{
"cells": [
{
"cell_type": "markdown",
"id": "dfe37963-1af6-44fc-a841-8e462443f5e6",
"metadata": {},
"source": [
"## Expert Knowledge Worker\n",
"\n",
"### A question answering agent that is an expert knowledge worker\n",
"### To be used by employees of Insurellm, an Insurance Tech company\n",
"### The agent needs to be accurate and the solution should be low cost.\n",
"\n",
"This project will use RAG (Retrieval Augmented Generation) to ensure our question/answering assistant has high accuracy."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ba2779af-84ef-4227-9e9e-6eaf0df87e77",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "802137aa-8a74-45e0-a487-d1974927d7ca",
"metadata": {},
"outputs": [],
"source": [
"# imports for langchain\n",
"\n",
"from langchain.document_loaders import DirectoryLoader, TextLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.schema import Document\n",
"from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
"from langchain_chroma import Chroma\n",
"import numpy as np\n",
"from sklearn.manifold import TSNE\n",
"import plotly.graph_objects as go\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "58c85082-e417-4708-9efe-81a5d55d1424",
"metadata": {},
"outputs": [],
"source": [
"# price is a factor for our company, so we're going to use a low cost model\n",
"\n",
"MODEL = \"gpt-4o-mini\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ee78efcb-60fe-449e-a944-40bab26261af",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv()\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "730711a9-6ffe-4eee-8f48-d6cfb7314905",
"metadata": {},
"outputs": [],
"source": [
"# Read in documents using LangChain's loaders\n",
"# Take everything in all the sub-folders of our knowledgebase\n",
"\n",
"folders = glob.glob(\"knowledge-base/*\")\n",
"\n",
"documents = []\n",
"for folder in folders:\n",
" doc_type = os.path.basename(folder)\n",
" loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader)\n",
" folder_docs = loader.load()\n",
" for doc in folder_docs:\n",
" doc.metadata[\"doc_type\"] = doc_type\n",
" documents.append(doc)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7310c9c8-03c1-4efc-a104-5e89aec6db1a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Created a chunk of size 1088, which is longer than the specified 1000\n"
]
}
],
"source": [
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"chunks = text_splitter.split_documents(documents)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cd06e02f-6d9b-44cc-a43d-e1faa8acc7bb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"123"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(chunks)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2c54b4b6-06da-463d-bee7-4dd456c2b887",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document types found: employees, products, company, contracts\n"
]
}
],
"source": [
"doc_types = set(chunk.metadata['doc_type'] for chunk in chunks)\n",
"print(f\"Document types found: {', '.join(doc_types)}\")"
]
},
{
"cell_type": "markdown",
"id": "77f7d2a6-ccfa-425b-a1c3-5e55b23bd013",
"metadata": {},
"source": [
"## A sidenote on Embeddings, and \"Auto-Encoding LLMs\"\n",
"\n",
"We will be mapping each chunk of text into a Vector that represents the meaning of the text, known as an embedding.\n",
"\n",
"OpenAI offers a model to do this, which we will use by calling their API with some LangChain code.\n",
"\n",
"This model is an example of an \"Auto-Encoding LLM\" which generates an output given a complete input.\n",
"It's different to all the other LLMs we've discussed today, which are known as \"Auto-Regressive LLMs\", and generate future tokens based only on past context.\n",
"\n",
"Another example of an Auto-Encoding LLMs is BERT from Google. In addition to embedding, Auto-encoding LLMs are often used for classification.\n",
"\n",
"More details in the resources."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "78998399-ac17-4e28-b15f-0b5f51e6ee23",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vectorstore created with 123 documents\n"
]
}
],
"source": [
"# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
"# Chroma is a popular open source Vector Database based on SQLLite\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"# Delete if already exists\n",
"\n",
"if os.path.exists(db_name):\n",
" Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n",
"\n",
"# Create vectorstore\n",
"\n",
"vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
"print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "057868f6-51a6-4087-94d1-380145821550",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The vectors have 1,536 dimensions\n"
]
}
],
"source": [
"# Get one vector and find how many dimensions it has\n",
"\n",
"collection = vectorstore._collection\n",
"sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n",
"dimensions = len(sample_embedding)\n",
"print(f\"The vectors have {dimensions:,} dimensions\")"
]
},
{
"cell_type": "markdown",
"id": "b0d45462-a818-441c-b010-b85b32bcf618",
"metadata": {},
"source": [
"## Visualizing the Vector Store\n",
"\n",
"Let's take a minute to look at the documents and their embedding vectors to see what's going on."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b98adf5e-d464-4bd2-9bdf-bc5b6770263b",
"metadata": {},
"outputs": [],
"source": [
"# Prework\n",
"\n",
"result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n",
"vectors = np.array(result['embeddings'])\n",
"documents = result['documents']\n",
"doc_types = [metadata['doc_type'] for metadata in result['metadatas']]\n",
"colors = [['blue', 'green', 'red', 'orange'][['products', 'employees', 'contracts', 'company'].index(t)] for t in doc_types]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "427149d5-e5d8-4abd-bb6f-7ef0333cca21",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hoverinfo": "text",
"marker": {
"color": [
"red",
"red",
"red",
"red",
"green",
"red",
"green",
"blue",
"green",
"red",
"green",
"green",
"red",
"red",
"green",
"red",
"green",
"blue",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"blue",
"red",
"red",
"orange",
"green",
"blue",
"red",
"green",
"red",
"green",
"green",
"red",
"blue",
"blue",
"green",
"blue",
"red",
"red",
"green",
"red",
"red",
"red",
"green",
"red",
"green",
"red",
"green",
"blue",
"red",
"green",
"green",
"red",
"blue",
"green",
"red",
"green",
"red",
"green",
"red",
"green",
"blue",
"green",
"red",
"blue",
"green",
"blue",
"green",
"red",
"green",
"green",
"blue",
"red",
"green",
"green",
"blue",
"green",
"red",
"red",
"orange",
"red",
"green",
"red",
"red",
"red",
"green",
"red",
"green",
"green",
"red",
"green",
"blue",
"green",
"red",
"green",
"blue",
"red",
"green",
"green",
"green",
"blue",
"green",
"red",
"blue",
"blue",
"red",
"blue",
"green",
"orange",
"red",
"blue",
"green",
"red",
"green",
"red",
"red",
"green",
"green",
"green"
],
"opacity": 0.8,
"size": 5
},
"mode": "markers",
"text": [
"Type: contracts
Text: # Contract with Velocity Auto Solutions for Carllm\n\n**Contract Date:** October 1, 2023 \n**Contract ...",
"Type: contracts
Text: ---\n\n## Renewal\n\n1. **Automatic Renewal**: This agreement will automatically renew for an additional...",
"Type: contracts
Text: 3. **Regular Updates:** Insurellm will offer ongoing updates and enhancements to the Homellm platfor...",
"Type: contracts
Text: ## Renewal\n1. **Renewal Terms**: At the end of the initial term, this Contract shall automatically r...",
"Type: employees
Text: # HR Record\n\n# Maxine Thompson\n\n## Summary\n- **Date of Birth:** January 15, 1991 \n- **Job Title:** ...",
"Type: contracts
Text: # Contract with GreenField Holdings for Markellm\n\n**Effective Date:** November 15, 2023 \n**Contract...",
"Type: employees
Text: ## Annual Performance History\n- **2019:** Exceeds Expectations - Continuously delivered high-quality...",
"Type: products
Text: - **Professional Tier**: $2,500/month\n - For medium-sized companies.\n - All Basic Tier features pl...",
"Type: employees
Text: - **2021**: \n - Performance Rating: Meets Expectations \n - Key Achievements: Contributed to the ...",
"Type: contracts
Text: **Belvedere Insurance** \nSignature: ______________________ \nName: [Authorized Signatory] \nTitle: ...",
"Type: employees
Text: ## Compensation History\n- **2020:** Base Salary - $55,000 \n The entry-level salary matched industr...",
"Type: employees
Text: ## Annual Performance History\n- **2017**: *Meets Expectations* \n Maxine showed potential in her ro...",
"Type: contracts
Text: ## Support\nInsurellm provides Stellar Insurance Co. with the following support services:\n\n- **24/7 T...",
"Type: contracts
Text: ---\n\n## Features\n\n- **AI-Powered Risk Assessment**: Customer will have access to enhanced risk evalu...",
"Type: employees
Text: - **2022**: \n - **Base Salary**: $65,000 (Promotion to Senior SDR) \n - **Bonus**: $13,000 (20% o...",
"Type: contracts
Text: ## Renewal\n1. **Automatic Renewal**: This contract will automatically renew for sequential one-year ...",
"Type: employees
Text: - **2017-2019:** Marketing Intern \n - Assisted with market research and campaign development for s...",
"Type: products
Text: ### 5. Multi-Channel Integration\nHomellm seamlessly integrates into existing insurance platforms, pr...",
"Type: contracts
Text: 4. **Confidentiality:** Both parties agree to maintain the confidentiality of proprietary informatio...",
"Type: contracts
Text: 2. **Seamless Integrations**: The architecture of Rellm allows for easy integration with existing sy...",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This contract will automatically renew for successive 12-month...",
"Type: contracts
Text: # Contract with Belvedere Insurance for Markellm\n\n## Terms\nThis Contract (\"Agreement\") is made and e...",
"Type: contracts
Text: 1. **Technical Support**: Provider shall offer dedicated technical support to the Client via phone, ...",
"Type: contracts
Text: ______________________________ \n[Name], [Title] \nDate: ______________________\n\n**For Greenstone In...",
"Type: contracts
Text: 4. **Payment Terms**: \n - The Customer shall pay an amount of $10,000 per month for the Standard T...",
"Type: products
Text: - **User-Friendly Interface**: Designed with user experience in mind, Markellm features an intuitive...",
"Type: contracts
Text: - **Customer Portal**: A dedicated portal will be provided, allowing the Customer's clients to manag...",
"Type: contracts
Text: # Contract with Stellar Insurance Co. for Rellm\n\n## Terms\nThis contract is made between **Insurellm*...",
"Type: company
Text: # Careers at Insurellm\n\nInsurellm is hiring! We are looking for talented software engineers, data sc...",
"Type: employees
Text: # HR Record\n\n# Jordan K. Bishop\n\n## Summary\n- **Date of Birth:** March 15, 1990\n- **Job Title:** Fro...",
"Type: products
Text: ### Q3 2025\n- Initiate a comprehensive marketing campaign targeting both consumers and insurers to i...",
"Type: contracts
Text: ## Renewal\n1. **Renewal Terms**: This Agreement may be renewed for additional one-year terms upon mu...",
"Type: employees
Text: - **2010 - 2013**: Business Analyst at Edge Analytics \n Prior to joining Innovate, Avery worked as...",
"Type: contracts
Text: 4. **Usage Rights**: EverGuard Insurance is granted a non-exclusive, non-transferable license to acc...",
"Type: employees
Text: # HR Record\n\n# Oliver Spencer\n\n## Summary\n- **Date of Birth**: May 14, 1990 \n- **Job Title**: Backe...",
