From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
7.4 KiB
251 lines
7.4 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "markdown", |
|
"id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec", |
|
"metadata": {}, |
|
"source": [ |
|
"# Project - Airline AI Assistant\n", |
|
"\n", |
|
"We'll now bring together what we've learned to make an AI Customer Support assistant for an Airline" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "8b50bbe2-c0b1-49c3-9a5c-1ba7efa2bcb4", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# imports\n", |
|
"\n", |
|
"import os\n", |
|
"import json\n", |
|
"from dotenv import load_dotenv\n", |
|
"from openai import OpenAI\n", |
|
"import gradio as gr" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Initialization\n", |
|
"\n", |
|
"load_dotenv()\n", |
|
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n", |
|
"MODEL = \"gpt-4o-mini\"\n", |
|
"openai = OpenAI()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "0a521d84-d07c-49ab-a0df-d6451499ed97", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n", |
|
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n", |
|
"system_message += \"Always be accurate. If you don't know the answer, say so.\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "61a2a15d-b559-4844-b377-6bd5cb4949f6", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n", |
|
"\n", |
|
"def chat(message, history):\n", |
|
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", |
|
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n", |
|
" return response.choices[0].message.content\n", |
|
"\n", |
|
"gr.ChatInterface(fn=chat, type=\"messages\").launch()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "36bedabf-a0a7-4985-ad8e-07ed6a55a3a4", |
|
"metadata": {}, |
|
"source": [ |
|
"## Tools\n", |
|
"\n", |
|
"Tools are an incredibly powerful feature provided by the frontier LLMs.\n", |
|
"\n", |
|
"With tools, you can write a function, and have the LLM call that function as part of its response.\n", |
|
"\n", |
|
"Sounds almost spooky.. we're giving it the power to run code on our machine?\n", |
|
"\n", |
|
"Well, kinda." |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Let's start by making a useful function\n", |
|
"\n", |
|
"ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n", |
|
"\n", |
|
"def get_ticket_price(destination_city):\n", |
|
" print(f\"Tool get_ticket_price called for {destination_city}\")\n", |
|
" city = destination_city.lower()\n", |
|
" return ticket_prices.get(city, \"Unknown\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"get_ticket_price(\"Berlin\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "4afceded-7178-4c05-8fa6-9f2085e6a344", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# There's a particular dictionary structure that's required to describe our function:\n", |
|
"\n", |
|
"price_function = {\n", |
|
" \"name\": \"get_ticket_price\",\n", |
|
" \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n", |
|
" \"parameters\": {\n", |
|
" \"type\": \"object\",\n", |
|
" \"properties\": {\n", |
|
" \"destination_city\": {\n", |
|
" \"type\": \"string\",\n", |
|
" \"description\": \"The city that the customer wants to travel to\",\n", |
|
" },\n", |
|
" },\n", |
|
" \"required\": [\"destination_city\"],\n", |
|
" \"additionalProperties\": False\n", |
|
" }\n", |
|
"}" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "bdca8679-935f-4e7f-97e6-e71a4d4f228c", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# And this is included in a list of tools:\n", |
|
"\n", |
|
"tools = [{\"type\": \"function\", \"function\": price_function}]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "c3d3554f-b4e3-4ce7-af6f-68faa6dd2340", |
|
"metadata": {}, |
|
"source": [ |
|
"## Getting OpenAI to use our Tool\n", |
|
"\n", |
|
"There's some fiddly stuff to allow OpenAI \"to call our tool\"\n", |
|
"\n", |
|
"What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n", |
|
"\n", |
|
"Here's how the new chat function looks:" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "ce9b0744-9c78-408d-b9df-9f6fd9ed78cf", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def chat(message, history):\n", |
|
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", |
|
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n", |
|
"\n", |
|
" if response.choices[0].finish_reason==\"tool_calls\":\n", |
|
" message = response.choices[0].message\n", |
|
" response, city = handle_tool_call(message)\n", |
|
" messages.append(message)\n", |
|
" messages.append(response)\n", |
|
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n", |
|
" \n", |
|
" return response.choices[0].message.content" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "b0992986-ea09-4912-a076-8e5603ee631f", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# We have to write that function handle_tool_call:\n", |
|
"\n", |
|
"def handle_tool_call(message):\n", |
|
" tool_call = message.tool_calls[0]\n", |
|
" arguments = json.loads(tool_call.function.arguments)\n", |
|
" city = arguments.get('destination_city')\n", |
|
" price = get_ticket_price(city)\n", |
|
" response = {\n", |
|
" \"role\": \"tool\",\n", |
|
" \"content\": json.dumps({\"destination_city\": city,\"price\": price}),\n", |
|
" \"tool_call_id\": message.tool_calls[0].id\n", |
|
" }\n", |
|
" return response, city" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "f4be8a71-b19e-4c2f-80df-f59ff2661f14", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"gr.ChatInterface(fn=chat, type=\"messages\").launch()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "11c9da69-d0cf-4cf2-a49e-e5669deec47b", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3 (ipykernel)", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.11.10" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|