You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

896 lines
38 KiB

{
"cells": [
{
"cell_type": "markdown",
"id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9",
"metadata": {},
"source": [
"# Instant Gratification\n",
"\n",
"## Your first Frontier LLM Project!\n",
"\n",
"Let's build a useful LLM solution - in a matter of minutes.\n",
"\n",
"By the end of this course, you will have built an autonomous Agentic AI solution with 7 agents that collaborate to solve a business problem. All in good time! We will start with something smaller...\n",
"\n",
"Our goal is to code a new kind of Web Browser. Give it a URL, and it will respond with a summary. The Reader's Digest of the internet!!\n",
"\n",
"Before starting, you should have completed the setup for [PC](../SETUP-PC.md) or [Mac](../SETUP-mac.md) and you hopefully launched this jupyter lab from within the project root directory, with your environment activated.\n",
"\n",
"## If you're new to Jupyter Lab\n",
"\n",
"Welcome to the wonderful world of Data Science experimentation! Once you've used Jupyter Lab, you'll wonder how you ever lived without it. Simply click in each \"cell\" with code in it, such as the cell immediately below this text, and hit Shift+Return to execute that cell. As you wish, you can add a cell with the + button in the toolbar, and print values of variables, or try out variations. \n",
"\n",
"I've written a notebook called [Guide to Jupyter](Guide%20to%20Jupyter.ipynb) to help you get more familiar with Jupyter Labs, including adding Markdown comments, using `!` to run shell commands, and `tqdm` to show progress.\n",
"\n",
"If you prefer to work in IDEs like VSCode or Pycharm, they both work great with these lab notebooks too. \n",
"\n",
"## If you'd like to brush up your Python\n",
"\n",
"I've added a notebook called [Intermediate Python](Intermediate%20Python.ipynb) to get you up to speed. But you should give it a miss if you already have a good idea what this code does: \n",
"`yield from {book.get(\"author\") for book in books if book.get(\"author\")}`\n",
"\n",
"## I am here to help\n",
"\n",
"If you have any problems at all, please do reach out. \n",
"I'm available through the platform, or at ed@edwarddonner.com, or at https://www.linkedin.com/in/eddonner/ if you'd like to connect (and I love connecting!)\n",
"\n",
"## More troubleshooting\n",
"\n",
"Please see the [troubleshooting](troubleshooting.ipynb) notebook in this folder to diagnose and fix common problems. At the very end of it is a diagnostics script with some useful debug info.\n",
"\n",
"## If this is old hat!\n",
"\n",
"If you're already comfortable with today's material, please hang in there; you can move swiftly through the first few labs - we will get much more in depth as the weeks progress.\n",
"\n",
"<table style=\"margin: 0; text-align: left;\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#900;\">Please read - important note</h2>\n",
" <span style=\"color:#900;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you do this with me, either at the same time, or (perhaps better) right afterwards. Add print statements to understand what's going on, and then come up with your own variations. If you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...</span>\n",
" </td>\n",
" </tr>\n",
"</table>\n",
"<table style=\"margin: 0; text-align: left;\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../business.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#181;\">Business value of these exercises</h2>\n",
" <span style=\"color:#181;\">A final thought. While I've designed these notebooks to be educational, I've also tried to make them enjoyable. We'll do fun things like have LLMs tell jokes and argue with each other. But fundamentally, my goal is to teach skills you can apply in business. I'll explain business implications as we go, and it's worth keeping this in mind: as you build experience with models and techniques, think of ways you could put this into action at work today. Please do contact me if you'd like to discuss more or if you have ideas to bounce off me.</span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4e2a9393-7767-488e-a8bf-27c12dca35bd",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import requests\n",
"from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display\n",
"from openai import OpenAI\n",
"\n",
"# If you get an error running this cell, then please head over to the troubleshooting notebook!"
