From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.4 KiB
83 lines
2.4 KiB
from typing import Optional |
|
from transformers import AutoTokenizer |
|
import re |
|
import json |
|
|
|
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B" |
|
|
|
MIN_TOKENS = 150 # Any less than this, and we don't have enough useful content |
|
MAX_TOKENS = 160 # Truncate after this many tokens. Then after adding in prompt text, we will get to around 180 tokens |
|
|
|
MIN_CHARS = 300 |
|
CEILING_CHARS = MAX_TOKENS * 7 |
|
|
|
class Item: |
|
""" |
|
An Item is a cleaned, curated datapoint of a Product with a Price |
|
""" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) |
|
PREFIX = "Result is " |
|
QUESTION = "How would you classify this sensor data - normal or anomalous?" |
|
REMOVALS = ['"event": "car_opened"'] |
|
|
|
result: str |
|
category: str |
|
token_count: int = 0 |
|
details: Optional[str] |
|
prompt: Optional[str] = None |
|
include = False |
|
|
|
def __init__(self, data, result): |
|
self.result = result |
|
self.parse(data) |
|
|
|
def scrub(self, stuff): |
|
""" |
|
Clean up the provided text by removing unnecessary characters and whitespace |
|
""" |
|
return stuff |
|
|
|
def parse(self, data): |
|
""" |
|
Parse this datapoint and if it fits within the allowed Token range, |
|
then set include to True |
|
""" |
|
contents = json.dumps(data['input']) |
|
if contents: |
|
contents += '\n' |
|
self.details = contents |
|
if len(contents) > MIN_CHARS: |
|
contents = contents[:CEILING_CHARS] |
|
text = f"{self.scrub(contents)}" |
|
tokens = self.tokenizer.encode(text, add_special_tokens=False) |
|
if len(tokens) > MIN_TOKENS: |
|
tokens = tokens[:MAX_TOKENS] |
|
text = self.tokenizer.decode(tokens) |
|
self.make_prompt(text) |
|
self.include = True |
|
|
|
def make_prompt(self, text): |
|
""" |
|
Set the prompt instance variable to be a prompt appropriate for training |
|
""" |
|
self.prompt = f"{self.QUESTION}\n\n{text}\n\n" |
|
self.prompt += f"{self.PREFIX}{self.result}" |
|
self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False)) |
|
|
|
def test_prompt(self): |
|
""" |
|
Return a prompt suitable for testing, with the actual price removed |
|
""" |
|
return self.prompt.split(self.PREFIX)[0] + self.PREFIX |
|
|
|
def __repr__(self): |
|
""" |
|
Return a String version of this Item |
|
""" |
|
return f"<${self.result}>" |
|
|
|
|
|
|
|
|
|
|