You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

277 lines
7.2 KiB

{
"cells": [
{
"cell_type": "markdown",
"id": "603cd418-504a-4b4d-b1c3-be04febf3e79",
"metadata": {},
"source": [
"# Article Title Generator\n",
"\n",
"Summarization use-case in which the user provides an article, which the LLM will analyze to suggest an SEO-optimized title.\n",
"\n",
"NOTES:\n",
"\n",
"1. This version does NOT support website scrapping. You must copy and paste the required article.\n",
"2. The following models were configured:\n",
" a. OpenAI gpt-4o-mini\n",
" b. Llama llama3.2\n",
" c. Deepseek deepseek-r1:1.5b\n",
" It is possible to configure additional models by adding the new model to the MODELS dictionary and its\n",
" initialization to the CLIENTS dictionary."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "279b0c00-9bb0-4c7f-9c6d-aa0b108274b9",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from IPython.display import Markdown, display\n",
"from openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4730d8d-3e20-4f3c-a4ff-ed2ac0a8aa27",
"metadata": {},
"outputs": [],
"source": [
"# set environment variables for OpenAi\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e773daa6-d05e-49bf-ad8e-a8ed4882b77e",
"metadata": {},
"outputs": [],
"source": [
"# Confirming Llama is loaded\n",
"!ollama pull llama3.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1abbb826-de66-498c-94d8-33369ad01885",
"metadata": {},
"outputs": [],
"source": [
"# constants\n",
"MODELS = { 'GPT': 'gpt-4o-mini', \n",
" 'LLAMA': 'llama3.2', \n",
" 'DEEPSEEK': 'deepseek-r1:1.5b'\n",
" }\n",
"\n",
"CLIENTS = { 'GPT': OpenAI(), \n",
" 'LLAMA': OpenAI(base_url='http://localhost:11434/v1', api_key='ollama'),\n",
" 'DEEPSEEK': OpenAI(base_url='http://localhost:11434/v1', api_key='ollama') \n",
" }"
]
},
{
"cell_type": "markdown",
"id": "6f490fe4-32d5-41f3-890d-ecf4e5e01dd4",
"metadata": {},
"source": [
"### Copy & paste your article (without a title)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddd76319-13ce-480b-baa7-cab6a5c88168",
"metadata": {},
"outputs": [],
"source": [
"# article - copy & paste your article\n",
"article = \"\"\"\n",
" REPLACE WITH YOUR ARTICLE CONTENT\n",
" \"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1914afad-dbd8-4c1f-8e68-80b0e5d743a9",
"metadata": {},
"outputs": [],
"source": [
"# system prompt\n",
"system_prompt = \"\"\"\n",
" You are an experienced SEO-focused copywriter. The user will provide an article, and your task is to analyze its content and generate the most effective, keyword-optimized title to maximize SEO performance.Respond in Markdown format.\n",
" \"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "176cfac7-5e6d-4d4a-a1c4-1b63b60de1f7",
"metadata": {},
"outputs": [],
"source": [
"# user prompt\n",
"user_prompt = f\"Following the article to be analyzed. Respond in Markdown format./n/n{article}\"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c45fc7d7-08c9-4e34-b427-b928a219bb94",
"metadata": {},
"outputs": [],
"source": [
"# message list\n",
"messages = [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f67b881f-1040-4cf7-82c5-e85f4c0bd252",
"metadata": {},
"outputs": [],
"source": [
"# call model and get answer\n",
"def get_answer(model):\n",
" # set required client\n",
" client = CLIENTS[model]\n",
"\n",
" # call model\n",
" response = client.chat.completions.create(\n",
" model=MODELS[model],\n",
" messages=messages\n",
" )\n",
"\n",
" # closing LLM client connection\n",
" client.close()\n",
" \n",
" # return answer\n",
" return response.choices[0].message.content\n",
" "
]
},
{
"cell_type": "markdown",
"id": "947b42ed-5b43-486d-8af3-e5b671c1fd0e",
"metadata": {},
"source": [
"### Get OpenAI Suggested Title"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eb6f66e3-ab99-4f76-9358-896cb43c1fa1",
"metadata": {},
"outputs": [],
"source": [
"# get openAi answer\n",
"answer = get_answer('GPT')\n",
"\n",
"# display openAi answer\n",
"display(Markdown(f\"### {MODELS['GPT']} Answer\\n\\n{answer}\" ))"
]
},
{
"cell_type": "markdown",
"id": "70073ebf-a00a-416b-854d-642d450cd99b",
"metadata": {},
"source": [
"### Get Llama Suggested Title"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "caa190bb-de5f-45cc-b671-5d62688f7b25",
"metadata": {},
"outputs": [],
"source": [
"# get openAi answer\n",
"answer = get_answer('LLAMA')\n",
"\n",
"# display openAi answer\n",
"display(Markdown(f\"### {MODELS['LLAMA']} Answer\\n\\n{answer}\" ))"
]
},
{
"cell_type": "markdown",
"id": "811edc4f-20e2-482d-ac89-fae9d1b70bed",
"metadata": {},
"source": [
"### Get Deepseek Suggested Title"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "082628e4-ff4c-46dd-ae5f-76578eb017ad",
"metadata": {},
"outputs": [],
"source": [
"# get openAi answer\n",
"answer = get_answer('DEEPSEEK')\n",
"\n",
"# display openAi answer\n",
"display(Markdown(f\"### {MODELS['DEEPSEEK']} Answer\\n\\n{answer}\" ))"
]
},
{
"cell_type": "markdown",
"id": "7fc404a6-3a91-4c09-89de-867d3d69b4b2",
"metadata": {},
"source": [
"### Suggested future improvements\n",
"\n",
"1. Add support for website scrapping to replace copy/pasting of articles.\n",
"2. Improve the system_prompt to provide specific SEO best practices to adopt during the title generation.\n",
"3. Rephrase the system_prompt to ensure the model provides a single Title (not a list of suggestions). \n",
"4. Add the logic that would allow each model to assess the recommendations from the different models and \n",
" select the best among these. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1af8260b-5ba1-4eeb-acd0-02de537b1bf4",
"metadata": {},
"outputs": [],
"source": [
"S"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}