]
},
{
"cell_type": "markdown",
"id": "6900b2a8-6384-4316-8aaa-5e519fca4254",
"metadata": {},
"source": [
"# Connecting to OpenAI\n",
"\n",
"The next cell is where we load in the environment variables in your `.env` file and connect to OpenAI.\n",
"\n",
"## Troubleshooting if you have problems:\n",
"\n",
"Head over to the [troubleshooting](troubleshooting.ipynb) notebook in this folder for step by step code to identify the root cause and fix it!\n",
"\n",
"If you make a change, try restarting the \"Kernel\" (the python process sitting behind this notebook) by Kernel menu >> Restart Kernel and Clear Outputs of All Cells. Then try this notebook again, starting at the top.\n",
"\n",
"Or, contact me! Message me or email ed@edwarddonner.com and we will get this to work.\n",
"\n",
"Any concerns about API costs? See my notes in the README - costs should be minimal, and you can control it at every point. You can also use Ollama as a free alternative, which we discuss during Day 2."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7b87cadb-d513-4303-baee-a37b6f938e4d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"API key found and looks good so far!\n"
]
}
],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv()\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"# Check the key\n",
"\n",
"if not api_key:\n",
" print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
"elif not api_key.startswith(\"sk-proj-\"):\n",
" print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
"elif api_key.strip() != api_key:\n",
" print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
"else:\n",
" print(\"API key found and looks good so far!\")\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "019974d9-f3ad-4a8a-b5f9-0a3719aea2d3",
"metadata": {},
"outputs": [],
"source": [
"openai = OpenAI()\n",
"\n",
"# If this doesn't work, try Kernel menu >> Restart Kernel and Clear Outputs Of All Cells, then run the cells from the top of this notebook down.\n",
"# If it STILL doesn't work (horrors!) then please see the troubleshooting notebook, or try the below line instead:\n",
"# openai = OpenAI(api_key=\"your-key-here-starting-sk-proj-\")"
]
},
{
"cell_type": "markdown",
"id": "442fc84b-0815-4f40-99ab-d9a5da6bda91",
"metadata": {},
"source": [
"# Let's make a quick call to a Frontier model to get started, as a preview!"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a58394bf-1e45-46af-9bfd-01e24da6f49a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'Hello, GPT! This is my first ever message to you! Hi!'}\n",
"Hello! Welcome! I'm glad you're here. How can I assist you today?\n"
]
}
],
"source": [
"# To give you a preview -- calling OpenAI with these messages is this easy:\n",
"\n",
"message = \"Hello, GPT! This is my first ever message to you! Hi!\"\n",
"response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=[{\"role\":\"user\", \"content\":message}])\n",
"print ({message})\n",
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"id": "2aa190e5-cb31-456a-96cc-db109919cd78",
"metadata": {},
"source": [
"## OK onwards with our first project"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c5e793b2-6775-426a-a139-4848291d0463",
"metadata": {},
"outputs": [],
"source": [
"# A class to represent a Webpage\n",
"# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n",
"\n",
"# Some websites need you to use proper headers when fetching them:\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"class Website:\n",
"\n",
" def __init__(self, url):\n",
" \"\"\"\n",
" Create this Website object from the given url using the BeautifulSoup library\n",
" \"\"\"\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2ef960cf-6dc2-4cda-afb3-b38be12f4c97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Home - Edward Donner\n",
"Home\n",
"Outsmart\n",
"An arena that pits LLMs against each other in a battle of diplomacy and deviousness\n",
"About\n",
"Posts\n",
"Well, hi there.\n",
"I’m Ed. I like writing code and experimenting with LLMs, and hopefully you’re here because you do too. I also enjoy DJing (but I’m badly out of practice), amateur electronic music production (\n",
"very\n",
"amateur) and losing myself in\n",
"Hacker News\n",
", nodding my head sagely to things I only half understand.\n",
"I’m the co-founder and CTO of\n",
"Nebula.io\n",
". We’re applying AI to a field where it can make a massive, positive impact: helping people discover their potential and pursue their reason for being. Recruiters use our product today to source, understand, engage and manage talent. I’m previously the founder and CEO of AI startup untapt,\n",
