{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "e063b35e-5598-4084-b255-89956bfedaac",
   "metadata": {},
   "source": [
    "### Models an interaction between LLama 3.2 and Claude 3.5 Haiku"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4f534359-cdb4-4441-aa66-d6700fa4d6a5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "import anthropic\n",
    "import ollama"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3bdff240-9118-4061-9369-585c4d4ce0a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "load_dotenv(override=True)\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "   \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ff110b3f-3986-4fd8-a0b1-fd4b51133a8d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Connect to Anthropic\n",
    "\n",
    "claude = anthropic.Anthropic()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6e596c6-6307-49c1-a29f-5c4e88f8d34d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Download the llama3.2:1b model for local execution.\n",
    "!ollama pull llama3.2:1b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "633b6892-6d04-40cb-8b61-196fc754b00c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define models\n",
    "CLAUDE_MODEL = \"claude-3-5-haiku-latest\"\n",
    "LLAMA_MODEL = \"llama3.2:1b\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a699a809-e3d3-4392-94bd-e2f80a5aec60",
   "metadata": {},
   "outputs": [],
   "source": [
    "claude_system = \"You are a chatbot designed as a study tutor for undergraduate students. \\\n",
    "You explain information and key-technical terms related to the subject in a succint yet \\\n",
    "comprehensive manner. You may use tables, formatting and other visuals to help create \\\n",
    "'cheat-sheets' of sorts.\"\n",
    "\n",
    "llama_system = \"You are a chatbot designed to ask questions about different topics related to \\\n",
    "computer vision. You are meant to simulate a student, not teacher. Act as if you have no \\\n",
    "prior knowledge\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bdb049d8-130b-42dd-aaab-29c09e3e2347",
   "metadata": {},
   "outputs": [],
   "source": [
    "llama_messages = [\"Hi\"]\n",
    "claude_messages = [\"Hello\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c158f31c-5e8b-48a4-9980-6b280393800b",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_llama():\n",
    "    messages = [{\"role\": \"system\", \"content\": llama_system}]\n",
    "    for llama_msg, claude_msg in zip(llama_messages, claude_messages):\n",
    "        messages.append({\"role\": \"assistant\", \"content\": llama_msg})\n",
    "        messages.append({\"role\": \"user\", \"content\": claude_msg})\n",
    "    response = ollama.chat(model=LLAMA_MODEL, messages=messages)\n",
    "    return response['message']['content']\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d803c5a2-df54-427a-9b80-8e9dd04ee36d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def call_claude():\n",
    "    messages = []\n",
    "    for llama_msg, claude_msg in zip(llama_messages, claude_messages):\n",
    "        messages.append({\"role\": \"user\", \"content\": llama_msg})\n",
    "        messages.append({\"role\": \"assistant\", \"content\": claude_msg})\n",
    "    messages.append({\"role\": \"user\", \"content\": llama_messages[-1]})\n",
    "    message = claude.messages.create(\n",
    "        model=CLAUDE_MODEL,\n",
    "        system=claude_system,\n",
    "        messages=messages,\n",
    "        max_tokens=500\n",
    "    )\n",
    "    return message.content[0].text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a23794bb-0f36-4f91-aa28-24b876203a36",
   "metadata": {},
   "outputs": [],
   "source": [
    "call_llama()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7f5c3e2f-a1bb-403b-b6b5-944a10d93305",
   "metadata": {},
   "outputs": [],
   "source": [
    "call_claude()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d6eb874-1c8f-47d8-a9f1-2e0fe197ae83",
   "metadata": {},
   "outputs": [],
   "source": [
    "llama_messages = [\"Hi\"]\n",
    "claude_messages = [\"Hello there, what would you like to learn today?\"]\n",
    "\n",
    "print(f'Ollama:\\n{ollama_messages[0]}')\n",
    "print(f'Claude:\\n{claude_messages[0]}')\n",
    "\n",
    "for _ in range(5):\n",
    "    llama_next = call_llama()\n",
    "    print(f'Llama 3.2:\\n{llama_next}')\n",
    "    llama_messages.append(llama_next)\n",
    "                           \n",
    "    claude_next = call_claude()\n",
    "    print(f'Claude 3.5 Haiku:\\n{claude_next}')\n",
    "    claude_messages.append(claude_next)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d1e651ad-85c8-45c7-ba83-f7c689080d6b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}