"Type: employees
Text: ## Other HR Notes\n- Jordan K. Bishop has been an integral part of club initiatives, including the In...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Matching**: Belvedere Insurance will benefit from Markellm's AI-powered ...",
"Type: products
Text: ### For Insurance Companies:\n- **Basic Listing Fee**: $199/month for a featured listing on the platf...",
"Type: products
Text: # Product Summary\n\n# Markellm\n\n## Summary\n\nMarkellm is an innovative two-sided marketplace designed ...",
"Type: employees
Text: ## Annual Performance History\n- **2021:** First year at Insurellm; achieved 90% of monthly targets. ...",
"Type: products
Text: All tiers include a comprehensive training program and ongoing updates to ensure optimal performance...",
"Type: contracts
Text: # Contract with Roadway Insurance Inc. for Carllm\n\n---\n\n## Terms\n\n1. **Agreement Effective Date**: T...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Risk Assessment**: Utilized for tailored underwriting decisions specific...",
"Type: employees
Text: ## Annual Performance History\n- **2018**: **3/5** - Adaptable team player but still learning to take...",
"Type: contracts
Text: # Contract with Greenstone Insurance for Homellm\n\n---\n\n## Terms\n\n1. **Parties**: This Contract (\"Agr...",
"Type: contracts
Text: ## Support\n\n1. **Customer Support**: Velocity Auto Solutions will have access to Insurellm’s custome...",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This contract shall automatically renew for additional one-yea...",
"Type: employees
Text: ## Other HR Notes\n- Jordan has shown an interest in continuing education, actively participating in ...",
"Type: contracts
Text: 1. **Customer Support**: Insurellm will provide EverGuard Insurance with 24/7 customer support, incl...",
"Type: employees
Text: - **Engagement in Company Culture:** Regularly participates in team-building events and contributes ...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Matching**: Access to advanced algorithms that connect GreenField Holdin...",
"Type: employees
Text: # HR Record\n\n# Emily Carter\n\n## Summary\n- **Date of Birth:** August 12, 1990 \n- **Job Title:** Acco...",
"Type: products
Text: - **Mobile Integration**: Carllm is designed to work seamlessly with mobile applications, providing ...",
"Type: contracts
Text: # Contract with Pinnacle Insurance Co. for Homellm\n\n## Terms\nThis contract (\"Contract\") is entered i...",
"Type: employees
Text: - **January 2017 - May 2018**: Marketing Intern \n - Supported the Marketing team by collaborating ...",
"Type: employees
Text: ## Compensation History\n- **2015**: $150,000 base salary + Significant equity stake \n- **2016**: $1...",
"Type: contracts
Text: # Contract with GreenValley Insurance for Homellm\n\n**Contract Date:** October 6, 2023 \n**Contract N...",
"Type: products
Text: - **Customer Support**: Our dedicated support team is always available to assist both consumers and ...",
"Type: employees
Text: # HR Record\n\n# Samuel Trenton\n\n## Summary\n- **Date of Birth:** April 12, 1989 \n- **Job Title:** Sen...",
"Type: contracts
Text: # Contract with BrightWay Solutions for Markellm\n\n**Contract Date:** October 5, 2023 \n**Contract ID...",
"Type: employees
Text: ## Annual Performance History \n- **2022** - Rated as \"Exceeds Expectations.\" Alex Thomson achieved ...",
"Type: contracts
Text: 3. **Service Level Agreement (SLA):** \n Insurellm commits to a 99.9% uptime for the platform with...",
"Type: employees
Text: # HR Record\n\n# Jordan Blake\n\n## Summary\n- **Date of Birth:** March 15, 1993 \n- **Job Title:** Sales...",
"Type: contracts
Text: ## Features\nStellar Insurance Co. will receive access to the following features of the Rellm product...",
"Type: employees
Text: ## Compensation History\n| Year | Base Salary | Bonus | Total Compensation |\n|------|--------...",
"Type: products
Text: # Product Summary\n\n# Homellm\n\n## Summary\nHomellm is an innovative home insurance product developed b...",
"Type: employees
Text: ## Compensation History\n- **2023:** Base Salary: $115,000 + Bonus: $15,000 \n *Annual bonus based o...",
"Type: contracts
Text: 3. **Training and Onboarding:** \n Insurellm agrees to provide one free training session on how to...",
"Type: products
Text: With Homellm, Insurellm is committed to transforming the landscape of home insurance, ensuring both ...",
"Type: employees
Text: ## Compensation History\n- **March 2018**: Initial salary of $80,000.\n- **July 2019**: Salary increas...",
"Type: products
Text: ### Q2 2025: Customer Experience Improvements\n- Launch of a new **mobile app** for end-users.\n- Intr...",
"Type: employees
Text: ## Insurellm Career Progression\n- **January 2017 - October 2018**: **Junior Data Engineer** \n * Ma...",
"Type: contracts
Text: **Insurellm, Inc.** \n_____________________________ \nAuthorized Signature \nDate: ________________...",
"Type: employees
Text: ## Other HR Notes\n- Alex Thomson is an active member of the Diversity and Inclusion committee at Ins...",
"Type: employees
Text: # HR Record\n\n# Alex Harper\n\n## Summary\n- **Date of Birth**: March 15, 1993 \n- **Job Title**: Sales ...",
"Type: products
Text: ### Regulatory Compliance Tools\nRellm includes built-in compliance tracking features to help organiz...",
"Type: contracts
Text: ---\n\n## Support\n\n1. **Technical Support**: Roadway Insurance Inc. will receive priority technical su...",
"Type: employees
Text: ## Annual Performance History \n- **2021**: \n - **Performance Rating**: 4.5/5 \n - **Key Achievem...",
"Type: employees
Text: ## Annual Performance History\n- **2023:** Rating: 4.5/5 \n *Samuel exceeded expectations, successfu...",
"Type: products
Text: ### 2. Dynamic Pricing Model\nWith Homellm's innovative dynamic pricing model, insurance providers ca...",
"Type: employees
Text: Alex Chen continues to be a vital asset at Insurellm, contributing significantly to innovative backe...",
"Type: contracts
Text: ## Support\n\n1. **Customer Support**: Insurellm will provide 24/7 customer support to TechDrive Insur...",
"Type: contracts
Text: ## Support\n1. **Customer Support Access**: The Client will have access to dedicated support through ...",
"Type: company
Text: # Overview of Insurellm\n\nInsurellm is an innovative insurance tech firm with 200 employees across th...",
"Type: contracts
Text: ---\n\n**Signatures** \n**For Insurellm**: __________________________ \n**Name**: John Smith \n**Title...",
"Type: employees
Text: # HR Record\n\n# Alex Thomson\n\n## Summary\n- **Date of Birth:** March 15, 1995 \n- **Job Title:** Sales...",
"Type: contracts
Text: ## Support\n1. **Technical Support**: Insurellm shall provide 24/7 technical support via an email and...",
"Type: contracts
Text: **Signatures:** \n_________________________ _________________________ \n**...",
"Type: contracts
Text: ---\n\n## Features\n\n1. **Access to Core Features**: Roadway Insurance Inc. will have access to all Pro...",
"Type: employees
Text: ## Other HR Notes\n- **Professional Development**: Avery has actively participated in leadership trai...",
"Type: contracts
Text: # Contract with Apex Reinsurance for Rellm: AI-Powered Enterprise Reinsurance Solution\n\n## Terms\n\n1....",
"Type: employees
Text: ## Compensation History\n- **2017**: $70,000 (Junior Data Engineer) \n- **2018**: $75,000 (Junior Dat...",
"Type: employees
Text: ## Compensation History\n- **June 2018:** Starting Salary - $85,000\n- **June 2019:** Salary Increase ...",
"Type: contracts
Text: 2. **Real-Time Quote Availability:** \n Consumers sourced via BrightWay Solutions will receive rea...",
"Type: employees
Text: - **2023:** Base Salary - $70,000 \n Recognized for substantial improvement in employee relations m...",
"Type: products
Text: - **Basic Tier:** Starting at $5,000/month for small insurers with basic integration features.\n- **S...",
"Type: employees
Text: Emily Carter exemplifies the kind of talent that drives Insurellm's success and is an invaluable ass...",
"Type: contracts
Text: ### Termination\nEither party may terminate this agreement with a **30-day written notice**. In the e...",
"Type: employees
Text: ## Annual Performance History\n- **2020:** \n - Completed onboarding successfully. \n - Met expecta...",
"Type: products
Text: # Product Summary\n\n# Carllm\n\n## Summary\n\nCarllm is an innovative auto insurance product developed by...",
"Type: contracts
Text: ## Support\n1. **Technical Support**: Technical support will be available from 9 AM to 7 PM EST, Mond...",
"Type: employees
Text: ## Annual Performance History\n- **2020:** Exceeds Expectations \n Samantha Greene demonstrated exce...",
"Type: employees
Text: - **2018**: **Exceeds Expectations** \n Under Avery’s pivoted vision, Insurellm launched two new su...",
"Type: employees
Text: # HR Record\n\n# Alex Chen\n\n## Summary\n- **Date of Birth:** March 15, 1990 \n- **Job Title:** Backend ...",
"Type: products
Text: # Product Summary\n\n# Rellm: AI-Powered Enterprise Reinsurance Solution\n\n## Summary\n\nRellm is an inno...",
"Type: employees
Text: # HR Record\n\n# Emily Tran\n\n## Summary\n- **Date of Birth:** March 18, 1991 \n- **Job Title:** Digital...",
"Type: contracts
Text: 1. **Core Functionality**: Rellm provides EverGuard Insurance with advanced AI-driven analytics, sea...",
"Type: products
Text: Experience the future of reinsurance with Rellm, where innovation meets reliability. Let Insurellm h...",
"Type: products
Text: ### Seamless Integrations\nRellm's architecture is designed for effortless integration with existing ...",
"Type: contracts
Text: 1. **AI-Powered Risk Assessment:** Access to advanced AI algorithms for real-time risk evaluations.\n...",
"Type: products
Text: - **Instant Quoting**: With Carllm, insurance companies can offer near-instant quotes to customers, ...",
"Type: employees
Text: - **Professional Development Goals**: \n - Emily Tran aims to become a Marketing Manager within the...",
"Type: company
Text: # About Insurellm\n\nInsurellm was founded by Avery Lancaster in 2015 as an insurance tech startup des...",
"Type: contracts
Text: # Contract with EverGuard Insurance for Rellm: AI-Powered Enterprise Reinsurance Solution\n\n**Contrac...",
"Type: products
Text: Join the growing number of organizations leveraging Rellm to enhance their reinsurance processes whi...",
"Type: employees
Text: ## Compensation History\n- **2020:** Base Salary: $80,000 \n- **2021:** Base Salary Increase to $90,0...",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This Agreement will automatically renew for successive one-yea...",
"Type: employees
Text: # Samantha Greene\n\n## Summary\n- **Date of Birth:** October 14, 1990\n- **Job Title:** HR Generalist\n-...",
"Type: contracts
Text: **TechDrive Insurance Representative:** \nName: Sarah Johnson \nTitle: Operations Director \nDate: _...",
"Type: contracts
Text: # Contract with TechDrive Insurance for Carllm\n\n**Contract Date:** October 1, 2024 \n**Contract Dura...",
"Type: employees
Text: - **2022**: **Satisfactory** \n Avery focused on rebuilding team dynamics and addressing employee c...",
"Type: employees
Text: # Avery Lancaster\n\n## Summary\n- **Date of Birth**: March 15, 1985 \n- **Job Title**: Co-Founder & Ch...",
"Type: employees
Text: - **2021**: *Exceeds Expectations* \n Maxine spearheaded the transition to a new data warehousing s..."
