You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

297 lines
12 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"id": "52dc600c-4c45-4803-81cb-f06347f4b2c3",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"from dotenv import load_dotenv\n",
"from IPython.display import Markdown, display\n",
"from openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4082f16f-d843-41c7-9137-cdfec093b2d4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"API key found and looks good so far\n"
]
}
],
"source": [
"load_dotenv()\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if not api_key:\n",
" print('No API key was found')\n",
"elif not api_key.startswith(\"sk-proj-\"):\n",
" print(\"API key is found but is not in the proper format\")\n",
"else:\n",
" print(\"API key found and looks good so far\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "16c295ce-c57d-429e-8c03-f6610a8ddd42",
"metadata": {},
"outputs": [],
"source": [
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "9a548a52-0f7e-4fdf-ad68-0138b2445935",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"\"\"You are a research summarizer. That summarizes the content of the research paper in no more than 1000 words. The research summary that you provide should include the following:\n",
"1) Title and Authors - Identify the study and contributors.\n",
"2) Objective/Problem - State the research goal or question.\n",
"3) Background - Briefly explain the context and significance.\n",
"4) Methods - Summarize the approach or methodology.\n",
"5) Key Findings - Highlight the main results or insights.\n",
"6) Conclusion - Provide the implications or contributions of the study.\n",
"7) Future Directions - Suggest areas for further research or exploration.\n",
"8) Limitations - Highlight constraints or challenges in the study.\n",
"9) Potential Applications - Discuss how the findings can be applied in real-world scenarios.\n",
"Keep all points concise, clear, and focused and generate output in markdown.\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "66b4411f-172e-46be-b6cd-a9e5b857fb28",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: ipywidgets in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (8.1.5)\n",
"Requirement already satisfied: pdfplumber in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (0.11.4)\n",
"Requirement already satisfied: comm>=0.1.3 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipywidgets) (0.2.2)\n",
"Requirement already satisfied: ipython>=6.1.0 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipywidgets) (8.30.0)\n",
"Requirement already satisfied: traitlets>=4.3.1 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipywidgets) (5.14.3)\n",
"Requirement already satisfied: widgetsnbextension~=4.0.12 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipywidgets) (4.0.13)\n",
"Requirement already satisfied: jupyterlab_widgets~=3.0.12 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipywidgets) (3.0.13)\n",
"Requirement already satisfied: pdfminer.six==20231228 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from pdfplumber) (20231228)\n",
"Requirement already satisfied: Pillow>=9.1 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from pdfplumber) (11.0.0)\n",
"Requirement already satisfied: pypdfium2>=4.18.0 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from pdfplumber) (4.30.0)\n",
"Requirement already satisfied: charset-normalizer>=2.0.0 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from pdfminer.six==20231228->pdfplumber) (3.4.0)\n",
"Requirement already satisfied: cryptography>=36.0.0 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from pdfminer.six==20231228->pdfplumber) (44.0.0)\n",
"Requirement already satisfied: colorama in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.4.6)\n",
"Requirement already satisfied: decorator in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (5.1.1)\n",
"Requirement already satisfied: jedi>=0.16 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.19.2)\n",
"Requirement already satisfied: matplotlib-inline in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.1.7)\n",
"Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (3.0.48)\n",
"Requirement already satisfied: pygments>=2.4.0 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (2.18.0)\n",
"Requirement already satisfied: stack_data in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n",
"Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (4.12.2)\n",