"acquired in 2021\n",
".\n",
"We work with groundbreaking, proprietary LLMs verticalized for talent, we’ve\n",
"patented\n",
"our matching model, and our award-winning platform has happy customers and tons of press coverage.\n",
"Connect\n",
"with me for more!\n",
"November 13, 2024\n",
"Mastering AI and LLM Engineering – Resources\n",
"October 16, 2024\n",
"From Software Engineer to AI Data Scientist – resources\n",
"August 6, 2024\n",
"Outsmart LLM Arena – a battle of diplomacy and deviousness\n",
"June 26, 2024\n",
"Choosing the Right LLM: Toolkit and Resources\n",
"Navigation\n",
"Home\n",
"Outsmart\n",
"An arena that pits LLMs against each other in a battle of diplomacy and deviousness\n",
"About\n",
"Posts\n",
"Get in touch\n",
"ed [at] edwarddonner [dot] com\n",
"www.edwarddonner.com\n",
"Follow me\n",
"LinkedIn\n",
"Twitter\n",
"Facebook\n",
"Subscribe to newsletter\n",
"Type your email…\n",
"Subscribe\n"
]
}
],
"source": [
"# Let's try one out. Change the website and add print statements to follow along.\n",
"\n",
"ed = Website(\"https://edwarddonner.com\")\n",
"print(ed.title)\n",
"print(ed.text)"
]
},
{
"cell_type": "markdown",
"id": "6a478a0c-2c53-48ff-869c-4d08199931e1",
"metadata": {},
"source": [
"## Types of prompts\n",
"\n",
"You may know this already - but if not, you will get very familiar with it!\n",
"\n",
"Models like GPT4o have been trained to receive instructions in a particular way.\n",
"\n",
"They expect to receive:\n",
"\n",
"**A system prompt** that tells them what task they are performing and what tone they should use\n",
"\n",
"**A user prompt** -- the conversation starter that they should reply to"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "abdb8417-c5dc-44bc-9bee-2e059d162699",
"metadata": {},
"outputs": [],
"source": [
"# Define our system prompt - you can experiment with this later, changing the last sentence to 'Respond in markdown in Spanish.\"\n",
"\n",
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
"and provides a short summary, ignoring text that might be navigation related. \\\n",
"Respond in markdown.\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "a1b3fcc3-1152-41a4-b4ad-a6d66ee18b79",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'You are an assistant that analyzes the contents of a website and provides a short summary, ignoring text that might be navigation related. Respond in markdown.'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"system_prompt"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "f0275b1b-7cfe-4f9d-abfa-7650d378da0c",
"metadata": {},
"outputs": [],
"source": [
"# A function that writes a User Prompt that asks for summaries of websites:\n",
"\n",
"def user_prompt_for(website):\n",
" user_prompt = f\"You are looking at a website titled {website.title}\"\n",
" user_prompt += \"\\nThe contents of this website is as follows; \\\n",
"please provide a short summary of this website in markdown. \\\n",
"If it includes news or announcements, then summarize these too.\\n\\n\"\n",
" user_prompt += website.text\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "26448ec4-5c00-4204-baec-7df91d11ff2e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"You are looking at a website titled Home - Edward Donner\n",
"The contents of this website is as follows; please provide a short summary of this website in markdown. If it includes news or announcements, then summarize these too.\n",
"\n",
"Home\n",
"Outsmart\n",
"An arena that pits LLMs against each other in a battle of diplomacy and deviousness\n",
"About\n",
"Posts\n",
"Well, hi there.\n",
"I’m Ed. I like writing code and experimenting with LLMs, and hopefully you’re here because you do too. I also enjoy DJing (but I’m badly out of practice), amateur electronic music production (\n",
"very\n",
"amateur) and losing myself in\n",
"Hacker News\n",
", nodding my head sagely to things I only half understand.\n",
"I’m the co-founder and CTO of\n",
"Nebula.io\n",
". We’re applying AI to a field where it can make a massive, positive impact: helping people discover their potential and pursue their reason for being. Recruiters use our product today to source, understand, engage and manage talent. I’m previously the founder and CEO of AI startup untapt,\n",
"acquired in 2021\n",
".\n",
"We work with groundbreaking, proprietary LLMs verticalized for talent, we’ve\n",
"patented\n",
"our matching model, and our award-winning platform has happy customers and tons of press coverage.\n",