],
"type": "scatter",
"x": [
0.43167356,
-5.1234183,
-3.8156946,
-6.4653807,
-0.030288791,
-0.13264614,
-4.853642,
2.4241476,
-1.0938561,
-1.9875698,
0.4701836,
-3.915466,
-2.2718375,
4.6962953,
-2.1331687,
-6.263586,
-2.1918442,
3.7675622,
-4.311317,
0.021313427,
0.4841172,
0.7278107,
-2.2553403,
-3.177827,
-6.019814,
5.049043,
-3.348981,
-3.2635648,
0.9925611,
3.0038323,
4.8210864,
-6.650596,
-3.2422273,
-1.1619288,
2.5963047,
3.4040663,
4.0369115,
4.775066,
5.0422244,
-1.4522164,
4.9621067,
1.0414302,
5.6473737,
-4.7055974,
-4.3530736,
-0.9355055,
0.56719255,
2.9651668,
-1.634809,
-5.0085278,
5.8018236,
0.60856795,
2.626366,
-4.6175976,
-1.0460731,
-1.2620845,
-4.7114277,
4.747791,
1.609727,
1.4134965,
-3.2120988,
2.2243226,
1.7654071,
-1.2068875,
-0.5836822,
3.319866,
-2.3037622,
1.0785023,
2.549426,
-0.8525981,
3.6429894,
-2.2918837,
-2.8607185,
1.4900204,
1.369059,
-0.34544125,
-0.25447264,
-2.4221156,
-3.2648456,
4.256562,
0.58495,
-0.7382082,
4.7768874,
1.262629,
-2.304541,
1.4249547,
-2.7000635,
-3.1336193,
1.3036097,
-1.7076325,
-2.4414098,
-2.644431,
-1.9372873,
3.0662298,
0.69916993,
5.2905273,
0.9320503,
-3.7929978,
-4.704522,
2.7865555,
-2.2376595,
-3.6312172,
-3.9247942,
2.2810223,
1.0544676,
-0.1134638,
-0.7003378,
1.0458558,
0.2810359,
4.770793,
3.0032637,
-0.7416881,
1.1367319,
-2.1801138,
1.8143885,
-1.1367282,
-0.8352313,
1.3275725,
-0.7685729,
0.24063335,
-4.0629535,
-1.5775235,
-3.3231738
],
"y": [
4.8496914,
2.0223413,
4.3859906,
2.0415883,
-9.338864,
8.046823,
-10.68004,
3.2165313,
-12.844255,
8.5948515,
-14.4492235,
-10.177748,
0.5028867,
0.41958544,
-13.057644,
2.1865573,
-11.181283,
-0.7146714,
4.389903,
0.5562148,
3.3732889,
8.366835,
3.9178724,
9.055572,
4.3374825,
4.591412,
5.5227876,
0.97379977,
-3.6662207,
-10.488402,
3.4579735,
1.9330834,
-7.921942,
1.6627588,
-11.330974,
-9.496502,
4.9208217,
6.172152,
4.1813955,
-13.797817,
-1.3035818,
5.009151,
0.7641684,
-11.390334,
5.5175567,
4.579824,
3.6689951,
-9.039671,
1.2832919,
-13.480145,
2.0480568,
-10.923585,
3.0747793,
6.0370297,
-10.944551,
-15.65633,
4.931484,
5.3591805,
-11.525242,
7.517691,
-13.040646,
6.5211306,
-10.158628,
-0.0626288,
-13.646727,
-0.36803585,
-14.609454,
7.3245683,
-1.5886018,
-14.743939,
2.7281606,
-9.542048,
8.291774,
-8.640919,
-9.883367,
-0.54202044,
3.9696598,
-13.671552,
-13.936356,
0.033051062,
-5.974633,
5.1424465,
7.0192947,
-2.5368152,
7.1180205,
-9.429977,
5.154772,
8.668625,
2.582334,
-6.8742313,
2.6056876,
-15.231102,
-15.671198,
6.383797,
-13.815837,
-1.0207967,
-6.288422,
1.1939007,
-11.235213,
1.84408,
4.9883666,
-11.311993,
-8.03527,
-10.999148,
-0.18244359,
-11.045079,
0.7336851,
-1.3136225,
0.25575757,
1.0793458,
2.1392057,
-10.972436,
-2.8442292,
2.0947568,
0.5799731,
-14.453548,
2.1591983,
-13.154321,
5.970124,
5.3012104,
-7.943008,
-6.702308,
-9.33508
]
}
],
"layout": {
"height": 600,
"margin": {
"b": 10,
"l": 10,
"r": 20,
"t": 40
},
"scene": {
"xaxis": {
"title": {
"text": "x"
}
},
"yaxis": {
"title": {
"text": "y"
}
}
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "2D Chroma Vector Store Visualization"
},
"width": 800,
"xaxis": {
"autorange": true,
"range": [
-7.407577714585061,
6.558805314585061
],
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
-17.225563604944767,
10.609937604944765
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABEoAAAJYCAYAAAB1iANKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQd4FFXb/u9tKSSBkNAsgAiKCnbEgt1XsVAsoIiIolSpYgFEBFHsCggqWEBF7FIU22vDgmIDee1dURSUhEB6suX7zuAuWUyZ3Z1y5sw91/W//p9k5pzn+d0nvOxvZ854IpFIBDxIgARIgARIgARIgARIgARIgARIgARIgATgoSjhKiABEiABEiABEiABEiABEiABEiABEiCB7QQoSrgSSIAESIAESIAESIAESIAESIAESIAESOAfAhQlXAokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQFHCNUACJEACJEACJEACJEACJEACJEACJEAC8QR4RwlXBAmQAAmQAAmQAAmQAAmQAAmQAAmQAAn8Q8A1oqS8ogp/F2xBdXUQrVrkI6tRhqWLoDoYwp+bNiM9LQ35eY3h9/ni5n/hv+9jW0kZLjj7P5bWxcnsIVBcUobNhVuR1SgTTXNzEPDHrwd7qjJv1mAohIqKKqQF/EhLC5g3kY6RV7z2AbZsLcaFfU7RzhYv/iotq4DP50NmRpqOEYw7pbKqWvs7KSMj7V9/Jxg3C0ciARIgARIgARIgARIgARJIhIDyomTN59/hhpmP4ruffo/jcvKxXXDNmAFo0Sw39udX3zAPL76xOvbfjTIzkJOdiQP2bY8zTz0aRx++f8IfZv779ieYu2AJfvz1j7j5jz/qIJx12jE4sdsh8Ho9OG/Y9fhp/Z/4+OV5ieTnyHMrKqtwaPehEHzfXXY3MtJr/3B64eibIPJ7/em7sEuLPEN6DYXCmPXAs9iz7S4af6sPIcTmLlyK3//8O27qvffcHaedeDiGDuip/fn6DZvwzAtv47gjD0SXAztaXWa98yWT3yeffYOJN92PIRf0wLghfWztZ8CoGVj7xff4cuXDWh0ii+7nX4XOHdvhqflTDa+tviyn3LYAS156B/NuvQLHHL6/4XNzQBIgARIgARIgARIgARIggcQJKC9KHl/6BmbMXgQhRg7q1AElpeV44bX3tQ9HB3feC4vmXAOPx6ORGz/tXry68iP0OPlIZDfKxJatJfh5/R8xyXLSMYdg5rRR8Pm8ukiLD4big7E4Ljj7ZO3D+d8FRVj31Y/44JMvtT8XYkQIAzeJEtH3hBnzIb7ZnzNjLE7sdvC/eP65qQD/Oe8KLaPH5k7WxVvPSeLb+4NOHgwhqu65aZyeSww7590P/4fhE+7SxhNr6dADOqKgcCu++WE9Vn38hfbn0Q/vH639BoMuvwVXjzwfF/XtblgNRg2UaH6r13yFR55+Facc18UWQVWz751FibizRwiLPVq3woSR5xuFKDZOfVkueva/eP+TLzFq0Fno1HEPw+fmgCRAAiRAAiRAAiRAAiRAAokTUF6U/O+rH5GenoaO7VvH6IjHHo7ocZn2368/dSd2aZmv/d9RUfLy4tvQZrcWsfO//v5XTLhxvnZXyMC+3XV9mIp+KG7ZvCkeuvNqtGuzS1w6b3+wDldOvw9vL5nlSlEi+r9s0kyccdIRuG3K8H+t3EefeRW33vMErrt8IM7rfWLiK7uOKxIRJeKRjKhES7WAqqpqnHrB1dj09xa8vPhWtNmtZdyQYo2Jfh+eNVH7c9lFiV35pZqDuH5nUWLEmPWNYWWWRq5Zs7lwfBIgARIgARIgARIgARKQlYDyoqQu8CMmzsQ7q9dpdyuIuxbqEyXiZxv/LkTfIVNRWFSMhTMnouvB+9Sb6ekDJuDX3zdh3q3jcczhB9R6rtiTJCcrU/swHr2j5Ml51+GehcsgRIs4Tj2hK66+rB9yshtp/y0ee7h86j04ZP+9cG6vE7DkxXfw+Tc/aT+//spB2jnicZV7H1mOdV/+iIz0gHbnwvhhfeM+nC99+V2Ix4JGDjoTS196F2+9vxbFJeXaN/6Txw7Q9kuZ89ASjVFFZbX2WMC14wYiLzcn1svt9z6JT9Z9iz82bda47L5Lc5x8XBcMOu805DdtXC8fIQ669R6NsvIKfPzyfDTKTI87v8+QqRDy4O0ls9Esr4n2s5XvfwYhUD7/5mftv484ZF9cOaIf2u4eLx3E3RmPL30dQpIFAn502nsP9DylG47u2hnjrpur3b0h7uKJPtKSmZGOu6ZtF2diL5t7H16GN977VMtv373aonf3btodQeIRKb0Z7Nx89A6Z9m13xfOP3FQvG1H3jNmP4Ytvf9aY7tl2V+18kbl4dEUcf/5ViJnzn8YHn36psT/soH20n3U7rHNs7C+//UV7zKdf7xPRercWWPHa+/j+p99xZJfO6H/WSQkx3bngRPMTWd790BKc2+t4nHDU9juIxBhPLH8TL72+WnvsTDzmJnj3OuUodD++q3aOuNNDHDdcfUlcCQ8+/iI+/d93uGvayNi+InrX486iRMizMVPm4MD92mP4wF7aPGKdiP1Dajv69jxeuwtK5HTfo8/jp1//0O5QE2tq/33a4cK+p8R6bChLccfZS29+iGvGXIDWu+6Qs4n8Do++5Cy88NoHePO9NVodR3bphMljBvxLzta76PhDEiABEiABEiABEiABEiCBGAFXipJwOILjzh6jfcB85fHbYh9Q6rqjJErr+f+uwqSbHsCYS8/BsAu37yVR2yE2ijy692jo+VAcvV6IEvHBOHqI/RLEh0chEs4+/djYB0Xx6NDhZ4yAuFNFfMATPYhDCIx3l83B6+9+irFT5mh/1v34w7QP/kJ2iGPpghsh9sIQx8z7n4H4sBk9xAfUTX8XauPVnFv8uRAGog7xCIh4FCR6HHPmaE2iHNipPRpnZ+HLb3/WPqiJ6xffe22D+7mIvWOeXP6mJimiH4zF2GJPh9MumKDJGbF3gzgWPvky7pj3VKyv9Rv+0kSKON56dlZsr5ma5x17xIEo2laifaAVx4cv3ocLR8+IPUolehNHdlamdieH2HB3wMgbtRwEp44d2mDt599rPYk9amZMHKyd31AGta0J8U3/qf2v1sZ69O5rcOgBe9exeqDJp8m3PKidK3