"Requirement already satisfied: cffi>=1.12 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from cryptography>=36.0.0->pdfminer.six==20231228->pdfplumber) (1.17.1)\n",
"Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.4)\n",
"Requirement already satisfied: wcwidth in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.13)\n",
"Requirement already satisfied: executing>=1.2.0 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from stack_data->ipython>=6.1.0->ipywidgets) (2.1.0)\n",
"Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from stack_data->ipython>=6.1.0->ipywidgets) (3.0.0)\n",
"Requirement already satisfied: pure_eval in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from stack_data->ipython>=6.1.0->ipywidgets) (0.2.3)\n",
"Requirement already satisfied: pycparser in c:\\users\\legion\\anaconda3\\envs\\research_summary\\lib\\site-packages (from cffi>=1.12->cryptography>=36.0.0->pdfminer.six==20231228->pdfplumber) (2.22)\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install ipywidgets pdfplumber"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d8cd8556-ad86-4949-9f15-09de2b8c712b",
"metadata": {},
"outputs": [],
"source": [
"import pdfplumber\n",
"from ipywidgets import widgets\n",
"from io import BytesIO"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0eba3cee-d85c-4d75-9b27-70c8cd7587b1",
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import display, Markdown"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "53e270e1-c2e6-4bcc-9ada-90c059cd5a51",
"metadata": {},
"outputs": [],
"source": [
"def messages_for(user_prompt):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2f1807ec-c10b-4d26-9bee-89bd7a4bbb95",
"metadata": {},
"outputs": [],
"source": [
"def summarize(user_prompt):\n",
" # Generate messages using the user_prompt\n",
" messages = messages_for(user_prompt)\n",
" try:\n",
" response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\", # Correct model name\n",
" messages=messages,\n",
" max_tokens = 1000 # Pass the generated messages\n",
" )\n",
" # Return the content from the API response correctly\n",
" return response.choices[0].message.content\n",
" except Exception as e:\n",
" # Instead of printing, return an error message that can be displayed\n",
" return f\"Error in OpenAI API call: {e}\""
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0dee8345-4eec-4a9c-ac4e-ad70e13cea44",
"metadata": {},
"outputs": [],
"source": [
"upload_widget = widgets.FileUpload(\n",
" accept='.pdf', \n",
" multiple=False,\n",
" description='Upload PDF',\n",
" layout=widgets.Layout(width='300px',height = '100px', border='2px dashed #cccccc', padding='10px')\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1ff9c7b9-1a3a-4128-a33f-0e5bb2a93d33",
"metadata": {},
"outputs": [],
"source": [
"def extract_text_and_generate_summary(change):\n",
" print(\"extracting text\")\n",
" if upload_widget.value:\n",
" # Extract the first uploaded file\n",
" uploaded_file = list(upload_widget.value)[0]\n",
" pdf_file = uploaded_file['content']\n",
"\n",
" # Extract text from the PDF\n",
" try:\n",
" with pdfplumber.open(BytesIO(pdf_file)) as pdf:\n",
" extracted_text = \"\\n\".join(page.extract_text() for page in pdf.pages)\n",
"\n",
" # Generate the user prompt\n",
" user_prompt = (\n",
" f\"You are looking at the text from a research paper. Summarize it in no more than 1000 words. \"\n",
" f\"The output should be in markdown.\\n\\n{extracted_text}\"\n",
" )\n",
"\n",
" # Get the summarized response\n",
" response = summarize(user_prompt)\n",
" \n",
" if response:\n",
" # Use IPython's display method to show markdown below the cell\n",
" display(Markdown(response))\n",
" \n",
" except Exception as e:\n",
" # If there's an error, display it using Markdown\n",
" display(Markdown(f\"**Error:** {str(e)}\"))\n",
"\n",
" # Reset the upload widget\n",
" upload_widget.value = ()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "0c16fe3f-704e-4a87-acd9-42c4e6b0d2fa",
"metadata": {},
"outputs": [],
"source": [
"upload_widget.observe(extract_text_and_generate_summary, names='value')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c2c2d2b2-1264-42d9-9271-c4700b4df80a",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7304350377d845e78a9a758235e5eba1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"FileUpload(value=(), accept='.pdf', description='Upload PDF', layout=Layout(border_bottom='2px dashed #cccccc'…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(upload_widget)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "70c76b90-e626-44b3-8d1f-6e995e8a938d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}