"Connect\n",
"with me for more!\n",
"November 13, 2024\n",
"Mastering AI and LLM Engineering – Resources\n",
"October 16, 2024\n",
"From Software Engineer to AI Data Scientist – resources\n",
"August 6, 2024\n",
"Outsmart LLM Arena – a battle of diplomacy and deviousness\n",
"June 26, 2024\n",
"Choosing the Right LLM: Toolkit and Resources\n",
"Navigation\n",
"Home\n",
"Outsmart\n",
"An arena that pits LLMs against each other in a battle of diplomacy and deviousness\n",
"About\n",
"Posts\n",
"Get in touch\n",
"ed [at] edwarddonner [dot] com\n",
"www.edwarddonner.com\n",
"Follow me\n",
"LinkedIn\n",
"Twitter\n",
"Facebook\n",
"Subscribe to newsletter\n",
"Type your email…\n",
"Subscribe\n"
]
}
],
"source": [
"print(user_prompt_for(ed))"
]
},
{
"cell_type": "markdown",
"id": "ea211b5f-28e1-4a86-8e52-c0b7677cadcc",
"metadata": {},
"source": [
"## Messages\n",
"\n",
"The API from OpenAI expects to receive messages in a particular structure.\n",
"Many of the other APIs share this structure:\n",
"\n",
"```\n",
"[\n",
" {\"role\": \"system\", \"content\": \"system message goes here\"},\n",
" {\"role\": \"user\", \"content\": \"user message goes here\"}\n",
"]\n",
"\n",
"To give you a preview, the next 2 cells make a rather simple call - we won't stretch the might GPT (yet!)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f25dcd35-0cd0-4235-9f64-ac37ed9eaaa5",
"metadata": {},
"outputs": [],
"source": [
"messages = [\n",
" {\"role\": \"system\", \"content\": \"You are a snarky assistant\"},\n",
" {\"role\": \"user\", \"content\": \"What is 2 + 2?\"}\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "6100800a-f1dd-4624-9956-75735225be02",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'role': 'system', 'content': 'You are a snarky assistant'},\n",
" {'role': 'user', 'content': 'What is 2 + 2?'}]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "21ed95c5-7001-47de-a36d-1d6673b403ce",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Oh, we're doing math now? Well, 2 + 2 equals 4. Shocking, I know!\n"
]
}
],
"source": [
"# To give you a preview -- calling OpenAI with system and user messages:\n",
"\n",
"response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"id": "d06e8d78-ce4c-4b05-aa8e-17050c82bb47",
"metadata": {},
"source": [
"## And now let's build useful messages for GPT-4o-mini, using a function"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "0134dfa4-8299-48b5-b444-f2a8c3403c88",
"metadata": {},
"outputs": [],
"source": [
"# See how this function creates exactly the format above\n",
"\n",
"def messages_for(website):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "36478464-39ee-485c-9f3f-6a4e458dbc9c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'role': 'system',\n",
" 'content': 'You are an assistant that analyzes the contents of a website and provides a short summary, ignoring text that might be navigation related. Respond in markdown.'},\n",
" {'role': 'user',\n",
" 'content': 'You are looking at a website titled Home - Edward Donner\\nThe contents of this website is as follows; please provide a short summary of this website in markdown. If it includes news or announcements, then summarize these too.\\n\\nHome\\nOutsmart\\nAn arena that pits LLMs against each other in a battle of diplomacy and deviousness\\nAbout\\nPosts\\nWell, hi there.\\nI’m Ed. I like writing code and experimenting with LLMs, and hopefully you’re here because you do too. I also enjoy DJing (but I’m badly out of practice), amateur electronic music production (\\nvery\\namateur) and losing myself in\\nHacker News\\n, nodding my head sagely to things I only half understand.\\nI’m the co-founder and CTO of\\nNebula.io\\n. We’re applying AI to a field where it can make a massive, positive impact: helping people discover their potential and pursue their reason for being. Recruiters use our product today to source, understand, engage and manage talent. I’m previously the founder and CEO of AI startup untapt,\\nacquired in 2021\\n.\\nWe work with groundbreaking, proprietary LLMs verticalized for talent, we’ve\\npatented\\nour matching model, and our award-winning platform has happy customers and tons of press coverage.\\nConnect\\nwith me for more!\\nNovember 13, 2024\\nMastering AI and LLM Engineering – Resources\\nOctober 16, 2024\\nFrom Software Engineer to AI Data Scientist – resources\\nAugust 6, 2024\\nOutsmart LLM Arena – a battle of diplomacy and deviousness\\nJune 26, 2024\\nChoosing the Right LLM: Toolkit and Resources\\nNavigation\\nHome\\nOutsmart\\nAn arena that pits LLMs against each other in a battle of diplomacy and deviousness\\nAbout\\nPosts\\nGet in touch\\ned [at] edwarddonner [dot] com\\nwww.edwarddonner.com\\nFollow me\\nLinkedIn\\nTwitter\\nFacebook\\nSubscribe to newsletter\\nType your email…\\nSubscribe'}]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Try this out, and then try for a few more websites\n",
