You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

444 lines
16 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "it1JLoxrSqO1",
"metadata": {
"id": "it1JLoxrSqO1"
},
"outputs": [],
"source": [
"!pip install openai python-docx python-dotenv gradio openpyxl"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "950a084a-7f92-4669-af62-f07cb121da56",
"metadata": {
"id": "950a084a-7f92-4669-af62-f07cb121da56"
},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"from dotenv import load_dotenv\n",
"#from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI\n",
"from docx import Document"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d0548135-ef16-4102-a55a-cea888a51c29",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import re\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab9f734f-ed6f-44f6-accb-594f9ca4843d",
"metadata": {
"id": "ab9f734f-ed6f-44f6-accb-594f9ca4843d"
},
"outputs": [],
"source": [
"class ReqDoc:\n",
" def __init__(self, file_path):\n",
" self.file_path = file_path\n",
"\n",
" def extract(self):\n",
" \"\"\"\n",
" Reads the content of a .docx file and returns the paragraphs as a list of strings.\n",
" \"\"\"\n",
" try:\n",
" # Check if the file exists\n",
" if not os.path.exists(self.file_path):\n",
" raise FileNotFoundError(f\"The file {self.file_path} was not found.\")\n",
"\n",
" # Attempt to open and read the document\n",
" doc = Document(self.file_path)\n",
" text = \"\\n\".join([paragraph.text for paragraph in doc.paragraphs])\n",
" return text\n",
"\n",
" except FileNotFoundError as fnf_error:\n",
" print(fnf_error)\n",
" return None\n",
" except Exception as e:\n",
" print(f\"An error occurred: {e}\")\n",
" return None\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "008f485a-5718-48f6-b408-06eb6d59d7f9",
"metadata": {
"id": "008f485a-5718-48f6-b408-06eb6d59d7f9"
},
"outputs": [],
"source": [
"# Initialize and constants\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if api_key and api_key.startswith('sk-proj') and len(api_key)>10:\n",
" print(\"API key looks good!\")\n",
"else:\n",
" print(\"There might be a problem with your API key. Please check!\")\n",
" \n",
"MODEL = 'gpt-4o-mini'\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b6110ff3-74bc-430a-8051-7d86a216f0fb",
"metadata": {
"id": "b6110ff3-74bc-430a-8051-7d86a216f0fb"
},
"outputs": [],
"source": [
"#Set up system prompt for extracting just the requirements from the document\n",
"\n",
"req_doc_system_prompt = \"You are provided with a complete requirements specifications document. \\\n",
"You are able to decide which content from that document are related to actual requirements, identify each requirement as \\\n",
"functional or non-functional and list them all.\\n\"\n",
"req_doc_system_prompt += \"If the document is empty or do not contain requirements or if you cannot extract them, please respond as such.\\\n",
"Do not make up your own requirements. \\n\"\n",
"req_doc_system_prompt += \"You should respond in JSON as in this example:\"\n",
"req_doc_system_prompt += \"\"\"\n",
"{\n",
" \"requirements\": [\n",
" {\"RequirementNo\": \"FR-01\", \"Requirement Description\": \"description of this functional requirement goes here\"},\n",
" {\"RequirementNo\": \"FR-02\": \"Requirement Description\": \"description of this functional requirement goes here\"},\n",
" {\"RequirementNo\": \"NFR-01\": \"Requirement Description\": \"description of this non-functional requirement goes here\"},\n",
" {\"RequirementNo\": \"NFR-02\": \"Requirement Description\": \"description of this non-functional requirement goes here\"}\n",
" ]\n",
"}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "20460e45-c1b7-4dc4-ab07-932235c19895",
"metadata": {
"id": "20460e45-c1b7-4dc4-ab07-932235c19895"
},
"outputs": [],
"source": [
"#Set up user prompt, sending in the requirements doc as input and calling the ReqDoc.extract function. Key to note here is the explicit instructions to\n",
"#respond in JSON format.\n",
"\n",
"def req_doc_user_prompt(doc):\n",
" user_prompt = \"Here is the contents from a requirement document.\\n\"\n",
" user_prompt += f\"{doc.extract()} \\n\"\n",
" user_prompt += \"Please scan through the document and extract only the actual requirements. For example, ignore sections or \\\n",
"paragraphs such as Approvers, table of contents and similar sections which are not really requirements.\\\n",
"You must respond in a JSON format\"\n",
" user_prompt += \"If the content is empty, respond that there are no valid requirements you could extract and ask for a proper document.\\n\"\n",
