From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
5.1 KiB
193 lines
5.1 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "markdown", |
|
"id": "1faf8b29-2ba6-40c7-89ee-71f71e234f11", |
|
"metadata": {}, |
|
"source": [ |
|
"## Extra requirements\n", |
|
"```bash\n", |
|
"pip install -q -U google-genai\n", |
|
"```\n", |
|
"\n", |
|
"## Required environment variable\n", |
|
"GEMINI_API_KEY\n", |
|
"\n", |
|
"### How to get GEMINI API KEY\n", |
|
"\n", |
|
"Use the link: [gemini api key](https://aistudio.google.com/app/apikey) to get yours." |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 1, |
|
"id": "be06ce76-20ee-4066-9582-a4ed745f278f", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"import os\n", |
|
"import requests\n", |
|
"from bs4 import BeautifulSoup\n", |
|
"from dotenv import load_dotenv\n", |
|
"from google import genai\n", |
|
"from google.genai import types" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "f3a93b10-f528-4e68-bb95-942596cad52e", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"load_dotenv()\n", |
|
"api_key = os.getenv(\"GEMINI_API_KEY\")\n", |
|
"\n", |
|
"if not api_key or len(api_key) < 39:\n", |
|
" print(\"No correct api key was found\")\n", |
|
"else:\n", |
|
" print(\"Api key found. Good to go!\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 3, |
|
"id": "37e7b93f-faf7-415d-8d8c-35e81c6388d3", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"client = genai.Client(api_key=api_key)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 4, |
|
"id": "95a6ece8-8402-4cad-96b9-36a6ea444c54", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"class Website:\n", |
|
" url: str\n", |
|
" title: str\n", |
|
" text: str\n", |
|
"\n", |
|
" def __init__(self, url):\n", |
|
" self.url = url\n", |
|
" response = requests.get(url)\n", |
|
" soup = BeautifulSoup(response.content, \"html.parser\")\n", |
|
" self.title = soup.title.string if soup.title else \"No title was found\"\n", |
|
"\n", |
|
" for irr in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", |
|
" irr.decompose()\n", |
|
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n", |
|
" " |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "24bbd1dd-dca4-4bbc-ae91-4bad227a4278", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"ed = Website(\"https://edwarddonner.com\")\n", |
|
"print(ed.title)\n", |
|
"print(ed.text)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 6, |
|
"id": "233b8904-7a4a-4265-8b0d-20934ae4b29c", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n", |
|
"and provides a short summary, ignoring text that navigation related. Respond \\\n", |
|
"in markdown.\"\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 13, |
|
"id": "5c996c03-84ab-4378-8a55-026d94404d35", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"messages = [{\"role\": \"user\", \"content\": system_prompt}]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 14, |
|
"id": "abf9464e-dc8d-4099-aeb6-495498326673", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def user_prompt_for(website):\n", |
|
" user_prompt = f\"You are looking at a website titled {website.title}\"\n", |
|
" user_prompt += \"\\nThe contents of this website is as follows; \\\n", |
|
"please provide a short summary of this website in markdown. \\\n", |
|
"If it includes news or announcements, then summarize these too.\\n\\n\"\n", |
|
" user_prompt += website.text\n", |
|
" return user_prompt" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 15, |
|
"id": "32ab2d29-02d1-43c5-b920-f2621f292b23", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def summarize(url, model=\"gemini\"):\n", |
|
" website = Website(url)\n", |
|
" if model == \"ollama\":\n", |
|
" import ollama\n", |
|
" Model=\"llama3.2\"\n", |
|
" messages[0][\"content\"] += f\" Website: {url}\"\n", |
|
" response = ollama.chat(model=Model, messages=messages)\n", |
|
" return response[\"message\"][\"content\"]\n", |
|
" else:\n", |
|
" response = client.models.generate_content(\n", |
|
" model=\"gemini-2.0-flash\",\n", |
|
" config=types.GenerateContentConfig(\n", |
|
" system_instruction=system_prompt),\n", |
|
" contents=user_prompt_for(website)\n", |
|
" )\n", |
|
" return response.text" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "a2a0e518-7198-489d-a0ce-2eec617f939f", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"summarize(\"https://edwarddonner.com\", \"gemini\")" |
|
] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3 (ipykernel)", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.12.0" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|