"\n",
"messages_for(ed)"
]
},
{
"cell_type": "markdown",
"id": "16f49d46-bf55-4c3e-928f-68fc0bf715b0",
"metadata": {},
"source": [
"## Time to bring it together - the API for OpenAI is very simple!"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "905b9919-aba7-45b5-ae65-81b3d1d78e34",
"metadata": {},
"outputs": [],
"source": [
"# And now: call the OpenAI API. You will get very familiar with this!\n",
"\n",
"def summarize(url):\n",
" website = Website(url)\n",
" response = openai.chat.completions.create(\n",
" model = \"gpt-4o-mini\",\n",
" messages = messages_for(website)\n",
" )\n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "05e38d41-dfa4-4b20-9c96-c46ea75d9fb5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"# Summary of Edward Donner's Website\\n\\nEdward Donner's website serves as a personal platform where he discusses his interests and expertise, primarily in coding and experimenting with large language models (LLMs). As the co-founder and CTO of Nebula.io, he focuses on leveraging AI to help individuals discover their potentials and enhance talent management for recruiters.\\n\\n### Key Sections:\\n\\n- **About Ed**: Edward enjoys coding, DJing, and engaging with the tech community. He has a background in AI startups, including being the founder and CEO of untapt, which was acquired in 2021.\\n- **Outsmart**: This feature introduces an arena where LLMs compete in diplomacy and cunning, showcasing innovative applications of AI.\\n- **Posts**: \\n - **Mastering AI and LLM Engineering – Resources** (November 13, 2024)\\n - **From Software Engineer to AI Data Scientist – Resources** (October 16, 2024)\\n - **Outsmart LLM Arena – A Battle of Diplomacy and Deviousness** (August 6, 2024)\\n - **Choosing the Right LLM: Toolkit and Resources** (June 26, 2024)\\n\\nThe website invites visitors to connect with Edward and stay updated through his posts and resources related to AI and LLMs.\""
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"summarize(\"https://edwarddonner.com\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "3d926d59-450e-4609-92ba-2d6f244f1342",
"metadata": {},
"outputs": [],
"source": [
"# A function to display this nicely in the Jupyter output, using markdown\n",
"\n",
"def display_summary(url):\n",
" summary = summarize(url)\n",
" display(Markdown(summary))"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "3018853a-445f-41ff-9560-d925d1774b2f",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"# Summary of Edward Donner's Website\n",
"\n",
"Edward Donner's website is a personal and professional platform showcasing his interests and expertise in working with Large Language Models (LLMs) and AI technologies. As the co-founder and CTO of Nebula.io, he is focused on leveraging AI to enhance talent discovery and engagement. Previously, he founded the AI startup untapt, which was acquired in 2021. \n",
"\n",
"## Key Features:\n",
"\n",
"- **Personal Introduction**: Ed shares his passion for coding, experimentation with LLMs, and interests in DJing and electronic music production.\n",
"- **Professional Background**: Insights into his role at Nebula.io and previous experience with untapt. He highlights his work with proprietary LLMs and innovative matching models.\n",
" \n",
"## Recent Posts:\n",
"- **November 13, 2024**: Mastering AI and LLM Engineering – Resources\n",
"- **October 16, 2024**: From Software Engineer to AI Data Scientist – Resources\n",
"- **August 6, 2024**: Outsmart LLM Arena – A battle of diplomacy and deviousness\n",
"- **June 26, 2024**: Choosing the Right LLM: Toolkit and Resources\n",
"\n",
"These posts suggest a focus on educational resources and insights related to AI and LLM engineering."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_summary(\"https://edwarddonner.com\")"
]
},
{
"cell_type": "markdown",
"id": "b3bcf6f4-adce-45e9-97ad-d9a5d7a3a624",
"metadata": {},
"source": [
"# Let's try more websites\n",
"\n",
"Note that this will only work on websites that can be scraped using this simplistic approach.\n",
"\n",
