", |
|
"\n", |
|
"Here's how the new chat function looks:" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 33, |
|
"id": "ce9b0744-9c78-408d-b9df-9f6fd9ed78cf", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def chat(message, history):\n", |
|
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", |
|
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n", |
|
"\n", |
|
" if response.choices[0].finish_reason==\"tool_calls\":\n", |
|
" message = response.choices[0].message\n", |
|
" response, city = handle_tool_call(message)\n", |
|
" messages.append(message)\n", |
|
" messages.append(response)\n", |
|
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n", |
|
" \n", |
|
" return response.choices[0].message.content" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 32, |
|
"id": "b0992986-ea09-4912-a076-8e5603ee631f", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# We have to write that function handle_tool_call:\n", |
|
"\n", |
|
"def handle_tool_call(message):\n", |
|
" print(f\"Message type: {type(message)}\")\n", |
|
" tool_call = message.tool_calls[0]\n", |
|
" print(f\"Tool call: {tool_call}\")\n", |
|
" arguments = json.loads(tool_call.function.arguments)\n", |
|
" city = arguments.get('destination_city')\n", |
|
" price = get_ticket_price(city)\n", |
|
" book = get_booking(city)\n", |
|
" print (book)\n", |
|
" response = {\n", |
|
" \"role\": \"tool\",\n", |
|
" \"content\": json.dumps({\"destination_city\": city,\"price\": price, \"booking\": book}),\n", |
|
" \"tool_call_id\": tool_call.id\n", |
|
" }\n", |
|
" return response, city" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "f4be8a71-b19e-4c2f-80df-f59ff2661f14", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"* Running on local URL: http://127.0.0.1:7864\n", |
|
"\n", |
|
"To create a public link, set `share=True` in `launch()`.\n" |
|
] |
|
}, |
|
{ |
|
"data": { |
|
"text/html": [ |
|
"<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>" |
|
], |
|
"text/plain": [ |
|
"<IPython.core.display.HTML object>" |
|
] |
|
}, |
|
"metadata": {}, |
|
"output_type": "display_data" |
|
}, |
|
{ |
|
"data": { |
|
"text/plain": [] |
|
}, |
|
"execution_count": 34, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
}, |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"Message type: <class 'openai.types.chat.chat_completion_message.ChatCompletionMessage'>\n", |
|
"Tool call: ChatCompletionMessageToolCall(id='call_TGFmeFmQN689caTlqfLuhycv', function=Function(arguments='{\"destination_city\":\"London\",\"departure_date\":\"2023-10-31\",\"return_date\":\"2025-03-30\",\"passenger_name\":\"dimitris\"}', name='book_flight'), type='function')\n", |
|
"Tool get_ticket_price called for London\n", |
|
"Tool get_booking called for London\n", |
|
"Flight BA123 to london is available. Departure time: 10:00 AM, Gate: A12.\n", |
|
"Message type: <class 'openai.types.chat.chat_completion_message.ChatCompletionMessage'>\n", |
|
"Tool call: ChatCompletionMessageToolCall(id='call_FRzs5w09rkpVumZ61SArRlND', function=Function(arguments='{\"destination_city\":\"Paris\",\"departure_date\":\"2023-03-23\",\"return_date\":\"2025-03-30\",\"passenger_name\":\"Dimitris\"}', name='book_flight'), type='function')\n", |
|
"Tool get_ticket_price called for Paris\n", |
|
"Tool get_booking called for Paris\n", |
|
"Flight AF456 to paris is available. Departure time: 12:00 PM, Gate: B34.\n" |
|
] |
|
} |
|
], |
|
"source": [ |
|
"gr.ChatInterface(fn=chat, type=\"messages\").launch()" |
|
] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "llms", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.11.11" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|