From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
494 lines
15 KiB
494 lines
15 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "markdown", |
|
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5", |
|
"metadata": {}, |
|
"source": [ |
|
"# End of week 1 exercise\n", |
|
"\n", |
|
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n", |
|
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "c1070317-3ed9-4659-abe3-828943230e03", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# imports\n", |
|
"import os\n", |
|
"import requests\n", |
|
"import json\n", |
|
"from typing import List\n", |
|
"from dotenv import load_dotenv\n", |
|
"from bs4 import BeautifulSoup\n", |
|
"from IPython.display import Markdown, display, update_display\n", |
|
"from openai import OpenAI\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# constants\n", |
|
"\n", |
|
"MODEL_GPT = 'gpt-4o-mini'\n", |
|
"MODEL_LLAMA = 'llama3.2'" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# set up environment\n", |
|
"# Initialize and constants\n", |
|
"\n", |
|
"load_dotenv()\n", |
|
"api_key = os.getenv('OPENAI_API_KEY')\n", |
|
"\n", |
|
"if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n", |
|
" print(\"API key looks good so far\")\n", |
|
"else:\n", |
|
" print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n", |
|
" \n", |
|
"MODEL = 'gpt-4o-mini'\n", |
|
"openai = OpenAI()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "38f13b72-eb43-4dbb-b80f-34f1625b6db8", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# A class to represent a Webpage\n", |
|
"\n", |
|
"class Website:\n", |
|
" \"\"\"\n", |
|
" A utility class to represent a Website that we have scraped, now with links\n", |
|
" \"\"\"\n", |
|
"\n", |
|
" def __init__(self, url):\n", |
|
" self.url = url\n", |
|
" response = requests.get(url)\n", |
|
" self.body = response.content\n", |
|
" soup = BeautifulSoup(self.body, 'html.parser')\n", |
|
" self.title = soup.title.string if soup.title else \"No title found\"\n", |
|
" if soup.body:\n", |
|
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", |
|
" irrelevant.decompose()\n", |
|
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n", |
|
" else:\n", |
|
" self.text = \"\"\n", |
|
" links = [link.get('href') for link in soup.find_all('a')]\n", |
|
" self.links = [link for link in links if link]\n", |
|
"\n", |
|
" def get_contents(self):\n", |
|
" return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "1d853b19-28d7-49fe-a2af-b53b080b37bf", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"ed=Website(\"https://www.edwarddonner.com\")\n", |
|
"ed.links" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "a64ccffe-06c5-49d9-ae06-067b6052f1ec", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"#multi shots prmopting \n", |
|
"#shot 1) you should respond in JSON... \n", |
|
"#shot 2) you should also respond in multi colored text\n", |
|
"\n", |
|
"link_system_prompt = \"You are provided with a list of links found on a webpage. \\\n", |
|
"You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n", |
|
"such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n", |
|
"link_system_prompt += \"You should respond in yellow text.\"\n", |
|
"link_system_prompt += \"You should respond in JSON as in this example:\"\n", |
|
"link_system_prompt += \"\"\"\n", |
|
"{\n", |
|
" \"links\": [\n", |
|
" {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n", |
|
" {\"type\": \"careers page\": \"url\": \"https://another.full.url/careers\"}\n", |
|
" ]\n", |
|
"}\n", |
|
"\"\"\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "38c058d0-d326-40dd-9925-1644288865b1", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"print(link_system_prompt)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "ea606951-a65a-4075-a473-58e4cddaf096", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def get_links_user_prompt(website):\n", |
|
" user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n", |
|
" user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n", |
|
"Do not include Terms of Service, Privacy, email links.\\n\"\n", |
|
" user_prompt += \"print output in yellow text\\n\"\n", |
|
" user_prompt += \"Links (some might be relative links):\\n\"\n", |
|
" user_prompt += \"\\n\".join(website.links)\n", |
|
" return user_prompt" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "96893ce7-865e-47e5-b637-2fab13305d5c", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"print(get_links_user_prompt(ed))" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "716b214d-497e-49fb-a0de-5bf4edb0f6bd", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def get_links(url):\n", |
|
" website = Website(url)\n", |
|
" response = openai.chat.completions.create(\n", |
|
" model=MODEL,\n", |
|
" messages=[\n", |
|
" {\"role\": \"system\", \"content\": link_system_prompt},\n", |
|
" {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n", |
|
" ],\n", |
|
" response_format={\"type\": \"json_object\"}\n", |
|
" )\n", |
|
" result = response.choices[0].message.content\n", |
|
" return json.loads(result)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "553b3d1c-4956-42d9-bd86-abaf764e3b5e", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"anthropic = Website(\"https://edwarddonner.com\")\n", |
|
"anthropic.links" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "0d7b198d-a39f-4553-9432-0aaa8abbb0ec", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"get_links(\"https://edwarddonner.com\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "9d160a9e-a129-4d4f-be34-4ccc4e570c03", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"#make a brouchore now\n", |
|
"def get_all_details(url):\n", |
|
" result = \"Landing page:\\n\"\n", |
|
" result += Website(url).get_contents()\n", |
|
" links = get_links(url)\n", |
|
" print(\"Found links:\", links)\n", |
|
" for link in links[\"links\"]:\n", |
|
" result += f\"\\n\\n{link['type']}\\n\"\n", |
|
" result += Website(link[\"url\"]).get_contents()\n", |
|