"Websites that are rendered with Javascript, like React apps, won't show up. See the community-contributions folder for a Selenium implementation that gets around this. You'll need to read up on installing Selenium (ask ChatGPT!)\n",
"\n",
"Also Websites protected with CloudFront (and similar) may give 403 errors - many thanks Andy J for pointing this out.\n",
"\n",
"But many websites will work just fine!"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "45d83403-a24c-44b5-84ac-961449b4008f",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"# CNN Summary\n",
"\n",
"CNN is a leading news outlet providing the latest updates on various topics, including:\n",
"\n",
"- **Breaking News:** Continuous updates on urgent events around the globe.\n",
"- **Featured Stories:** Insights into significant current affairs, such as the ongoing conflict between Israel and Hamas, and developments in the Ukraine-Russia war.\n",
"- **Politics:** Coverage of key political events, including President Biden's recent clemency grants and implications of Trump's potential inauguration.\n",
"- **World Affairs:** Reports on international crises, including the situation in Syria and reactions to Sudan's bombardments.\n",
"- **Health & Science:** Articles discussing public health issues and scientific discoveries, such as innovations in herbal medicine.\n",
"- **Business & Economy:** Analysis of corporate developments, job cuts in Germany, and impacts of international trade policies.\n",
"- **Entertainment & Culture:** Features on public figures and trends affecting the entertainment industry, as well as the latest in sports.\n",
"\n",
"Recent announcements on the site include:\n",
"- **Clemency for Nearly 1,500 People:** This act marks the largest single-day clemency decision in recent history.\n",
"- **Status of International Relations:** Notable updates on figures like Trump and Xi Jinping, alongside the unfolding situation in Ukraine and the Middle East.\n",
"- **Cultural Insights:** Breakdowns of significant cultural events such as the recognition of Time's \"Person of the Year.\"\n",
"\n",
"CNN emphasizes the importance of viewer feedback to enhance reading and engagement experiences on their platform."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_summary(\"https://cnn.com\")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "75e9fd40-b354-4341-991e-863ef2e59db7",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"# Anthropic Overview\n",
"\n",
"Anthropic is an AI safety and research company based in San Francisco, focused on developing reliable and beneficial AI systems with a strong emphasis on safety. The company boasts an interdisciplinary team with expertise in machine learning, physics, policy, and product development.\n",
"\n",
"## Key Offerings\n",
"\n",
"- **Claude AI Models**: \n",
" - The latest model, **Claude 3.5 Sonnet**, is highlighted as the most intelligent AI model to date.\n",
" - **Claude 3.5 Haiku** has also been introduced, expanding their product offerings.\n",
"\n",
"- **API Access**: \n",
" - Users can leverage Claude to enhance efficiency and create new revenue opportunities.\n",
"\n",
"## Recent Announcements\n",
"\n",
"1. **New Model Updates** (October 22, 2024):\n",
" - Introduction of Claude 3.5 Sonnet and Claude 3.5 Haiku.\n",
" - Announcement of new capabilities for computer use.\n",
"\n",
"2. **Research Initiatives**:\n",
" - **Constitutional AI**: Discusses ensuring harmlessness through AI feedback (December 15, 2022).\n",
" - **Core Views on AI Safety**: Outlines when, why, what, and how AI safety should be addressed (March 8, 2023).\n",
"\n",
"Overall, Anthropic is focused on pioneering advancements in AI through research and development while prioritizing safety and reliability in its applications."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_summary(\"https://anthropic.com\")"
]
},
{
"cell_type": "markdown",
"id": "c951be1a-7f1b-448f-af1f-845978e47e2c",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left;\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../business.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#181;\">Business applications</h2>\n",
" <span style=\"color:#181;\">In this exercise, you experienced calling the Cloud API of a Frontier Model (a leading model at the frontier of AI) for the first time. We will be using APIs like OpenAI at many stages in the course, in addition to building our own LLMs.\n",
"\n",