Jt2Xz7/ixHdemE8cPOhej9nMHXaZkIMdI4JwviDg/x3zdNGqKJHXFE72oSfUZZiT/vecpRuOWaobqZ1lVoIvmJR80GX3m7ti9QdMPiqXcsxLMr3tbWcpcDOuKPTQXa3iHiv998Zub2rM+/Svv/X33i9rgyxN1YL7/5IT5YcS8a/yMR9a7HnUWJ+B3pcupQ7XGou28Yo81z8bhbUF5eGTdn9PfzxgmXao8PCdl47a0PaWul7e6tNP7RR6juvflybX+ZhrKcu2Ap7nt0OZ594HpNEokj2d9hUcfW4lLtriUh2F587JYGfwfrXIT8AQmQAAmQAAmQAAmQAAm4mIArRUn0Q5v4YCI+oESPhkTJ9z//jjMHXQvxAfy+Wy6vc9mIPUj6X3ZDnY+V1HZhVJSIb7QH9++hfUtesGWb9uFafAD73xsLtL1Roh/SxRjig93APt21Ow7E40StWuThtH8e71jx6M2xb5Sjj0nUFA9RUSL2bhF3kDTPz9XmOeuSKds3tzy+q/Ytt7ibQ7wRpOdFk7RNV1967NZY+eLD91577h77MCYE1Ngpd+PNVWuxfOEMdGi3W72/WuKOgIFjbor7gCouEAJH1Hfr5GHafjHRzTZFXg/ecRVym2Rr40Y/qEYFTlSwiA+JQnxEH6n6Y+Nm3L1giSYH6nv0RnxoFx/exZ06U8YN1O4gER+iR0y8Cx9/9g0ev3eKdtdBfRnsfHdLTQDiLp97Fi7V/kjcAdL1oH3QsX0b7L/vnnGbCouf1/e4RnTTYfHIknh0SRwbNm7W1qY43np2piZ/au6JMrj/GdrdSS2aNUVVdRChUEiTEA0xrS9AvfmJMXYWJWKtHXbacE2KvLL4ttibcP7aXAQhJEW94khElOhdj3pEyc59i7uvLp86F4cfvC/uv+NKbc0LISHuBqu5IbS4i+fcYdO035/oXUr1ZbmzKBF3sST6Oyz+Hpg0eoC24bF4u9DQK+/Ah2u/jq1XF//vG1snARIgARIgARIgARIggaQIuE6UiA9i5wyeot05IT5Miw+s0aMhUSIeFTj4lCGxuzfqIi42hBVjXXr+6dodAHqOujZzHT/tHry68mOsfG6WJjOiH9JrSo/o+OLbePEhUDwmIiRHzSP64TD6DXxUlCxbeCP2arf9LhNxRN/CUVO0iD8Xdzgse+W9WB3R84UcERve/v6nePxmm/YIzxvvrtE2ShUbptZ3iDfQHH/OWC2LmncG9LroGm0/GHEHiHa3x9OvQDxWIcTAqf88kiHGLSkrx1E9R+KQ/ffWNuVd8ORLuHPe07j5miHodcr2uyp2PuoTJUOvukO7I6Dm4z7ierER6aXjb4vlWV8G9fUrHpsSjzOJfnY+xF1D4jGoVv/cPVLXh2vxQfjAky6t9W4l8cjQPQ8vQ/RuhqgouXL4eRjU77S4KfUyNSI/MUZdokTcMbP4nilxewLVnDMRUSKu07MeExUlP6//Ez0GTtJ+78VdWdFHwaJ1irs4fvxlg7ZRs1jLN85apN1lIs4VRyKixIjf4SeWvaHVIB5LEneV8SABEiABEiABEiABEiABEkiMgKtESdHWEu0OBvEhfOKo/riwzylxtBoSJdE7FsQeAOLOhrqO6Dft0Ucc9ERSlyi5/q5H8PTzb+G1J+/Arq2axURJzW+so+OL/Q7Em3bEfg7ig3fN46a7F2Pxktfw3IPTsU+HNrFHb3YWJbfd8wQeeeZVbR8N8ehQ9IheL+4oid41IR4RuP7Oh2OP/9Scr6632ezM4q75T+OhJ17S7vYQvH74eQN6D5oc9418lEFdHKOPakQlz86117yuPlFyYt/LtTtOxCNMNQ/xVpTjzh4bu/MlKkpqy0BP1uIulc+//gniDiWxv0z0zUjig/jK52Zrdw7V9eFa3DlySr8rY4/P1JzvtXc+0fbWmDz2Qm0PkqgoqW1DXL1MG+pHT35ijNoevYm+OUf8/ID92uPgTh20vqKPoIg/T0SU6F2PiYgSkdV5w6Zpf2cIGSekXPQQguT6Ox/R3pS185GsKDHid/ilNz7EVTfcF7sjq6EM+XMSIAESIAESIAESIAESIIF4Aq4RJeLD7pArb9f2pxg3pE9sU8yaOBoSJeJOiTFT7saoS87CiIG961xL4q6VE/qMi/tWuaGFV5coie4DoUeUPLNiJabd8XBMOtScU9yRIe4ieOLeKdqH0rruKBH7gIh9PnaWDeKNLGIj1agoiX7wFRtYCh4H7LsndmvVXNsEVXybrVeUiMclxMat0ceZoo+n1Lw++qjJ6EvO/te3+aJHUcPpJx2uvUVI7Fsh9rMQj9/UdtQnSsSjIGJD0ej+GDU/EIs7V6J38aQqSnauSwg8sX+HYLFozmRt09a6RIn4wC7uuKm5b010PHE3z6hrZiN6B0l9okQv04bWrZ786hIl4u4Y8biT+H8191ARd7+IHhIRJYmsx0RESfROqqsu64eLzz01Dkd0HHHnVJ8ex2GP3Vshr2lj9LhworZOk7mjxIjf4egdbdFH1xrKkD8nARIgARIgARIgARIgARJwoSgR38Jfcvmt2l4X4pEU8WhKbUd9okTsAXLByBu1b5YfuutqHHHIfnWuJbFx57Fnbd8sdufHe2peJD4oir0OxGGEKIl+WBRCIfr2juh80Ud4ohufpipKouJEbLYqBEL0iO4boleUiOuibwgSd3KcP2K6xu295XOQnhbQho0+UiJes3zEoXVzF/t/CNEi7vYRd/3UdkRFSW2PLp1/2Q3axq9r/vtAbG4xxrc//oazL52i3aUh7tZIRpSIx4zEfhbRN+fsXNu8R5/HnAVLMPWKi3Fuz+NjouSK4efikn6nx06PbjwqHhmLvko4+sMdj1xs3xy3PlGil6mevzAbyk+MUdsdJTXHFnuWiHqFZBP5v//CPWiSk6XdUaL9bKe7fHbezDWR9ahXlET3rBF7gMyePjruVdHRDZvFxsVPzZ8ah0lsKlubKNk5S3HRznuUGPE7TFGiZ9XyHBIgARIgARIgARIgARKom4Dyd5SIb6rF3hPiw1f08Y66cNQlSsTbZ26c+ai2QWL0w3JDiyr6hhzxmMp9t4z/1ytsxeM519z8gPats3g1rhGiJPqIiHgU5eXFt8U+7ItXG5/Ud7y2ceYbT9+lfeBLVZREP6jWlEZC/IhHdxYveV33HSWC4/2PvYDZDz6nfSsvPpz27XE8pl15cQyx2DdEZChe47xw1kQE/NvlkjjEh2jxGmQhRsTrg0deM0sTN/fcdLn2CEv0EBvMile6iqPT8RdredTcmFb8udjfROxzIl6zLGqJHjfd/ZjWU3T9JCNKxKM2QgJMHN0/9jrq6Phi75tLxt+mvfHlyfuu0zZ3/eaH9dqbbWpbb9FXJ9e860ewF6+vFndMRd/kVJ8o0cu0oXWuJz9xzs6iRPw+io1Pa0o2cZ64Y0vcuRV9C4x4+4zYSFfc5SPWrzjEHVvDrr5D6zW6t00i61GPKIneKSPuTHrmgetjb9aJ8hB7kvS6ePurxcUrxqOHeEOUEEc1H72pL8udRYkRv8MUJXpWLc8hARIgARIgARIgARIggboJKC9KxCMN4kOa+MBzdNcddz5Ekey2S7PYN/ZRUSLeJJKd3QhFW4ux4c/Nsdf2ijfE3DF1hK5XbopNJcWH9uirecWbVDrssRv+2rxF259CSBdxfPzyPO3RESNEiRjv7oeew/xFL2iP1/TrfaK258a9jyzT3tBR8zW8qYqSp5a/iekzH9W49jz5KHg8219rKj68iiORO0qie79EM1kwc4L2dpGax+jJs7W36Yh9U4TEyGqUiW9++BWvvPURDt5/L+21ruJOHrHpqmArrj/tpMMh7uR48fXVWPP5d/hy5cPakNE1IR5f2W/vtvhjYwHEt/3iLUPiTiBxjLz4TLTfY1esXvO1tkeMmHfJghu07JMVJf1GTNfGFh+uhQwRbyn58rtf8P7HX2gir+aeNkIAHXf2OE0EiUebxCtwfT6flmlUcog9TUYOOgtZmRnaG4BE3+LnUy4fqM1TnygRP9fDVM9fnnry21mUREWDyOm4ow5Cq+ZN8fX36/HA4hXaPiCPzJ6k3X0jXp0rZIIQDz1OPgq/bfgL4vGU6BEVJYmsx4ZEifid6d7/Ku13Rsi1zvvsGYdhv733wBGH7Auxp43ITfx9sV/HPfD9T79rGx6Lo6YoqS/L2l4PnOrvMEWJnlXLc0iABEiABEiABEiABEigbgKuESV1IRBCQezbIY7ot9LRc4XAEB9mO7TbHWeddrR210L0URk9i0rIkhdee197dEQ89lPz6HZYZ/TteTz+c8yh2h0edYmSGbMX4fGlb+D1p+/SahGv6u16+vC4zU5rjivuLLj/sRWx19CKn4k+xIae4oN49Jj1wLPah9KdX+Mb3Zxz57feRDd5fXnxrWizW0vtNaRTb18Y+2AoxhUsxUaxQizMvWksTjhq+x0ceo7o65HFh/+3npv1L87ijTELn3oZC554WZMH0UPcGSIeM4q+5UZssDl3wRKNWc0cRX7XjBmg/ZH4kC7eDiPeJhTlI4SVOITomXDjvJjwEX8m7nq4ccLg2P4oDWVQW79Croi7ZVa8/kHcfhzR+YUMEZIj+riR+HPxWmeRkbjTRBziA7l48484xMat19z8YBwLsbfHmEvOjr1qNypUpo6/SHvl8c6HXqZG5Lf6069w6RW3xTaaFfuyTJ8pNkLdnkH0EL9jot7Wu7bQ/khwE4+NiV6ixwVn/we//LZR+7PVK+5FTnajhNZjXaJEiNBZ00dhW0kZjuxxWZ1tR98qtebz77XXYQtZEj2EYFv41CvYfZdmsT1K6ssy+rjYkoduQMf2rbVhUv0djoqS26eM0Pbu4UECJEACJEACJEACJEACJJAYAeVFSWI4zDtb7C2x4c+/tcdBWrXIR2ZGmnmT/f/rfMW34uKbfr/fr931UfMxFCMnFo9BiNei5uc1jr3a1sjxdx5L3DUiHk/Yuq1UexRDfEiu7RAfNsUdAZ7/3+OkRfOmtQou8YF4W3EpWjZrikDAHzeMmEP0tdsuzf/12EWq/QlBIcYWwkW8Dji3SXa9QwrGom/xeuiae5wIEScEnBhPCKOakiWRGvUyTWRMvedGcxIsRJ5iX5LaMt/4VyGEBNujdStkpNf9u2P1eqysqoZ43EYcQu409HtdV5a18bLqd1hvVjyPBEiABEiABEiABEiABNxCgKLELUmzTxIgARIgARIgARIgARIgARIgARIggQYJUJQ0iIgnkAAJkAAJkAAJkAAJkAAJkAAJkAAJuIUARYlbkmafJEACJEACJEACJEACJEACJEACJEACDRKgKGkQEU8gARIgARIgARIgARIgARIgARIgARJwCwGKErckzT5JgARIgARIgARIgARIgARIgARIgAQaJEBR0iAinkACJEACJEACJEACJEACJEACJEACJOAWAhQlbkmafZIACZAACZAACZAACZAACZAACZAACTRIgKKkQUQ8gQRIgARIgARIgARIgARIgARIgARIwC0EKErckjT7JAESIAESIAESIAESIAESIAESIAESaJAARUmDiHgCCZAACZAACZAACZAACZAACZAACZCAWwhQlLglafZJAiRAAiRAAiRAAiRAAiRAAiRAAiTQIAGKkgYR8QQSIAESIAESIAESIAESIAESIAESIAG3EKAocUvS7JMESIAESIAESIAESIAESIAESIAESKBBAhQlDSLiCSRAAiRAAiRAAiRAAiRAAiRAAiRAAm4hQFHilqTZJwmQAAmQAAmQAAmQAAmQAAmQAAmQQIMEKEoaRMQTSIAESIAESIAESIAESIAESIAESIAE3EKAosQtSbNPEiABEiABEiABEiABEiABEiABEiCBBglQlDSIiCeQAAmQAAmQAAmQAAmQAAmQAAmQAAm4hQBFiVuSZp8kQAIkQAIkQAIkQAIkQAIkQAIkQAINEpBOlPxRUN5g0TzBHgJNsgKoDoZRVhmypwDOqiSBXfMzwd97JaO1ralG6T6kBXwoKqmyrQZOrBaBtIAXzRqno6o6jM3bKtVqjt3YRsDn9SC/cRr+KuKasi0EBSdu3CiAcCSCkvKggt2xJbsItMrLxF9byhGO2FVBw/OKzxRGHhQlRtJUfCyKEsUDtqk9ihKbwCs8LUWJwuHa1BpFiU3gFZ+WokTxgG1qj6LEJvCKT0tRIkHA/GZZghDqKIGiRN5snFwZRYmT05OzdooSOXNxclUUJU5OT97aKUrkzcbJlVGUODk9eWunKJEgG4oSCUKgKJE3BAUroyhRMFSbW6IosTkABaenKFEwVAlaoiiRIAQFS6AoUTBUCVqiKJEgBIoSCUKgKJE3BAUroyhRMFSbW6IosTkABaenKFEwVAlaoiiRIAQFS6AoUTBUCVqiKJEgBIoSCUKgKJE3BAUroyhRMFSbW6IosTkABaenKFEwVAlaoiiRIAQFS6AoUTBUCVqiKDE4hGAoBK/HC6/X86+Ri0vKIH7etElO3M8oSgwOwcDhuEeJgTA5VIwARQkXg9EEKEqMJsrxKEq4BswgQFFiBlWOSVHCNWAGAYoSA6mWV1ThvGHTMHRAT/Q4+cjYyGXlFZhw43y8uWqt9mcH7Ncec24cg2Z5TbT/pigxMASDh6IoMRgoh9MIUJRwIRhNgKLEaKIcj6KEa8AMAhQlZlDlmBQlXANmEKAoMYjqHfOewsInX9ZGu3XysDhR8uDjL+KZF1Zi0ZzJyMxIw4iJM9GuzS644epLKEoM4m/WMBQlZpF197gUJe7O34zuKUrMoOruMSlK3J2/Wd1TlJhF1t3jUpS4O3+zuqcoMYhs0dYSVFRVof9lN2D80HPjREmfIVPR/fjDMOSCHtpsr678COOn3Ysv3loIj8fDO0oMysCMYShKzKDKMSlKuAaMJkBRYjRRjkdRwjVgBgGKEjOockyKEq4BMwhQlBhMtfv5V2H0JWfHiZLDThuOGydcqskScXz13S/oO3Qa3n/hHjTJyaIoMTgDI4ejKDGSJseKEqAo4VowmgBFidFEOR5FCdeAGQQoSsygyjEpSrgGzCBAUWIw1Z1FSSQSQecTBuHemy/HcUceqM324y8b0OviyXj9qTuxS8t8VAXDBlfB4YwiIP4HXWQYjhg1IschASDN763z9z4UjkCsOx4kkAgBsWS8Hg+C/MsqEWw8tx4CHg8Q8HkRiQDVIf47hYvFGALif938Pg+qQ/yHVTJE+W+E2qlF/90k+PAgAaMIBPxeBINhyLyqxGcKIw9PRHzyNemo646SGRMH45Tjumiz7nxHyeatlSZVw2FTJZCd6UcwFEFFVSjVoXg9CcQINGuSDv7ec0EYSSAjzQe/34uSsmojh+VYLiYg/oEYvatyaynXlYuXgqGti7dCinW1pbjK0HE5mLsJZGX4EY5EUF7Jf6+7eyUY231+43QUFldqXxjIeojPFEYelosSsUfJqSd0xeD+Z2h9cI8SI+M0dyw+emMuX7eOzkdv3Jq8eX3z0Rvz2Lp1ZD5649bkze2bj96Yy9eto/PRG7cmb27ffPTGIL7BUAiRcAQ9Bk7C8IG90OM/RyIQ8GujP7B4BZ5d8bb21ptGmekYPuEuvvXGIO5mD0NRYjZhd45PUeLO3M3smqLETLruHJuixJ25m901RYnZhN05PkWJO3M3u2uKEoMIi7fYiDtFah4rHr1ZEyKlZRW4cvp9eGf1Ou3HnTu2w5wZY9GiWa72338UlBtUBYcxmgBFidFEOZ4gQFHCdWA0AYoSo4lyPIoSrgEzCFCUmEGVY1KUcA2YQYCixAyqdYy5tbgU1dVBNMtrEncGRYmFISQ4FUVJgsB4ui4CFCW6MPGkBAhQlCQAi6fqIkBRogsTT0qQAEVJgsB4ui4CFCW6MPGkBAlQlCQIzIzTKUrMoGrMmBQlxnDkKPEEKEq4IowmQFFiNFGTZXUmAAAgAElEQVSOR1HCNWAGAYoSM6hyTIoSrgEzCFCUmEE1wTEpShIEZuHpFCUWwnbRVBQlLgrbolYpSiwC7aJpKEpcFLaFrVKUWAjbRVNRlLgobAtbpSixEHZdU1GUSBBCHSVQlMibjZMroyhxcnpy1k5RImcuTq6KosTJ6clbO0WJvNk4uTKKEienJ2/tFCUSZENRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCUKhipBSxQlEoSgYAkUJQqGKkFLFCUShEBRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCUKhipBSxQlEoSgYAkUJQqGKkFLFCUShEBRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCUKhipBSxQlEoSgYAkUJQqGKkFLFCUShEBRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCUKhipBSxQlEoSgYAkUJQqGKkFLFCUShEBRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCUKhipBSxQlEoSgYAkUJQqGKkFLFCUShEBRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCUKhipBSxQlEoSgYAkUJQqGKkFLFCUShEBRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCUKhipBSxQlEoSgYAkUJQqGKkFLFCUShEBRIkEIFCXyhqBgZW4TJZ6SYqS/s1JLsqrbMQg3yVUwVXtboiixl7+Ks1OUqJiq/T1RlNifgYoVUJSomKr9PVGU2J8BKEokCIGiRN4QFKzMTaLEs7UIeUMugrdgs5ZkuGkettzzAMItWymYrH0tUZTYx17VmSlKVE3W3r4oSuzlr+rsFCWqJmtvXxQl9vLXZqcokSAEihJ5Q1CwMjeJkoznlyJn9h1xKZZcNgbl55ynYLL2tURRYh97VWemKFE1WXv7oiixl7+qs1OUqJqsvX1RlNjLn6JEAv71ldAkK4DqYBhllSHJK2V5TiJAUUJRYvR6pSgxmijHoyjhGjCDAEWJGVQ5JkUJ14AZBChKzKCa4Ji8oyRBYBaeTlFiIWwXTeUmUeLd/Dfy+58DhP6RjT4fCh96DKHWbVyUuPmtUpSYz9htM1CUuC1xa/qlKLGGs9tmoShxW+LW9EtRYg3nemehKJEghDpKoCiRNxsnV+YmUSJy8m3aiMCnH2uRVR/SBaFWuzg5PilrpyiRMhZHF0VR4uj4pC2eokTaaBxdGEWJo+OTtniKEgmioSiRIASKEnlDULAyt4kSBSOUriWKEukicXxBFCWOj1DKBihKpIzF8UVRlDg+QikboCiRIBaKEglCoCiRNwQFK3O7KPGWlMD75waE2rVHxO9XMGHrW6IosZ656jNSlKiesD39UZTYw131WSlKVE/Ynv4oSuzhHjcrRYkEIVCUyBuCgpW5WZRkPrUY2Q/N1/YsCeflY+stdyHYvoOCKVvbEkWJtbzdMBtFiRtStr5HihLrmbthRooSN6RsfY8UJdYz/9eMFCUShEBRIm8IClbmVlHiKS9Hs97dd2zsCqDq8COx9ab41wcrGLnpLeX88DUyVixHRXEZKk7viepDDzN9Tk6gNgGKErXztas7ihK7yKs9L0WJ2vna1R1FiV3ka8xLUSJBCBQl8oagYGVuFSWBr75A7uhhcYmGWrZC4ePPKZiydS351v+K/OEXwxsMIhQKaxMXzb0f1ft2sq4IzqQcAYoS5SKVoiGKEiliUK4IihLlIpWiIYoSCWKgKJEgBIoSeUNQsDK3ihKEw8gf0BfeTRtjqZb1PR+lw0cpmLJ1LWU8vxRN5twJj8cTEyVl/QagdMgI64rgTMoRoChRLlIpGqIokSIG5YqgKFEuUikaoiiRIAaKEglCoCiRNwQFK3OtKAHg//ZrZLz5Orx//I7gvp1Q3vNMRHIaK5iydS2lv/c2cq+fHCdKSsZeifJeZ1lXBGdSjgBFiXKRStEQRYkUMShXBEWJcpFK0RBFiQQxUJRIEAJFibwhKFiZm0WJgnHa31JFBZqPHQbfzz9pd5SIx5mK7p6HcLPm9tfGChxLQFVR4qmqQuCD9+ArKEDlEUchvOtujs3IiYVTlDgxNflrpiiRPyMnVkhRIkFqFCUShEBRIm8IClZGUaJgqDa3JN56k/73JhQXlSLYpq3N1XB6FQgoKUpCIeSOHILA999qEUUCARTNuhfBffZTITJH9EBR4oiYHFckRYnjInNEwRQlEsREUSJBCBQl8oagYGUUJcaF6i0pQdbddyL9w/e1OylKLxmGqiOOMm4Ch4zE1wM7JCgHlamiKKltQ+mK7qej+OrJDkrG2aVSlDg7P1mrpyiRNRln10VRIkF+FCUShEBRIm8IClZGUWJcqFn3zEKjJc/EBoxkZqLgyaWIZOcYN4kDRqIocUBIDiuRosRhgTmkXIoShwTlsDIpShwWmEPKpSiRICiKEglCoCiRNwQFK6MoMS7U3PGjEFi3Nm7AojvnoPqgQ4ybxAEjUZQ4ICSHlaiiKEEwiLz+58BXsDmWxrbpN6Oy27EOS8e55VKUODc7mSunKJE5HefWRlEiQXYUJRKEQFEibwgKVkZRYlyo2XfficzlS2IDRrxeFCx50XVv0qEoMW5NcaTtBJQUJQA827Yibe2n8BYUoPqAAxHssDcjt5AARYmFsF00FUWJi8K2sFWKEgth1zUVRYkEIVCUyBuCgpVRlBgXqm/jn8iecxcCX/wPoRYtUXFqD5Sfc65xEzhkJIoShwQlQ5mRCPw//Yhwbi7C+c3qrEhVUSJDBG6ugaLEzemb1ztFiXls3TwyRYkE6VOUSBACRYm8IShYGUWJgqHa3BJFic0BOGR671+b0OSaK+H/+Set4vKz+6Jk5Lhaq6cocUioDiuTosRhgTmkXIoShwTlsDIpSiQIjKJEghAoSuQNQcHKKEoUDNXmlihKbA7AIdNnPTgPjZ5YFFftlvkPI9hhr391QFHikFAdViZFicMCc0i5FCUOCcphZVKUSBAYRYkEIVCUyBuCgpVRlCgYqs0tUZTYHIBDpm8y4XKkffJRXLXbJk9D5YknU5Q4JEOnl0lR4vQE5ayfokTOXJxeFUWJBAlSlEgQAkWJvCEoWBlFiYKh2twSRYnNAThk+oyXXkDOnbfEqo2kp6Pw8ecQzm1KUeKQDJ1eJkWJ0xOUs36KEjlzcXpVFCUSJEhRIkEIFCXyhqBgZRQlCoZqc0sUJTYH4JTpKyuR+fIKBNZ8gnDTpqg8/iRUH3xordXz0RunhOqsOilKnJWXU6qlKHFKUs6qk6JEgrwoSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJEwVAlaImiRIIQFCyBokTBUCVoiaJEghAoSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJEwVAlaImiRIIQFCyBokTBUCVoiaJEghAoSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJEwVAlaImiRIIQFCyBokTBUCVoiaJEghAoSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJEwVAlaImiRIIQFCyBokTBUCVoiaJEghAoSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJEwVAlaImiRIIQFCyBokTBUCVoiaJEghAoSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJE/lB9v/6CnNl3wP/9t6jerzNKRo5DqE1bqQunKJE6HscWR1Hi2OikLpyiRIJ4KEokCIGiRN4QFKyMokTBUG1uiaLE5gAUnJ6iRP5Qmw69CP4ff4gVWt35ABTNvk/qwilKpI7HscVRlDg2OqkLpyiRIB6KEglCoCiRNwQFK6MoUTBUm1uiKLE5AAWnpyiRPNRQCM1OPR6ecDhWaCQQwOZXVkpdOEWJ1PE4tjiKEsdGJ3XhFCUSxENRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCWph+opLYVvw28I7bEnImlpqQ+40whNLx0A/y8/x/60eq+OKJq3wPB5jByQosRImhwrSoCihGvBDAIUJWZQTXBMipIEgVl4epOsAKqDYZRVhiyclVOpToCiRPWEre+PosR65qrPSFGSWsIZr7+K7NtvgicYRLhxE2ybMh3Vh3RJbdCdrg588hGyHl0A/88/orrD3ii74CJUd+lq6BxGD0ZRYjRRjicIUJRwHZhBgKLEDKoJjklRkiAwC0+nKLEQtoumoihxUdgWtUpRYhFoF01DUZJa2Pm9u8NbUhIbpHrfTiiae39qgypwNUWJAiFK2AJFiYShKFASRYkEIVKUSBBCHSVQlMibjZMroyhxcnpy1k5RImcuTq6KoiT59LwFm5F/bu+4ASLZ2di8/NXkB1XkSooSRYKUrA2KEskCUaQcihIJgqQokSAEihJ5Q1CwMooSBUNtqKVIBGkffgD/b7+i6tCuCO7ZvqErEvo5RUlCuHiyDgIUJTog1XNK7ohLEfjum9gZFf/pjuJJ16U2qAJXU5QoEKKELVCUSBiKAiVRlEgQIkWJBCFQlMgbgoKVUZQoGGoDLeXcPB1izwJxRDweFF91DSq7n24YCIoSw1ByoH8IUJSkthR8639Fxssr4Fv/C4L77IeKU89AuHmL1AZV4GqKEgVClLAFihIJQ1GgJIoSCUKkKJEgBIoSeUNQsDKKEgVDraclT0kxmvU+Ne6M4L6dsMXA/QooSty1pqzolqLECsrum4OixH2ZW9GxG0SJp6wMaavegbe0FJXHHIdwfjMr0Lp6DooSCeKnKJEgBIoSeUNQsDKKEgVDpShxV6gu6JaixAUh29AiRYkN0F0wpeqiREiSpiMHQ9ypJo5IVha2zLkfobZ7uCBd+1qkKLGPfWxmihIJQqAokTcEBSujKFEw1AZayh0/CoF1a2NnlQ4ejrLzLzQMBO8oMQwlB/qHAEUJl4IZBChKzKDKMVUXJemr3kHj6ybFBV3WbwBKh4xg+CYSoCgxEa7eoSlK9JKy/jy+9cZ65m6YkaLEDSnH9+ipqEBgzSfwb/gN1ft1hnhVKLxew0BQlBiGkgNRlHANmEiAosREuC4emqLExeGb2DpFiYlw9Q5NUaKXlPXnUZRYz9wNM1KUuCFla3ukKLGWtxtm4x0lbkjZ+h4pSqxn7oYZVRclnuJtyBtwLrwlxbE4i+bM17544WEeAYoS89jqHpmiRDcqy0+kKLEcuSsmpChxRcyWNklRYiluV0xGUeKKmC1vkqLEcuSumFB1USJC9BZs1u5MFZu5Vh16GEKt27giWzubpCixk/4/c1OUSBBCHSVQlMibjZMroyhxcnpy1k5RImcuTq6KosTJ6clbO0WJvNk4uTI3iBIn5+PU2ilKJEiOokSCEChK5A1BwcooShQM1eaWKEpsDkDB6SlKFAxVgpYoSiQIQcESKEoUDFWClihKJAiBokSCEChK5A1BwcooShQM1eaWKEpsDkDB6SlKFAxVgpYoSiQIQcESKEoUDFWClihKJAiBokSCEChK5A1BwcooShQM1eaWKEpsDkDB6SlKFAxVgpYoSiQIQcESKEoUDFWClihKJAiBokSCEChK5A1BwcooShQM1eaWKEpsDkDB6SlKFAxVgpZSFSUZr7yIRk8+Bs+2bag86WSUDh2JSCAgQWcswU4CFCV20ld3booSCbKlKJEgBIoSeUNQsDKKEgVDtbklihKbA1BweooSBUOVoKVURInvjw1oOvA8eCKRWCcll41B+TnnSdAZS7CTAEWJnfTVnZuiRIJsKUokCIGiRN4QFKyMokTBUG1uiaLE5gAUnJ6iRMFQJWgpFVGS/uZraDxjWlwXFcefhOIp0yXozJoSxCtixd00oT3aAR6PNZM6YBaKEgeE5MASKUokCI2iRIIQKErkDUHByihKFAzV5pYoSmwOQMHpKUoUDFWCllIRJb7ff0PeRf3iuigdNhJl5/aXoDPzS8i59UZk/PdlbaJg+w7YevtshJvkmj+xA2agKHFASA4skaJEgtAoSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJEwVAlaCkVUSLKz3r4QaSvfEO7q6LqoENQMv5qRLJzJOjM3BICX3+J3FFD4yXRwEtQdtGl5k7skNEpShwSlMPKpCiRIDCKEglCoCiRNwQFK6MoUTBUm1uiKLE5AAWnpyhRMFQJWkpVlEjQgi0lZDy/FDmz74ib222PHdUHnqLElmWp/KQUJRJETFEiQQgUJfKGoGBlFCUKhmpzSxQlNgeg4PQUJQqGKkFLFCXJheAtLEB+v7OAUCg2QPGk61Dxn+7JDajYVW4RJb+t9yCQBrRqtWNDY8WilKodihIJ4qAokSAEihJ5Q1CwMooSBUO1uSWKEpsDUHB6ihIFQ5WgJYqS5ENIW/0+0j54D95t21B98KEoP70n4PcnP6BCV6ouSsrLgGsnpeGrL7Zv4Hv4UWFMmVYNn0+hECVshaJEglAoSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJEwVAlaImiRIIQFCxBdVHy4gs+zJ0VL8WuuS6IY47bcYeRgrHa3hJFie0RABQlEoRAUSJvCLVVFg4jXXyr8ucfqDrsCITa7uGo+ilKHBWXI4qlKHFETI4qkqLEUXE5pliKEsdE5ahCVRcld8/04+UV8beP9B8YxIUXUZSYuVApSsykq3NsihKdoGw4LTcrgMpgGOWV/IvIBvx1Ttn4uolIX/Wu9vOIx4Nt19+Eqm7HylRivbVQlDgmKscUSlFibVSebVvh+2sTgu3aQ9V7nylKrF1TbpmNosQtSVvbp+qiZO0aL665KhAH9Z77q7Bne+5VYuZKoygxk67OsSlKdIKy4TSKEhugNzClb+OfyLugT9xZVV26YuutM+Urto6KKEocE5VjCqUosS6qrIUPIPOxhyGeFA+3bIWi22YhtHtr6wqwaCaKEotAu2waihKXBW5Ru6qLkkgEeO1VHz792IO0dA+6Hh7CMceFLaLr3mkoSiTInqJEghDqKIGiRL5sKErky4QV2U+AosSaDLQ3T/TtFTdZxalnoPiqa6wpwMJZKEoshO2iqShKXBS2ha2qLkosRMmpahCgKJFgOVCUSBACRYm8IexcWSSC3MsGI/DdN7GfFI+9EhW9znJMD7yjxDFROaZQihJrokr7aDWaTLoibrLgvp2wZe791hRg4SwUJRbCdtFUFCUuCtvCVilKLITtoqkoSiQIm6JEghAoSuQNoZbKPGVlSFvzMbwb/0T1/gciuPc+gGf7K9OccFCUOCElZ9VIUWJNXp6qKuT17QVvSXFswtJBQ1A24GJrCrBwFooSC2G7aCqKEheFbWGrFCUWwnbRVBQlEoRNUSJBCBQl8oagYGUUJQqGanNLFCXWBeD/fB0y3nkL3k0bEex8AMp7nIlIo0bWFWDRTBQlFoF22TQUJS4L3KJ2KUosAu2yaShKJAicokSCEChK5A1BwcooShQM1eaWKEpsDkDB6SlKFAxVgpYoSiQIQcESKEoUDFWClihKJAiBokSCEChK5A1BwcooShQM1eaWKEpsDkDB6SlKFAxVgpYoSiQIQcESKEoUDFWClihKJAiBokSCEChK5A1BwcooShQM1eaWKEpsDkDB6SlKFAxVgpYoSiQIQcESKEoUDFWClihKJAiBokSCEChK5A3Bgsq0zWFXvQNvaSkqjzkO4fxmps7qZFHi+/03ZC55Gt7Nm1F59LGoPOU0U1lxcH0EKEr0ceJZ+glQlOhnxTP1E6Ao0c+KZ+onQFGinxXP1E+AokQ/K9POpCgxDW3KA+dmBVAZDKO8MpTyWBxATgJCkjQdORi+9b9qBUaysrBlzv0Itd3DtIKdKko8paXIG9AX3m1bY2yKr56Miu6nm8aKA+sjQFGijxPP0k+AokQ/K56pnwBFiX5WPFM/AYoS/ax4pn4CFCX6WZl2JkWJaWhTHpiiJGWE0g+QvuodNL5uUlydZf0GoHTICNNqd6ooCXy2BrlXjI7jUnH8SSieMt00VhxYHwGKEn2ceJZ+AhQl+lnxTP0EKEr0s+KZ+glQlOhnxTP1E6Ao0c/KtDMpSkxDm/LAFCUpI5R+AIoS/RGJu27yBvWPu6C855koGXeV/kF4pikEKEpMwerqQSlKXB2/ac1TlJiG1tUDqyxKCguA91d5kZnpwVHdQshU72300q5dihIJoqEokSCEOkqgKJE3G6Mq8xRvQ96Ac+EtKY4NWTRnPqr362zUFP8ax6l3lIhGGk++Cumr39d6Cuc0xtY77kaww16mseLA+ghQlOjjxLP0EzBKlPg2/I601asQatYc1d2ORcTv118Ez1SOAEWJcpFK0ZCqouS39R5cPjqA0hKPxrllqwjuvb8KjbKkwK58ERQlEkRMUSJBCBQl8oZgQWXegs0IrPlE28y16tDDEGrdxtRZnSxKBBhv0RZ4CwoQbLcn4PWayoqD6yNAUaKPE8/ST8AIURJY+ylyJ44HgkFt4uqDDkHRnXP0F8EzlSNAUaJcpFI0pKooWfSID48/Gi+XJ0yuxvEnhqXgrnoRFCUSJExRIkEIFCXyhqBgZU4XJQpG4viWKEocH6F0DRghSnJuuA4ZK9+I623L/IUIdthbun5ZkDUEKEqs4ey2WShK3Ja4Nf1SlFjDud5ZKEokCIGiRN4QFKyMosTGUCMRpL/2CtLfexvhZs1Rfm5/hFrtYmNBxkxNUWIMx0RHCXz1Bfxffo7g3vug+sCDE71c6vMpSqSOx7HFUZQ4NjqpC1dVlHz3rQdjL0uLsU9LBx57qhI5OVLHoUxxFCUWRPnGu2swZsrd/5ppzX8fQHpaABQlFoSQ5BTcoyRJcLysXgIUJfYtkIwXliFn1u2xAkItWmLLgsWIZGbaV5QBM1OUGAAxwSEaLVqIrIcfjF1VNuBilA4akuAo8p5uhChJf/M1NJ4xbcfv2+6tUfjQYwD3KZE3eJMroygxGbBLh1dVlIg4/9jgwZpPPdpmrgcdHEZ+s4hLU7a+bYoSC5i//u6nmHTTA3j2gevjZmuzWwt4PB6KEgsySHYKipJkyfG6+ghQlNi3PhpfNxHpq96NK8DszXut6JaixArK8XPk9+kJ75bC2B9GsrOxefmr1hdi0oxGiBJRmv+H7xBYt1a7g6v60K4IZ2ebVDGHdQIBihInpOS8GlUWJc5LQ52KKUosyFKIkuvvfBjvLqt9AzPeUWJBCElOQVGSJDheVi8BihL7Fkj2rNuR+cKyuAIKFz6OUJu21hcViSDtww/g/+1XVB3aFcE92yddA0VJ0uiSvpCiJGl06l4YDiNz+RIE1nyM0O5tUN7nPITzm6nbbxKdUZQkAY2XNEiAoqRBRDwhCQIUJUlAS/QSIUrGTpmD3t27IT09DV0O7Ijuxx8Gv8+nDUVRkihR686nKLGOdW0zebZthW/TRgT37AD88/tib0XGzE5RYgzHZEbxf/MVmky8At7ibdrllcediG3X3ZDMUClfk3PzdGS8vv0OhIjHg+KrrkFl99OTGpeiJClsKV2UPfM2ZK5YHhujovvpKL56ckpjynSxUXeUyNST2bU0evhBZC1aGJsm2HYPbHlwEd8OVgM8RYnZq9Cd48dESUkl/D//CPFYbaRxE3fCYNeGEaAoMQxl3QN9/s3PeHXlR2iSk4U/NhXg6effQv+zTsLksRdqF1VUhSyoglMkQyDg8yAUAcJhPg+YDL9UrvE9tgi+e+ZCvDk+0rIlqu+4E5EOe6UypDTXZqT56vy9D4UjEP+Q5GEigXAYnh++B5q3QKRpUxMnqntoT3Ex0k75T9wJ4U6dUP3ggqTqEWvG6/WgOshXBiYFMJmLgkF4130GfPstIu3bI3JoF6X23vB6PBCyJByJoKqa60rPEglceAG8P/wQd2rVc0sR2XVXPZe74hzxv26BgJdrKsm0+W+E2sH5fR5E1q+Hb+RIeDZtgvhXe+jiQQgNG54kaV5GAkB6wIfKark/p4vPFEYenkgkYuun3iUvvYMpty3Aujce0u4qKSyuMrI/jmUggawMP4KhMCr5j0QDqTY8lKewADnn9IInvOMf51Un/gflU+355r/hihM7Iy8njb/3iSFT7mwhShr3OCWur9C+nVAyb8fmoIk0nR7wwu/3orQ8mMhlPJcE6iQgPniIb2mDoQi2lVVbTsr35RdIe34pUFmJ6h69EOzS1fIaEp2w0VWXI/DR6thlEa8PxS+95vjNohPlUN/5QurmZPpRVGr9mjKyD44lF4FG6X74p06B59VX4grbtnQFInn5chXLahxDoGlOGraWVEHm78vFZwojD9tFybsffo7hE+7Ep6/ej4z0ND56Y2S6Bo/FR28MBqpzuMBna5B7xej4D5Gt26Dw4Sd0jiD3aXz0Ru58rKoud/wobZPL6FE6eDjKzt9+p2GiBx+9SZQYz2+IgJ2P3vjW/4qmQy+Cp3rHh+miufejet9ODZVt68/TPlqNxtOvhae8XHucrqLnmSgZe6WtNck2OR+9kS0RNeoRUjf9oguA776Pa2jrzXeiqusRajTJLiwnwEdvLED++NI30LF9a+y39x7YWlyCq6bPQ8Dvw4KZE7TZuUeJBSEkOQVFSZLgUrzMEwyiaf9z4CvYHBtJpVdvUpSkuEAUudxTUYHAmk/g3/AbqvfrvP1DoNebVHcUJUlh40X1ELBTlGQ8vxQ5s++Iq6504CUou+hS6TMT//vl+/lHhHfZjW/4qSUtihLpl7AjCxSixPfwAvjnz4vVH87OQeEzzyOSZuw37o4ExKKTIkBRkhS2xC66a/7TeOiJl2IXHbBfe9w+ZTh236U5RUliKC0/m6LEcuSxCf3ffq1tdOnd+CeC+x+I8tN6IJLT2L6CDJyZosRAmBxKI0BRwoVgNAE7RUn6W6+j8Y1T41oqHneVdocGD2cToChxdn6yVq9t5lpaivAzz8L/xf8QbtkKFceeoP37kQcJJEuAoiRZcgleV1FZhb8LipCT1Qi5TbLjrtTgw0wAACAASURBVOYdJQnCtPB0ihILYbtoKooSF4VtUasUJRaBdtE0dooSVFSg6eih8P/0o0Y