" return result" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "6ce3de06-f228-4f8c-ad65-522b25c1dcf5", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"print(get_all_details(\"https://edwarddonner.com\"))" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "7c019742-9586-4061-96ff-912af9802bb5", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n", |
|
"and creates a short brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n", |
|
"Include details of company culture, customers and careers/jobs if you have the information.\\\n", |
|
"Output should be displayed in mindmap diagram format.\\\n", |
|
"Also output should be in Hindi lanaguage.\"\n", |
|
"\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "8152a14f-91e8-4abc-89c7-6062934611fa", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def get_brochure_user_prompt(company_name, url):\n", |
|
" user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n", |
|
" user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n", |
|
" user_prompt += get_all_details(url)\n", |
|
" user_prompt = user_prompt[:20_000] # Truncate if more than 20,000 characters\n", |
|
" return user_prompt" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "009ab063-eb0e-4d6e-b833-406277a0c70f", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"get_brochure_user_prompt(\"Edward Donner\", \"https://edwarddonner.com\") " |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "bcccadb8-11d6-4ddd-a24f-6ac1c2101419", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def create_brochure(company_name, url):\n", |
|
" response = openai.chat.completions.create(\n", |
|
" model=MODEL,\n", |
|
" messages=[\n", |
|
" {\"role\": \"system\", \"content\": system_prompt},\n", |
|
" {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n", |
|
" ],\n", |
|
" )\n", |
|
" result = response.choices[0].message.content\n", |
|
" display(Markdown(result))" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "3606b154-8d28-49ca-8028-c064f196fe20", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"create_brochure(\"Anthropic\", \"https://anthropic.com\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "757b9f43-9c23-477b-9928-d6bbbf0394bb", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"#stream brochure\n", |
|
"def stream_brochure(company_name, url):\n", |
|
" stream = openai.chat.completions.create(\n", |
|
" model=MODEL,\n", |
|
" messages=[\n", |
|
" {\"role\": \"system\", \"content\": system_prompt},\n", |
|
" {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n", |
|
" ],\n", |
|
" stream=True\n", |
|
" )\n", |
|
" \n", |
|
" response = \"\"\n", |
|
" display_handle = display(Markdown(\"\"), display_id=True)\n", |
|
" for chunk in stream:\n", |
|
" response += chunk.choices[0].delta.content or ''\n", |
|
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n", |
|
" update_display(Markdown(response), display_id=display_handle.display_id)\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "ea4408f4-dbdc-4168-a843-034b9620fb38", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"stream_brochure(\"HuggingFace\", \"https://huggingface.com\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "256765bb-a307-4fe0-9582-f03403a25e8d", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"#define new system prompt for the question below\n", |
|
"\n", |
|
"system_prompt = \"Output should be in both English and Hindi lanaguage.\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# here is the question; type over this to ask something new , i.e. user_prompt\n", |
|
"\n", |
|
"user_prompt = question = \"\"\"\n", |
|
"Please explain what this code does and why:\n", |
|
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n", |
|
"\"\"\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "60ce7000-a4a5-4cce-a261-e75ef45063b4", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Get gpt-4o-mini to answer, with streaming\n", |
|
"#stream result\n", |
|
"def stream_code_explanation():\n", |
|
" stream = openai.chat.completions.create(\n", |
|
" model=MODEL,\n", |
|
" messages=[\n", |
|
" {\"role\": \"system\", \"content\": system_prompt},\n", |
|
" {\"role\": \"user\", \"content\": user_prompt}\n", |
|
" ],\n", |
|
" stream=True\n", |
|
" )\n", |
|
" \n", |
|
" response = \"\"\n", |
|
" display_handle = display(Markdown(\"\"), display_id=True)\n", |
|
" for chunk in stream:\n", |
|
" response += chunk.choices[0].delta.content or ''\n", |
|
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n", |
|
" update_display(Markdown(response), display_id=display_handle.display_id)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "a7c79f95-6a4f-48b1-afed-42848e5d5975", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"stream_code_explanation()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "350eb627-23a3-4215-82be-e5b8f99280e2", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n", |
|
"HEADERS = {\"Content-Type\": \"application/json\"}" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "652739e1-6edd-4b9d-8a44-8ea8191f45a4", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Create a messages list using the same format that we used for OpenAI\n", |
|
"messages = [\n", |
|
" {\"role\": \"user\", \"content\": \"Please explain what this code does and why: yield from {book.get(\\\"author\\\") for book in books if book.get(\\\"author\\\")}\"}\n", |
|
"]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "0d1b895b-1ba2-4ea2-95a5-fe7a798a4157", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"payload = {\n", |
|
" \"model\": MODEL_LLAMA,\n", |
|
" \"messages\": messages,\n", |
|
" \"stream\": False\n", |
|
" }" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Get Llama 3.2 to answer\n", |
|
"response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n", |
|
"print(response.json()['message']['content'])" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "fd9b22dd-cc77-4f1d-80ca-da45fe122dab", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3 (ipykernel)", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.11.10" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|