You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

411 lines
12 KiB

{
"cells": [
{
"cell_type": "markdown",
"id": "75e2ef28-594f-4c18-9d22-c6b8cd40ead2",
"metadata": {},
"source": [
"# Day 3 - Conversational AI - aka Chatbot!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "70e39cd8-ec79-4e3e-9c26-5659d42d0861",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "231605aa-fccb-447e-89cf-8b187444536a",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv()\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6541d58e-2297-4de1-b1f7-77da1b98b8bb",
"metadata": {},
"outputs": [],
"source": [
"# Initialize\n",
"\n",
"openai = OpenAI()\n",
"MODEL = 'gpt-4o-mini'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e16839b5-c03b-4d9d-add6-87a0f6f37575",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are a helpful assistant\""
]
},
{
"cell_type": "markdown",
"id": "98e97227-f162-4d1a-a0b2-345ff248cbe7",
"metadata": {},
"source": [
"## Reminder of the structure of prompt messages to OpenAI:\n",
"\n",
"```\n",
"[\n",
" {\"role\": \"system\", \"content\": \"system message here\"},\n",
" {\"role\": \"user\", \"content\": \"first user prompt here\"},\n",
" {\"role\": \"assistant\", \"content\": \"the assistant's response\"},\n",
" {\"role\": \"user\", \"content\": \"the new user prompt\"},\n",
"]\n",
"```\n",
"\n",
"We will write a function `chat(message, history)` where:\n",
"**message** is the prompt to use\n",
"**history** is a list of pairs of user message with assistant's reply\n",
"\n",
"```\n",
"[\n",
" [\"user said this\", \"assistant replied\"],\n",
" [\"then user said this\", \"and assistant replied again],\n",
" ...\n",
"]\n",
"```\n",
"We will convert this history into the prompt style for OpenAI, then call OpenAI. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1eacc8a4-4b48-4358-9e06-ce0020041bc1",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}]\n",
" for user_message, assistant_message in history:\n",
" messages.append({\"role\": \"user\", \"content\": user_message})\n",
" messages.append({\"role\": \"assistant\", \"content\": assistant_message})\n",
" messages.append({\"role\": \"user\", \"content\": message})\n",
"\n",
" print(\"History is:\")\n",
" print(history)\n",
" print(\"And messages is:\")\n",
" print(messages)\n",
"\n",
" stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n",
"\n",
" response = \"\"\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" yield response"
]
},
{
"cell_type": "markdown",
"id": "1334422a-808f-4147-9c4c-57d63d9780d0",
"metadata": {},
"source": [
"## And then enter Gradio's magic!"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0866ca56-100a-44ab-8bd0-1568feaf6bf2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7870\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7870/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"History is:\n",
"[]\n",
"And messages is:\n",
"[{'role': 'system', 'content': 'You are a helpful assistant'}, {'role': 'user', 'content': 'Hello there'}]\n",
"History is:\n",
"[['Hello there', 'Hello! How can I assist you today?']]\n",
"And messages is:\n",
"[{'role': 'system', 'content': 'You are a helpful assistant'}, {'role': 'user', 'content': 'Hello there'}, {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}, {'role': 'user', 'content': 'I want to buy a tie'}]\n",
"History is:\n",
"[['Hello there', 'Hello! How can I assist you today?'], ['I want to buy a tie', 'Great! What kind of tie are you looking for? Do you have a specific color, pattern, or material in mind? Additionally, do you need it for a special occasion or just for general use?']]\n",
"And messages is:\n",
"[{'role': 'system', 'content': 'You are a helpful assistant'}, {'role': 'user', 'content': 'Hello there'}, {'role': 'assistant', 'content': 'Hello! How can I assist you today?'}, {'role': 'user', 'content': 'I want to buy a tie'}, {'role': 'assistant', 'content': 'Great! What kind of tie are you looking for? Do you have a specific color, pattern, or material in mind? Additionally, do you need it for a special occasion or just for general use?'}, {'role': 'user', 'content': 'A red one'}]\n"
]
}
],
"source": [
"gr.ChatInterface(fn=chat).launch()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "1f91b414-8bab-472d-b9c9-3fa51259bdfe",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are a helpful assistant in a clothes store. You should try to gently encourage \\\n",
"the customer to try items that are on sale. Hats are 60% off, and most other items are 50% off. \\\n",
"For example, if the customer says 'I'm looking to buy a hat', \\\n",
"you could reply something like, 'Wonderful - we have lots of hats - including several that are part of our sales evemt.'\\\n",
"Encourage the customer to buy hats if they are unsure what to get.\""
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "4e5be3ec-c26c-42bc-ac16-c39d369883f6",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}]\n",
" for user_message, assistant_message in history:\n",
" messages.append({\"role\": \"user\", \"content\": user_message})\n",
" messages.append({\"role\": \"assistant\", \"content\": assistant_message})\n",
" messages.append({\"role\": \"user\", \"content\": message})\n",
"\n",
" stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n",
"\n",
" response = \"\"\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" yield response"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "413e9e4e-7836-43ac-a0c3-e1ab5ed6b136",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7875\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7875/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gr.ChatInterface(fn=chat).launch()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "d75f0ffa-55c8-4152-b451-945021676837",
"metadata": {},
"outputs": [],
"source": [
"system_message += \"\\nIf the customer asks for shoes, you should respond that shoes are not on sale today, \\\n",
"but remind the customer to look at hats!\""
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "c602a8dd-2df7-4eb7-b539-4e01865a6351",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7876\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7876/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gr.ChatInterface(fn=chat).launch()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "0a987a66-1061-46d6-a83a-a30859dc88bf",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}]\n",
" for user_message, assistant_message in history:\n",
" messages.append({\"role\": \"user\", \"content\": user_message})\n",
" messages.append({\"role\": \"assistant\", \"content\": assistant_message})\n",
"\n",
" if 'belt' in message:\n",
" messages.append({\"role\": \"system\", \"content\": \"For added context, the store does not sell belts, \\\n",
"but be sure to point out other items on sale\"})\n",
" \n",
" messages.append({\"role\": \"user\", \"content\": message})\n",
"\n",
" stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n",
"\n",
" response = \"\"\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" yield response"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "20570de2-eaad-42cc-a92c-c779d71b48b6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7877\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7877/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gr.ChatInterface(fn=chat).launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "887fd6c1-2db0-4dc4-bc53-49399af8e035",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}