81LIVtsxfqIwsd9Ey+lerFCVuTt+83vl6YPPYunlkihIJ0qcokSCEOkqgKJE3GydXRlHi5PTkrJ2iJPlcfBt+R9rqVQg1a47qbsci4vcnP5hCV9oqSv7h6Nv4JzxVVQi2aasQWXe3QlHi7vzN6p6iJHGypSUeLH3Oi++/82K/ThGc1ScIPqUUz5GiJPF1ZfgVFCWGIzVsQIoSw1ByoBoEKEq4HIwmQFGSHNHA2k+RO3E8ENz+tqDqgw5B0W2zAJ+xr9tLrjp7r5JBlNhLgLObQYCixAyqHJOiJPE1cO3EAD79eMe+aP/pHsIVV/PNeTVJUpQkvq4Mv4KixHCkhg1IUWIYSg5EUcI1YCIBipLk4ObccB0yVr4Rd7F4xCPYYe/kBlToKooShcKUqBWKEonCUKgUipLEwgyFgF6npiMc3nFdbtMInni2KrGBFD+bokSCgClKJAihjhIoSuTNxsmV8Y4SJ6cnZ+0UJcnlQlFSNzeKkuTWFK+qnwBFCVeIGQQoShKn2r9vOrYU7riudZsI7l9IUVKTJEVJ4uvK8CsoSgxHatiAFCWGoXTMQGnvv4esh+bBt/lvVB59HEouG4tIVpah9ScqSsQrZLPnzYF4Xr/yiG4oGTUOkcZNDK2JgzmbAEVJcvmlv/kaGs+YFrs4tHtrFD70GMB9SkBRktya4lUUJVwD1hOgKEmc+dNP+LHoYZ/25Kk/AIwaW43up9W4xSTxIZW7gqJEgkgpSiQIoUYJ/u+/Rfbdd8H/84/wdDkUZWOvQGnTFnIVyWpMIeAtLEDe+WfD889+BWKS0oGXoOyiSw2dLxFR4ikrQ17fnvBWVMRqKO99NkrGXGFoTRzM2QQoSpLPz//DdwisW4uw2Mz10K4IZ8e/mS75kZ19JUWJs/OTtXreUSJrMs6ui6IkufwqKjz4bb0HbdqGkZ6e3BgqX0VRIkG6FCUShFCjhLz+58C3aaP2Jz6fB1XdjkHh1JvlKpLVmEIg7aPVaDIpXkBUdemKrbfONHS+RESJ+BDXdNiguPmD7Ttgy/2PGFoTB3M2AYoSZ+cnY/UUJTKm4vyaKEqcn6GMHVCUyJiK82uiKJEgQ4oSCUL4pwRvwWbkn9s7VpAQJaHcPPz99PPyFMlKTCMg8s/rdxY8NXa3KrvgIpReMtTQORMRJZ7SUuT36aG9IjN6VJzWA8VXTjK0Jg7mbAIUJc7OT8bqKUpkTMX5NVGUOD9DGTugKJExFefXRFEiQYYUJRKEUKOEvPPO1PanEIcQJdVHHIWC6bfJVSSrMY1A5nNPI+PF5fAVbEbVgQejZNTlCLdoaeh8iYgSMXHGSy8gc+kz2p1O1fsfiJKhIxFqu4ehNXEwZxOgKHF2fjJWT1EiYyrOr4mixPkZytgBRUniqTyywI9XXvIikAb0PiuEc/qGEh9E8SsoSiQImKJEghBqlJC26h00Wvwo/Ot/gadzJ5QPGYGS9vvIVSSrcTSBREWJo5tl8ZYQoCixBLOrJqEocVXcljVLUWIZaldNRFGSWNzvvu3FTdMDcRfdcmcVDjwokthAip9NUSJBwBQlEoRQRwl864282Ti5MooSJ6cnZ+0UJXLm4uSqKEqcnJ68tVOUyJuNkyujKEksvXn3+LF8iS/uoqGXBXHWObyrpCYUipLE1pUpZ1OUmILVkEEpSgzByEF2IkBRwiVhNAGKEqOJcjyKEq4BMwhQlJhBlWNSlCS2Bt54zYc7bvHHXTTjtmoccihfD0xREolIdV8RRUliv9xWnk1RYiVt98xFUeKerK3qlKLEKtISzxMOI+OVF5H2wXsItdoF5f0GIJzfLOmCKUqSRscL6yFAUcLlYQYBipLEqFZUAHNnB/Dpxx5tj5IjjgxjxKggPJ7ExlH9bN5RIkHCFCUShFBHCRQl8mbj5MooSpycnjG1N3piETKWPacNVtGjN8oujH8FdKKzUJQkSky98zOfWITsB+fFGgu1boPCBxcB/vhvDfV2TlGilxTPS4QARUkitHiuXgIUJXpJ8bxECFCUJELLpHMpSkwCa8CwFCUGQOQQ/yJAUeLuRRH4bA1yrxgdB2Hb9JtR2e3YpMFQlCSNTpkLc8ePQmDd2rh+tix8HME2bZPqkaIkKWy8qAECFCVcImYQoCgxgyrHpCiRYA1QlEgQQh0lUJTIm42TK6MocXJ6qdcu7ibJqvHNvxixrN8AlA4ZkfTgFCVJo1PmwsY3TkX6W6/H+hHPGBc+vTzpx28oSpRZGlI1QlEiVRzKFENRokyUUjVCUSJBHBQlEoRAUSJvCApWRlGiYKgJtBT49GPkXj0u7oqt192AquNOTGCU+FMpSpJGp8yFgbWfosm0a+ApKYGQJJWn90TxFROT7o+iJGl0vLAeAhQlXB5mEKAoMYMqx6QokWANUJRIEAJFibwhKFgZRYmCoSbSUiSC7LtuRdpHq7Wrqg87HMXjrkp6LwkxBkVJIgEofG4oBP9PPyDUshUijZuk1ChFSUr4eHEdBChKuDTMIEBRYgZVjklRIsEaoCiRIASKEnlDULAyihIFQ7W5JYoSmwNQcHqniBLxuFHWIw/Bs2ULKk86GSXDRgHp6QomokZLFCVq5ChbFxQlsiWiRj0UJRLkSFEiQQgUJfKGoGBlFCUKhmpzSxQlNgeg4PROECW+Pzag6cDz4ImIh422H6XDRqLs3P4KJqJGSxQlauQoWxcUJbIlokY9FCUS5EhRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0ThAl6aveQePrJsXRr+x2DLZNv0XBRNRoiaJEjRxl64KiRLZE1KiHokSCHClKJAiBokTeEBSsjKJEwVBtbomixOYAFJzeCaLE9/tvyLuoXxz90osHo+zCQQomokZLFCVq5ChbFxQlsiWiRj0UJRLkSFEiQQgUJfKGoGBlFCUKhmpzSxQlNgeg4PROECUCe6PFjyDjtVe0PUqqD+mCklHjkn4lsoIxStcSRYl0kShRkNtEyQ/fe3DP3X788rMXBxwYxmWjg2jZascjiEqEKkETFCUShEBRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0sokS79YipL39lrZRq3i8JpKdoyB19VuiKFE/Yzs6dJsoGdg/DX9v8sRQH9EtjKnTq+1Ar/ScFCUSxEtRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0MokS71+b0HToxfAWb9NIi9cfF933EMJNchUkr3ZLFCVq52tXd24SJYUFwAXnxr/ZK7dpBE88W2UXfmXnpSiRIFqKEglCoCiRNwQFK6MoUTBUm1uiKLE5AAWnl0mUNHpiEbIenBdHufjqyajofrqC5NVuiaJE7Xzt6s5NokQwHnBeGgo277ijpOsRYVw/g3eUGL3+KEqMJprEeBQlSUCz6JLcrAAqg2GUV4YsmpHTuIEARYkbUra2R4oSa3m7YTaKEjekbH2PdoqS8jLg/VU+lJUC3Y4JIS/f+v45ozkE3CZK3l/lxVOL/Vi/3oOOHcO4eHAI++wbNgeui0elKJEgfIoSCUKoowSKEnmzcXJlFCVOTk/O2ilK5MzFyVXJJEp8v61H04vPR/T700h6OgoffQrhZs2djNiVtdslSoQkGTsyDb+t376KGmUBM+dUoU1bboCpwkJ0myhRITMn9EBRIkFKFCUShEBRIm8IClZGUaJgqDa3RFFicwAKTi+TKBF4vX9sQNonH2mbuVYdfCjCLVoqSF39luwSJeJOkhuu88cB7tsvhEuGBNWH7oIOKUpcELINLVKU2AB95ykpSiQIgaJE3hAUrIyiRMFQbW6JosTmABScXjZRoiBiV7bkVFGyaaMHzz7tw+bNHnQ7OoSTTg7Ds2OLCFdmKVPTFCUypaFOLRQlEmRJUSJBCBQl8oagYGUUJQqGanNLFCU2B6Dg9BQlCoYqQUt2iZLiYuCSAWkoKdlhN+6aU41992t4Xwexp8mwS9Ow+e8d144aF8QZPbl/nQRLSiuBokSWJNSqg6JEgjwpSiQIgaJE3hAUrIyiRMFQbW6JosTmABScnqJEwVAlaMkuUSJaF69VXbtm+2auBx8axu6t9e1Psu4zDyZekRZH74huYUydzreMSLCkKEpkCUHBOihKJAiVokSCEChK5A1BwcooShQM1eaWKEpsDkDB6SlKFAxVgpbsFCXJti82gB06KF6UnN4zhNHjuL9JskyNvo53lBhNlOMJAhQlEqwDihIJQqAokTcEBSujKFEwVJtboiixOQAFp6coUTBUCVpyoigR2G6aHsC7b3s1gjk5wA23VKHjPvruSJEAu/IlUJQoH7EtDVKU2II9flKKEglCoCiRNwQFK6MoUTBUm1uiKLE5AAWnpyhRMFQJWnKqKBHoioo8KNgMtNszAu92Z8JDEgIUJZIEoVgZFCUSBEpRIkEIFCXyhqBgZRQlCoZqc0sUJTYHoOD0FCUKhipBS04WJRLgYwl1EKAo4dIwgwBFiRlUExyToiRBYBaenpsVQGUwjPJK7mxuIXblp6IoUT5iyxukKLEcufITUpQoH7EtDVKU2ILd8kk/Wu3Fwwv8+GuTB4cdHsKoMSFkZZv3qBJFieURu2JCihIJYqYokSAE3lEibwgKVkZRomCoNrdEUWJzAApOT1GiYKgStERRIkEIJpdQXgac3zcNlRU7Xqfc++wQho80b/NbihKTQ3Xp8BQlEgRPUSJBCBQl8oagYGUUJeqE6v/hO2Quew6e0lJUnHIaqo7sZktzFCW2YFd6UooSOeL1bNsK31+bEGzXHvD55CgqhSooSlKA55BLv/7Ki/GjA3HVdtw3gllzq0zrgKLENLSuHpiiRIL4KUokCIGiRN4QFKyMokSNUL1/bULeJRfAU14ea2jrLXeh6rDDLW+QosRy5MpPSFFif8RZCx9A5mMPQ3wvH27ZCkW3zUJo99b2F5ZCBRQlKcBzyKVlpUC/PumoruFFevQOYeQY3lHikAhZ5j8EKEokWAoUJRKEQFEibwgKVkZRokao6W++hsYzpsU1U3Z2X5SOHGd5gxQlliNXfkKKEnsj9hYWIL9vr7giKk86BduumWpvYSnOTlGSIkCHXP7CMh9eetGLv//yolPnMEaMDqJVK+5R4pD4WCZFiTxrgKJEnix2roSbucqbjZMroyhxcno7ak/7+EM0mTg+rpmSwcNRfv6FljdIUWI5cuUnpCixN+K0j1ajyaQr4ooItu+ALfc/Ym9hKc5OUZIiQF5eKwE+esOFYQYB3lFiBtUEx6QoSRCYhadTlFgI20VTUZQoEnYwiNzLRyLw1RdaQ6H8ZiiaM1+7Rd7qg6LEauLqz0dRYm/Gnqoq5PXtBW9JcayQ0kFDUDbgYnsLS3F2ipIUAfJyihKuAcsIUJRYhrruiShKJAihjhIoSuTNxsmVUZQ4Ob1/1y72KhGbuYba7WlbYxQltqFXdmKKEvuj9X++DhnvvAXvpo0Idj4A5T3ORKRRI/sLS6ECipIU4PHSOgnwjhIuDjMIUJSYQTXBMSlKEgRm4ekUJRbCdtFUFCUuCtuiVilKLALtomkoSlwUtoWtUpRYCNtFU1GUuChsC1ulKLEQdl1TUZRIEEIdJVCUyJuNkyujKHFyenLWTlEiZy5OroqixMnpyVs7RYm82Ti5MooSJ6cnb+0UJRJkQ1FiTAjied60996Gt6gIVUcdjVCrXVIemKIkZYQcoBYCFCVcFkYToCgxmijHoyjhGjCDAEWJGVQ5JkUJ14AZBChKzKCa4JgUJQkCq+V0IUmajBmOwPffaj+NBAIomnUvgvvsl9LgFCUp4ePFdRCgKOHSMJoARYnRRLePl7b6fWQtmA/fpo2oPPwolI65AuHsbHMmk2xUihLJAlGkHIoSfUGWlnjw9JNe/PKzFwccFEHP3kGkpem71o1nUZS4MXXze6YoMZ9xgzNQlDSIqMETAp+tQe4Vo+POK+/RGyWXX93gtfWdQFGSEj5eTFHCNZAIgXAYmcuXILDmY4R2b4PyPuchnN9M1wgUJbowJXSSp6wMeX17wltREbuu7Oy+KB05LqFxnHoyRYlTk5O7booSfflMGB/A/9Z5Yyef3jOE0eOC+i524VkUJS4M3YKWKUosgNzQFBQlOwj5v/0amS8sA8rLUdn9dFR1PaIhfNrPKUp0YUrqpMC6tfB/9w2CnfZH9X6dkxqDF8UT4B0lXBG1EWj08IPIWrQw9qNg2z2w5cFFgHfHP5brIkdRYvyaEq99zh09LG7g4L6dsGXu/cZPJuGIFCUShqJASRQlDYdYXgb06Z2OcHjHuc1bRvDo41UNX+zSMyhKXBp8PW2LtxFm3zsb6e+9jVCz5ii9dLi2NUMiB0VJIrRMOpeiZDtYcWtz04v6wVNdHSNddPtsVB/