" user_prompt = user_prompt[:25_000] # Truncate if more than 25,000 characters\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a9f0f84-69a0-4971-a545-5bb40c2f9891",
"metadata": {
"id": "3a9f0f84-69a0-4971-a545-5bb40c2f9891"
},
"outputs": [],
"source": [
"#Function to call chatgpt-4o-mini model with the user and system prompts set above and returning the json formatted result obtained from chatgpt\n",
"def get_requirements(doc):\n",
" reqdoc = ReqDoc(doc)\n",
" response = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": req_doc_system_prompt},\n",
" {\"role\": \"user\", \"content\": req_doc_user_prompt(reqdoc)}\n",
" ],\n",
" response_format={\"type\": \"json_object\"}\n",
" )\n",
" result = response.choices[0].message.content\n",
" return json.loads(result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9bb04ef-78d3-4e0f-9ed1-59a961a0663e",
"metadata": {
"id": "f9bb04ef-78d3-4e0f-9ed1-59a961a0663e"
},
"outputs": [],
"source": [
"#Uncomment and run this if you want to see the extracted requriements in json format.\n",
"#get_requirements(\"reqdoc.docx\")"
]
},
{
"cell_type": "markdown",
"id": "1fe8618c-1dfe-4030-bad8-405731294c93",
"metadata": {
"id": "1fe8618c-1dfe-4030-bad8-405731294c93"
},
"source": [
"### Next, we will make another call to gpt-4o-mini"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db2c1eb3-7740-43a4-9c0b-37b7e70c739b",
"metadata": {
"id": "db2c1eb3-7740-43a4-9c0b-37b7e70c739b"
},
"outputs": [],
"source": [
"#Set up system prompt to ask for test cases in table format\n",
"system_prompt = \"You are an assitant that receives a list of functional and non functional requirements in JSON format. You are the expert in generating unit test cases for each requirement. \\\n",
"You will create as many different test cases as needed for each requirement and produce a result in a table. Order the table by requirement No. Provide clear details on test case pass criteria. \\\n",
"The table will contain the following columns. \\\n",
"1.S No\\\n",
"2.Requirement No\\\n",
"3.Requirement Description\\\n",
"4.Test Case ID\\\n",
"5.Test case summary\\\n",
"6.Test case description\\\n",
"7.Success criteria \\n\"\n",
"system_prompt += \"If you are provided with an empty list, ask for a proper requirement doc\\n\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4cd2bdf-e1bd-43ff-85fa-760ba39ed8c5",
"metadata": {
"id": "c4cd2bdf-e1bd-43ff-85fa-760ba39ed8c5"
},
"outputs": [],
"source": [
"# Set up user prompt passing in the req doc file. This in turn will call the get_requirements function, which will make a call to chatgpt.\n",
"\n",
"def get_testcase_user_prompt(reqdoc):\n",
" user_prompt = \"You are looking at the following list of requirements. \\n\"\n",
" user_prompt += f\"{get_requirements(reqdoc)}\\n\"\n",
" user_prompt += \"Prepare unit test cases for each of these requirements in a table and send that table as response. \\n\"\n",
" user_prompt += user_prompt[:25000]\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5b2a2b46-9d9c-416c-b189-3007b4d26d76",
"metadata": {},
"outputs": [],
"source": [
"#This is the 2nd call to chatgpt to get test cases. display(Markdown) will take care of producing a neatly formatted table output.\n",
"def create_testcase_doc_gradio(response, is_response_ready, is_cleared, file_input):\n",
" if is_cleared or file_input == None: # Prevent OpenAI call if \"Clear\" was clicked\n",
" return \"\", False\n",
" stream = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": get_testcase_user_prompt(file_input)}\n",
" ],\n",
" stream=True\n",
" )\n",
" #Modified for Gradio\n",
" result = \"\"\n",
" for chunk in stream:\n",
" result += chunk.choices[0].delta.content or \"\"\n",
" #print(result)\n",
" yield result, False"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2bb96a11-063e-4b20-9880-71fa9ea4d3f7",
"metadata": {},
"outputs": [],
"source": [
"# Define this variable and then pass js=force_dark_mode when creating the Interface\n",
"force_dark_mode = \"\"\"\n",
"function refresh() {\n",
" const url = new URL(window.location);\n",
" if (url.searchParams.get('__theme') !== 'dark') {\n",
" url.searchParams.set('__theme', 'dark');\n",
" window.location.href = url.href;\n",
" }\n",
"}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c81c766-9613-4614-b88d-410654672b89",
"metadata": {},
"outputs": [],
"source": [
"def show_or_hide_save_button(response, is_response_ready, is_cleared):\n",
" if is_cleared or response == None:\n",
