You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

208 lines
9.0 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"import json\n",
"from typing import List\n",
"from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display, update_display, clear_output\n",
"import openai\n",
"\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n",
" print(\"API key looks good so far\")\n",
"else:\n",
" print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n",
"\n",
"MODEL = 'gpt-4o-mini'\n",
"\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"# Prompt user for company name and URL\n",
"company_name = input(\"Enter the company name: \")\n",
"url = input(\"Enter the company URL: \")\n",
"\n",
"class Website:\n",
" \"\"\"\n",
" A utility class to represent a Website that we have scraped, now with links\n",
" \"\"\"\n",
"\n",
" def __init__(self, url):\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" self.body = response.content\n",
" soup = BeautifulSoup(self.body, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" if soup.body:\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
" else:\n",
" self.text = \"\"\n",
" links = [link.get('href') for link in soup.find_all('a')]\n",
" self.links = [link for link in links if link]\n",
"\n",
" def get_contents(self):\n",
" return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\"\n",
"# multi-shot prompt\n",
"link_system_prompt = \"You are provided with a list of links found on a webpage. \\You are able to decide which of the links would be most relevant to include in a brochure about the company, \\such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n",
"link_system_prompt += \"You should respond in JSON as in this example:\"\n",
"link_system_prompt += \"\"\"\n",
" EXAMPLE 1:\n",
" {\n",
" \"links\": [\n",
" {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n",
" {\"type\": \"careers page\", \"url\": \"https://another.full.url/careers\"}\n",
" ]\n",
" }\n",
" EXAMPLE 2:\n",
" {\n",
" \"links\": [\n",
" {\"type\": \"company blog\", \"url\": \"https://blog.example.com\"},\n",
" {\"type\": \"our story\", \"url\": \"https://example.com/our-story\"}\n",
" ]\n",
" }\n",
" \"\"\"\n",
"\n",
"def get_links_user_prompt(website):\n",
" user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n",
" user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\ Do not include Terms of Service, Privacy, email links.\\n\"\n",
" user_prompt += \"Links (some might be relative links):\\n\"\n",
" user_prompt += \"\\n\".join(website.links)\n",
" return user_prompt\n",
"\n",
"\n",
"def get_links(url):\n",
" website = Website(url)\n",
" response = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": link_system_prompt},\n",
" {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n",
" ],\n",
" response_format={\"type\": \"json_object\"}\n",
" )\n",
" result = response.choices[0].message.content\n",
" return json.loads(result)\n",
"\n",
"def get_all_details(url):\n",
" result = \"Landing page:\\n\"\n",
" result += Website(url).get_contents()\n",
" links = get_links(url)\n",
"\n",
" for link in links[\"links\"]:\n",
" result += f\"\\n\\n{link['type']}\\n\"\n",
" result += Website(link[\"url\"]).get_contents()\n",
" return result\n",
"\n",
"# set format to json_object\n",
"system_prompt = (\n",
" \"You are an assistant that analyzes the contents of several relevant pages from a company website \"\n",
" \"and creates a short tempered, irritated, disappointed in the world type of brochure about the company for prospective customers, investors, and recruits. \"\n",
" \"Respond in markdown. Include details of company culture, customers, and careers/jobs if you have the information. Add emoticons where ever possible.\\n\\n\"\n",
"\n",
" \"Please structure the brochure using the following sections:\\n\"\n",
" \"1. **Introduction**: A brief overview of the company.\\n\"\n",
" \"2. **Company Culture**: Emphasize fun, atmosphere, and any unique cultural elements.\\n\"\n",
" \"3. **Customers**: Mention notable customers or industries.\\n\"\n",
" \"4. **Careers/Jobs**: Highlight career opportunities.\\n\"\n",
" \"5. **Conclusion**: Wrap up with a final lighthearted message.\\n\"\n",
" \"6. Finish the brochure with a very sarcastic and pun-intended mission statement.\\n\"\n",
")\n",
"\n",
"def get_brochure_user_prompt(company_name, url):\n",
" user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n",
" user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n",
" user_prompt += get_all_details(url)\n",
" user_prompt = user_prompt[:20_000]\n",
" return user_prompt\n",
"\n",
"def stream_brochure():\n",
" global brochure_text # Access the global variable\n",
" brochure_text = \"\" # Initialize\n",
" \n",
" stream = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
" ],\n",
" stream=True\n",
" )\n",
" \n",
" response = \"\"\n",
" display_handle = display(Markdown(\"\"), display_id=True)\n",
" for chunk in stream: \n",
" content = chunk.choices[0].delta.content or ''\n",
" response += content\n",
" brochure_text += content # Accumulate the text\n",
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
" update_display(Markdown(response), display_id=display_handle.display_id)\n",
"\n",
"def user_translate_brochure(lang):\n",
" # Clear previous output\n",
" clear_output(wait=True)\n",
" \n",
" # Stream #2: translate accumulated text\n",
" translation_stream = openai.chat.completions.create( # Changed from ChatCompletion\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"user\", \"content\": f\"Translate the following to {lang}:\\n\\n{brochure_text}\"}\n",
" ],\n",
" stream=True\n",
" )\n",
" \n",
" # Setup display for streaming translation\n",
" display_handle = display(Markdown(\"\"), display_id=True)\n",
" translated_text = \"\"\n",
" \n",
" for chunk in translation_stream:\n",
" content = chunk.choices[0].delta.content or \"\"\n",
" if content:\n",
" translated_text += content\n",
" update_display(Markdown(translated_text), display_id=display_handle.display_id)\n",
"\n",
"# stream the brochure in english\n",
"stream_brochure()\n",
"\n",
"# prompt user for language choice\n",
"language_choice = input(\"Enter the language to translate the brochure into (e.g., 'French'): \")\n",
"\n",
"# translate the brochure and stream the translation\n",
"user_translate_brochure(language_choice)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "llms",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}