"More specifically, we've applied this to Summarization - a classic Gen AI use case to make a summary. This can be applied to any business vertical - summarizing the news, summarizing financial performance, summarizing a resume in a cover letter - the applications are limitless. Consider how you could apply Summarization in your business, and try prototyping a solution.</span>\n",
" </td>\n",
" </tr>\n",
"</table>\n",
"\n",
"<table style=\"margin: 0; text-align: left;\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#900;\">Before you continue - now try yourself</h2>\n",
" <span style=\"color:#900;\">Use the cell below to make your own simple commercial example. Stick with the summarization use case for now. Here's an idea: write something that will take the contents of an email, and will suggest an appropriate short subject line for the email. That's the kind of feature that might be built into a commercial email tool.</span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "00743dac-0e70-45b7-879a-d7293a6f68a6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Objet : Contestation du frais de retour tardif\n",
"\n",
"Bonjour,\n",
"\n",
"Je fais suite à votre email concernant le retour tardif de la voiture. Je conteste fermement cette modification de prix qui, selon moi, est injustifiée.\n",
"\n",
"Selon les termes de notre contrat de location, le délai de grâce pour le retour est souvent de 30 minutes, ce qui est fréquemment appliqué dans le secteur. De plus, vous n'avez pas mentionné dans votre contrat un tarif additionnel pour une telle situation, ce qui pourrait constituer une clause abusive.\n",
"\n",
"Je vous prie donc de bien vouloir annuler cette modification tarifaire. Je me réserve le droit d'explorer des recours supplémentaires si cette situation n'est pas corrigée rapidement.\n",
"\n",
"Dans l'attente de votre retour.\n",
"\n",
"Cordialement, \n",
"Sylvain\n"
]
}
],
"source": [
"# Step 1: Create your prompts\n",
"\n",
"system_prompt = \"You are my very smart assistant. Your task will be to suggest to me an answer to my email. I want to avoid paying. you can be agressive and use the law\"\n",
"user_prompt = \"\"\"\n",
" Retour tardif\n",
"Bonjour sylvain,\n",
"\n",
"Vous avez réservé la voiture jusqu'à 15:00 , et vous l'avez rendue à 15:30 . Le prix de votre location a été modifié en conséquence.\n",
"\"\"\"\n",
"\n",
"# Step 2: Make the messages list\n",
"\n",
"messages = [{\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}] # fill this in\n",
"\n",
"# Step 3: Call OpenAI\n",
"\n",
"response = openai.chat.completions.create(\n",
" model = \"gpt-4o-mini\",\n",
" messages = messages\n",
" )\n",
" \n",
"\n",
"# Step 4: print the result\n",
"\n",
"print( response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"id": "36ed9f14-b349-40e9-a42c-b367e77f8bda",
"metadata": {},
"source": [
"## An extra exercise for those who enjoy web scraping\n",
"\n",
"You may notice that if you try `display_summary(\"https://openai.com\")` - it doesn't work! That's because OpenAI has a fancy website that uses Javascript. There are many ways around this that some of you might be familiar with. For example, Selenium is a hugely popular framework that runs a browser behind the scenes, renders the page, and allows you to query it. If you have experience with Selenium, Playwright or similar, then feel free to improve the Website class to use them. In the community-contributions folder, you'll find an example Selenium solution from a student (thank you!)"
]
},
{
"cell_type": "markdown",
"id": "eeab24dc-5f90-4570-b542-b0585aca3eb6",
"metadata": {},
"source": [
"# Sharing your code\n",
"\n",
"I'd love it if you share your code afterwards so I can share it with others! You'll notice that some students have already made changes (including a Selenium implementation) which you will find in the community-contributions folder. If you'd like add your changes to that folder, submit a Pull Request with your new versions in that folder and I'll merge your changes.\n",
"\n",
"If you're not an expert with git (and I am not!) then GPT has given some nice instructions on how to submit a Pull Request. It's a bit of an involved process, but once you've done it once it's pretty clear. As a pro-tip: it's best if you clear the outputs of your Jupyter notebooks (Edit >> Clean outputs of all cells, and then Save) for clean notebooks.\n",
"\n",
"PR instructions courtesy of an AI friend: https://chatgpt.com/share/670145d5-e8a8-8012-8f93-39ee4e248b4c"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "682eff74-55c4-4d4b-b267-703edbc293c7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}