" return \"\", False\n",
" table_pattern = r\"(\\|.+\\|[\\r\\n]+)+\"\n",
" table_match = re.search(table_pattern, response)\n",
" if table_match:\n",
" return response, True #(response, is_response_ready)\n",
" else:\n",
" return response, False #(response, is_response_ready)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a5f5d8e7-d29c-4f40-8d57-a9911bb7c47e",
"metadata": {},
"outputs": [],
"source": [
"def extract_table_from_markdown(response):\n",
" # Regular expression to match Markdown tables\n",
" table_pattern = r\"(\\|.+\\|[\\r\\n]+)+\"\n",
" table_match = re.search(table_pattern, response)\n",
"\n",
" if table_match:\n",
" table_data = table_match.group(0)\n",
" # Process the table into a format pandas can read\n",
" rows = table_data.strip().split(\"\\n\")\n",
" data = [row.split(\"|\")[1:-1] for row in rows] # Split columns by '|'\n",
"\n",
" # Convert to DataFrame\n",
" df = pd.DataFrame(data[1:], columns=data[0]) # First row is the header\n",
"\n",
" # Save to Excel\n",
" output_file = \"test_cases.xlsx\"\n",
" df.to_excel(output_file, index=False)\n",
"\n",
" return output_file\n",
" else:\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1380b11-3e28-40de-ab1a-93a5fd73cf81",
"metadata": {},
"outputs": [],
"source": [
"def extract_and_save_button(response, is_cleared):\n",
" if is_cleared:\n",
" return None # Do nothing if the file was cleared\n",
" # This function will be triggered when the user clicks \"Save as Excel\"\n",
" output_file = extract_table_from_markdown(response)\n",
" if output_file:\n",
" return output_file\n",
" else:\n",
" return \"No table found in the provided input.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a532b42-9f81-4c75-8be4-e40d621a6b35",
"metadata": {},
"outputs": [],
"source": [
"# Gradio interface\n",
"with gr.Blocks(js=force_dark_mode) as demo:\n",
" gr.HTML(\"<h2 style='text-align: center; color: white;'>📄 Test case automation</h2>\")\n",
" with gr.Row():\n",
" file_input = gr.File(label=\"Upload your requirements docx file\", file_types=[\".docx\"])\n",
" with gr.Row():\n",
" response = gr.Markdown()\n",
" # Button to save the table as Excel file (optional)\n",
" save_button = gr.Button(\"Download Table as Excel\", visible=False)\n",
" file_output = gr.File(label=\"Download Excel File\", visible=False) \n",
" # State variable to track if response is ready\n",
" is_response_ready = gr.State(False)\n",
" with gr.Row():\n",
" clear_button = gr.Button(\"Clear\")\n",
" # State variable to track if clear button is clicked\n",
" is_cleared = gr.State(False)\n",
"\n",
" # Function to show \"Processing...\" message\n",
" def show_processing(is_cleared, file_input):\n",
" if is_cleared or file_input==None:\n",
" return None, False, is_cleared, file_input # Do nothing if the file was cleared\n",
" #return gr.HTML(\"<h6 style='text-align: left; color: #ffffffff;'>⌛ Processing your file... Please wait!</h6>\"), False, is_cleared, file_input\n",
" return \"⌛ Processing your file... Please wait!\", False, is_cleared, file_input\n",
" \n",
" # Trigger response only if the file was uploaded and not cleared\n",
" file_input.change(\n",
" lambda _: False, # Directly set is_cleared to False\n",
" inputs=[file_input],\n",
" outputs=[is_cleared]\n",
" ).then(\n",
" show_processing, inputs=[is_cleared, file_input], outputs=[response, is_response_ready, is_cleared, file_input]\n",
" ).then(\n",
" create_testcase_doc_gradio, inputs=[response, is_response_ready, is_cleared, file_input], outputs=[response, is_response_ready]\n",
" ).then(\n",
" show_or_hide_save_button, inputs=[response, is_response_ready, is_cleared], outputs=[response, is_response_ready]\n",
" ).then(\n",
" lambda _, ready: (gr.update(visible=ready), gr.update(visible=ready)), inputs=[response, is_response_ready], outputs=[save_button,file_output])\n",
"\n",
" #.then() passes the previous function outputs as inputs to the next function\n",
"\n",
" # Button action to extract and save table as an Excel file\n",
" save_button.click(extract_and_save_button, inputs=[response, is_cleared], outputs=file_output)\n",
" \n",
" # Clear button resets both file and output while setting is_cleared to True\n",
" clear_button.click(lambda: (None, None, None, True), inputs=None, outputs=[file_input, file_output, response, is_cleared]) \n",
"\n",
"# Launch Gradio app\n",
"demo.launch(share=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd5314b2-ee91-49bd-9d40-558775d44382",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}