From the uDemy course on LLM engineering.
https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
7.0 KiB
230 lines
7.0 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "markdown", |
|
"id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9", |
|
"metadata": {}, |
|
"source": [ |
|
"# Welcome to your first assignment!\n", |
|
"\n", |
|
"Instructions are below. Please give this a try, and look in the solutions folder if you get stuck (or feel free to ask me!)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "ada885d9-4d42-4d9b-97f0-74fbbbfe93a9", |
|
"metadata": {}, |
|
"source": [ |
|
"<table style=\"margin: 0; text-align: left;\">\n", |
|
" <tr>\n", |
|
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n", |
|
" <img src=\"../resources.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n", |
|
" </td>\n", |
|
" <td>\n", |
|
" <h2 style=\"color:#f71;\">Just before we get to the assignment --</h2>\n", |
|
" <span style=\"color:#f71;\">I thought I'd take a second to point you at this page of useful resources for the course. This includes links to all the slides.<br/>\n", |
|
" <a href=\"https://edwarddonner.com/2024/11/13/llm-engineering-resources/\">https://edwarddonner.com/2024/11/13/llm-engineering-resources/</a><br/>\n", |
|
" Please keep this bookmarked, and I'll continue to add more useful links there over time.\n", |
|
" </span>\n", |
|
" </td>\n", |
|
" </tr>\n", |
|
"</table>" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "6e9fa1fc-eac5-4d1d-9be4-541b3f2b3458", |
|
"metadata": {}, |
|
"source": [ |
|
"# HOMEWORK EXERCISE ASSIGNMENT\n", |
|
"\n", |
|
"Upgrade the day 1 project to summarize a webpage to use an Open Source model running locally via Ollama rather than OpenAI\n", |
|
"\n", |
|
"You'll be able to use this technique for all subsequent projects if you'd prefer not to use paid APIs.\n", |
|
"\n", |
|
"**Benefits:**\n", |
|
"1. No API charges - open-source\n", |
|
"2. Data doesn't leave your box\n", |
|
"\n", |
|
"**Disadvantages:**\n", |
|
"1. Significantly less power than Frontier Model\n", |
|
"\n", |
|
"## Recap on installation of Ollama\n", |
|
"\n", |
|
"Simply visit [ollama.com](https://ollama.com) and install!\n", |
|
"\n", |
|
"Once complete, the ollama server should already be running locally. \n", |
|
"If you visit: \n", |
|
"[http://localhost:11434/](http://localhost:11434/)\n", |
|
"\n", |
|
"You should see the message `Ollama is running`. \n", |
|
"\n", |
|
"If not, bring up a new Terminal (Mac) or Powershell (Windows) and enter `ollama serve` \n", |
|
"And in another Terminal (Mac) or Powershell (Windows), enter `ollama pull llama3.2` \n", |
|
"Then try [http://localhost:11434/](http://localhost:11434/) again.\n", |
|
"\n", |
|
"If Ollama is slow on your machine, try using `llama3.2:1b` as an alternative. Run `ollama pull llama3.2:1b` from a Terminal or Powershell, and change the code below from `MODEL = \"llama3.2\"` to `MODEL = \"llama3.2:1b\"`" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "4e2a9393-7767-488e-a8bf-27c12dca35bd", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# imports\n", |
|
"\n", |
|
"import requests\n", |
|
"from bs4 import BeautifulSoup\n", |
|
"from IPython.display import Markdown, display" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "29ddd15d-a3c5-4f4e-a678-873f56162724", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Constants\n", |
|
"\n", |
|
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n", |
|
"HEADERS = {\"Content-Type\": \"application/json\"}\n", |
|
"MODEL = \"llama3.2\"" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "dac0a679-599c-441f-9bf2-ddc73d35b940", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Create a messages list using the same format that we used for OpenAI\n", |
|
"\n", |
|
"messages = [\n", |
|
" {\"role\": \"user\", \"content\": \"Describe some of the business applications of Generative AI\"}\n", |
|
"]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "7bb9c624-14f0-4945-a719-8ddb64f66f47", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"payload = {\n", |
|
" \"model\": MODEL,\n", |
|
" \"messages\": messages,\n", |
|
" \"stream\": False\n", |
|
" }" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "42b9f644-522d-4e05-a691-56e7658c0ea9", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n", |
|
"print(response.json()['message']['content'])" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "6a021f13-d6a1-4b96-8e18-4eae49d876fe", |
|
"metadata": {}, |
|
"source": [ |
|
"# Introducing the ollama package\n", |
|
"\n", |
|
"And now we'll do the same thing, but using the elegant ollama python package instead of a direct HTTP call.\n", |
|
"\n", |
|
"Under the hood, it's making the same call as above to the ollama server running at localhost:11434" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "7745b9c4-57dc-4867-9180-61fa5db55eb8", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"import ollama\n", |
|
"\n", |
|
"response = ollama.chat(model=MODEL, messages=messages)\n", |
|
"print(response['message']['content'])" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "a4704e10-f5fb-4c15-a935-f046c06fb13d", |
|
"metadata": {}, |
|
"source": [ |
|
"## Alternative approach - using OpenAI python library to connect to Ollama" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "23057e00-b6fc-4678-93a9-6b31cb704bff", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# There's actually an alternative approach that some people might prefer\n", |
|
"# You can use the OpenAI client python library to call Ollama:\n", |
|
"\n", |
|
"from openai import OpenAI\n", |
|
"ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", |
|
"\n", |
|
"response = ollama_via_openai.chat.completions.create(\n", |
|
" model=MODEL,\n", |
|
" messages=messages\n", |
|
")\n", |
|
"\n", |
|
"print(response.choices[0].message.content)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "markdown", |
|
"id": "1622d9bb-5c68-4d4e-9ca4-b492c751f898", |
|
"metadata": {}, |
|
"source": [ |
|
"# NOW the exercise for you\n", |
|
"\n", |
|
"Take the code from day1 and incorporate it here, to build a website summarizer that uses Llama 3.2 running locally instead of OpenAI; use either of the above approaches." |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "402d5686-4e76-4110-b65a-b3906c35c0a4", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3 (ipykernel)", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.11.11" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
}
|
|
|