SpWHyFRXIG3gefAWbY+duvflO3aKlrgncfkdJ1sIH0Oixh2N4Si8ejLILBzWcB8+olwBFCRdIbQSaDr0I/h9/iPtR4eJnde23RFFi/JoS/8jK79MD4tHO6FHe+2yUjLnC+MkkHJGiRMJQFCiJoqThEEMh4Jxeaais8MRO7rhvGLPm7vj3ccOjuOsMihJ35a2n20aPPISsRxfETo34/Sh8YgnCefl6LtfOoSjRjcq8E1UUJb6NfyLz6cfh3fw3Ko8+DpUnnwp4dvyFXxvNjFdfQs5tM+J+VNZvAEqHjNAF37NtK9I++Wj7Zq4HH4pQuz11XVffSW4XJc16d4enpCSGKNw0DwXPvpAyV7cPQFHi9hVQe/9NJo5H2scf7vihz4fNy19FJDOzQWAUJQ0iSuqEzGXPIePF5fD9tQnVnQ9AyejxusRVUpNJdhFFiWSBKFIORYm+IBc/6sfji3zaXSXpGdAeuznp5JC+i114FkWJC0NvoOUmEy7XPhfWPBL9Ep2iRIJ1pZoo8ZSXo+mg/vD9/VeMbvG4q1DR88x6aYsPCOKDQs2jZPBwlJ9/oW0pUZRQlJix+ChKzKDq/DHTPlqNxtOvhfg7NOLxaH9nloy9UldjFCW6MPGkBAhQlCQAi6fqJkBRohsVykqBDRu8aLtHmBu5NoCNokT/unLLmVkL7kejxY/E2o14vSh8cqnuvd/EhRQlEqwW1URJbc91V3Y7Btum31I/7WAQTS+7NHbreahFSxTNmY9ws+a2peR2USLu8BF3+kQPIzbItS1MiSamKJEoDMlK8QSD8P38I8K77JbQ21UoSiQLUoFyKEoUCFHCFtwiSt5924fHHvWhcDNw1NFhjBgdQkZGRMJE1CiJokSNHI3swvvXJmTPnYm0dWsRym+GijN6o/yccxOagqIkIVzmnKyaKPGt/xV5g/rHwSoX34yOu0oXQLGwxVsGgm3a6jrfzJPcLkrEhzb/Z2vg//lHhPbqqN16Lp7x45EaAYqS1Pjx6n8ToCjhqjCaAEWJ0UQ5niDgBlGypRAYeH46gjVeUtN/YBAXXsRHZ8z6LaAoMYusu8elKJEgf9VEiUDaePoUpL/9pkY3nNMYW2+5E8F99pOAdmIluF2UJEaLZ+slQFGilxTP00uAokQvKZ6nlwBFiV5SPC8RAm4QJZ985MWUSYE4LId0CWPGrdyMNZG1ksi5FCWJ0OK5eglQlOglZeJ5KooSgctbtEXbzDW4Zwddr7c0EXHSQ1OUJI2OF9ZDgKKEy8NoAm4VJd5NG5G+6l2Ec3NRdfRxiKSlGY3WteNRlLg2elMbd4MoKSwALuwX/3rffheEcNElNW4xMZWy+wanKHFf5lZ0TFFiBeUG5lBVlEiANuUSKEpSRsgBaiFAUcJlYTQBN4oS/zdfockVo7VHNcVRvfc+2Dr7PsoSgxYXRYlBIDlMHAE3iBLR8DNP+vD6f30Q0qTzgRGMHluNBN5KylWTIAGKkgSB8XRdBChKdGEy9ySKEnP5pjI6RUkq9HhtXQQoSrg2jCbgRlGSPfM2ZK5YHoey6M45qD7oEKPxunI8ihJXxm56024RJaaD5ARxBChKuCDMIEBRYgbVBMekKEkQmIWnU5RYCNtFU1GUuChsi1qlKNkOmqLEuAVHUWIcS460gwBFCVeDGQQoSsygyjEpSiRYAxQlEoRQRwkUJfJm4+TKKEqcnJ6ctbtRlKR9tBpNJl0RC0S8/q/w0aeAjAw5Q3JYVRQlDgvMIeVSlDgkKIeVSVHisMAcUi5FiQRBUZRIEAJFibwhKFgZRYmCodrckhtFiUDu+/knpK39dPtmrl26ItK4ic1JqDM9RYk6WcrUCUWJTGmoUwtFiTpZytQJRYkEaVCUSBACRYm8IShYGUWJgqHa3JJbRYnN2JWenqJE6Xhta46ixDb0Sk9MUaJ0vLY1R1FiG/odE1OUSBACRYm8IShYGUWJgqHa3JKVosRTUQHf+l8QbNsOSE+3uXNObxYBihKzyLp7XIoSd+dvVvcUJWaRdfe4FCUS5E9RIkEIFCXyhqBgZRQlCoZqc0tWiZKM11+FeNuMkCWRrCxsnXYTqg/pYnP3nN4MAhQlZlDlmBQlXANmEKAoMYMqx6QokWANUJRIEAJFibwhKFhZsqLEs20r0t97RyNS1e0YhJvkKkiHLSVDwCpRkt+3F7yFBbESg233wJYFi5MpmddIToCiRPKAHFoeRYlDg5O8bIoSyQNyaHkUJRIER1EiQQgUJfKGoGBlyYgSz9Yi5F16IbxbCjUi4aZ52PLQIsoSBddHMi1ZIUq8BZuRf27vuPIigQA2v7IymZJ5jeQEKEokD8ih5VGUODQ4ycumKJE8IIeWR1EiQXAUJRKEQFEibwgKVpaMKMl4filyZt8RR6PksjEoP+c8BQmxpUQJWCFKRE254y5D4PN1sfIqjz0B26bemGi5PN8BBChKHBCSA0ukKHFgaA4o2Q2ixBMMwvfTDwjvujvC2dkOSMX5JVKUSJAhRYkEIVCUyBuCgpVRlCgYqs0tWSVKfOt/RcZrr2j/WAvu1REVZ/RCuHkLm7vn9GYQoCgxgyrHpCjhGjCDgOqiJPDl52g8bfL2R199PhSPuhwVvc4yAyXHrEGAokSC5UBRIkEIFCXyhqBgZcmIEu/mv5Hf/xwgFNpOxOdD4UOPIdS6jTSEPFVV8P3yE0K7tdY2+uRhHQGrRIl1HXEmuwlQlNidgJrzU5SomavdXakuSppMHI+0jz+MYY74/ShY9goimZl2o1d6fooSCeKlKJEgBIoSeUNQsLJkRInmRjZtRODTjzUi4k0joVa7SENH+7bj2gnwbtsK8T/gJSPH8dsOC9OhKLEQtkumoihxSdAWt0lRYjFwl0ynuijJ79MztkddNNIt8xci2GFvlyRsT5sUJfZwj5uVokSCEChK5A1BwcqSFSUyo8gdMxxClkSPcEYGCp7/r3bnCw/zCVCUmM/YbTNQlLgtcWv6pSixhrPbZlFdlGTPuQuZy56LxRrcdTdsWfS022K2vF+KEsuR/3tCihIJQqAokTcEBStTUZQ0690dnpKSuLQKFz8r1V0vCi6lWEsUJSqna09vFCX2cFd9VooS1RO2pz/VRYl442HGyyvg//JzhHdvg4pTTkOwfQd7YLtoVooSCcKmKJEgBIoSeUNQsDIVRUnO7Tch45UXd3zbsVdHbJm3QMH05GyJokTOXJxcFUWJk9OTt3aKEnmzcXJlqosSJ2djdO3eoi0Q+/YF9+wAeL1GDx83HkWJqXj1DU5Roo+THWflZgVQGQyjvPKfDTTtKIJzKkdARVGifduxYjn833yFUJs9UHHyqQjt2V657GRtiKLE3mS8W4uQ+eRi+Nb/guouh6Oi55naXj1OPihKnJyevLVTlMibjZMroyhxcnr6a89a+AAaPfawdoF4/GjrbbMQ3mVX/QMkeCZFSYLAzDidosQMqsaMSVFiDEeOEk9ARVHCjO0lQFFiL/+mQy+G/8fvY0WUnX8hSgcPt7eoFGenKEkRIC+vlQBFCReGGQQoSsygKteYvt/WI+/i8+OKKu91FkrGXmlaoRQlpqHVPzBFiX5WVp9JUWI1cXfMR1Hijpyt7JKixEra8XN5CzYj/9zecX8onh3fcv8j9hVlwMwUJQZA5BD/IkBRwkVhBgGKEjOoyjVm+qp30Pi6SXFFVR94MIrummtaoRQlpqHVPzBFiX5WVp9JUWI1cXfMR1Hijpyt7JKixEra8XN5ysshNjNGaMcjmlWHHY6tt9xlX1EGzBwVJdVbtmHLtz8h1K694x8nMgALhwBQXg4897QPP3zvxb77RdDrrCAyM/WhoSjRx4lnJUaAoiQxXk48W7wwIO+CPvCWFMfKLx45DhVn9zWtHYoS09DqH5iiRD8rq8+kKLGauDvmoyhxR851dhkOw//zTwjn5yOc29QQGBQlhmBMepDs++Yg47mn4IlEEMnMxLZJ16Gq27FJjyfDhZooWfYUInPvQbCqGuG8fE3+8E0LMqRjbw3Trwvgg1U7NlE87oQwJl5brasoihJdmHhSggQoShIE5tDT/Z+vQ8abr0HcySnuJqk4ozciGRmmdUNRYhpa/QNTlOhnZfWZFCVWE3fHfBQl7si5ti69f21CkytGw//HBu3H5Wf3RcnIcSkDoShJGWHKA3hLSuD943eE9uygxJ0X6cFK5PfqjkgwhGAorPGpOvxIbL3pjpRZcQDnEhA3TvXpnY6K8h09ZGUDzy6v1NUURYkuTDwpQQIUJQkC4+m6CFCU6MJk7kkUJebyTWV0ipJU6PHaughQlLh3bWTPvgOZzy+NA1C48HGE2rRNCQpFSUr4eHEtBDJ/+QFNhw1CJIKYKAm1bIXCx58jL5cT6N83HVsKd0Bo3SaC+xdW6aJCUaILE09KkIBKosT/7dfIfGGZ9oxbZffTUdX1iARp8HSjCFCUGEUyhXEoSlKAZ/KlFCUmA3bp8BQlLg0eQO74UQisWxsHYNvkaag88eSUoFCUpISPqeWv8gAAIABJREFUF9dCIM0HNLv4fER++z0mSsr79EPJiNHk5XICS5/zYcH9fgSDgD8ADB0RRM/eO/boqQ8PRYnLF49J7asiSnybNqLpRf3gqd7xKFvR7bNRfUgXk8hx2PoIUJRIsD4oSiQIoY4SKErkzcbJlVGUODm91GrPXPYcsufs2OQzkp6OgqefRyQ7O6WBKUpSwseLaxMlYo+SP35GaMVLKP/pFwT37YTynmciktOYvEgAFRUe/P6bB63bhJGerh8IRYl+VjxTPwFVREnG80uRMzv+8cayfgNQOmSEfhg80zACFCWGoUx+IIqS5NmZfSVFidmE3Tk+RYk7c9e6rqxE5oplCKz7TNvMtfLYE1B98KEpA6EoSRkhB9iJgBmvB/7jD+DDD3xo1iyCI7uF4fcTu9sIUJS4LXFr+lVFlKR9+AGaXHNlHDRxF5+4m4+H9QQoSqxn/q8ZKUokCKGOEihK5M3GyZVRlDg5PTlrpyiRMxcnV2W0KPlsrRdTJgUQ/OeO8gMPimDGbVXw+ZxMibUnSoCiJFFiPF8PAVVECSoq0HTMMPh//EFrO9SiJYrmzEe4WXM9GHiOwQQoSgwGWt9wxSVlCIZCaNokJ+40ihILQ0hwKoqSBIHxdF0EKEp0YeJJCRCgKEkAFk/VRcBoUXLzDX68szLeisydX4X2HSK66uFJahCgKFEjR9m6UEaU/ANWvCHPW1GBYIobvcuWk9PqoSixILGy8gpMuHE+3ly1fQO/A/Zrjzk3jkGzvCbaf1OUWBBCklNQlCQJjpfVS4CihAvEaAIUJUYT5XgUJVwDZhCgKDGDKsdUTZQwUTkIUJRYkMODj7+IZ15YiUVzJiMzIw0jJs5Euza74IarL6EosYB/KlNQlKRCj9fWRYCihGvDaAIUJUYT5XhGi5KVb3px64xADOxuu0cw76Eq7lPisqVGUeKywC1q10hRUlgAFBV50G7PCDweixrgNFISoCixIJY+Q6ai+/GHYcgFPbTZXl35EcZPuxdfvLUQHo+Hd5RYkEGyU1CUJEuO19VHgKKE68NoAhQlRhPleEaLEkH0xx88+N86L5o1Aw45NIysbD5247aVRlHitsSt6dcoUTLvHj+WL9n+iGDbdhHccFM1mrfg31PWpCjfLBQlFmRy2GnDceOESzVZIo6vvvsFfYdOw/sv3IMmOVkUJRZkkOwUFCXJkuN1FCVcA1YScJMo8VRUwLf+FwTbtkNC7yW1MhAF5jJDlCiAhS2kSICiJEWAvLxWAkaIkp9+8GDksLS48c89P4RBg4Ok7lICFCUmBx+JRND5hEG49+bLcdyRB2qz/fjLBvS6eDJef+pO7NIy3+QKODwJkAAJkAAJKELg5ZeBGTMg3gyArCzg9tuBrl0VaY5tkAAJkAAJ2EXg1VeByZPjZz/iCGDuXLsq4rwkYD0BT0TYCwsPcUfJjImDccpxXbRZd76jxMJSOBUJkAAJkAAJOJdA9+5AQcGO+tu1A555xrn9sHISIAESIAEpCGzZAvToAVRW7ijn2muBM8+UojwWQQKWELBclIg9Sk49oSsG9z9Da5B7lFiSsyGT8NEbQzBykJ0IcI8SLgmjCbjh0RtvwWbkn9s7Dl0kEMDmV1YajZPjAeCjN8ktg8ICD+6d48enn3jRpk0EQy+rRqfOln4/l1zhFl3FR28sAu2yaYx49EYg+2ytF++s9KJoC3DwIRGcclqIT3i6bC3VbJeP3lgQ/gOLV+DZFW9rb71plJmO4RPu4ltvLOBuxBQUJUZQ5Bg7E6Ao4ZowmoAbRIlgljvuMgQ+XxfDV3nsCdg29UajcXI8ipKk18CtN/mx8o3tm0GKI6cx8PgzlXy7zz88KEqSXlq8sB4CRokSQiYBihKLH70pLavAldPvwzurt//jrnPHdpgzYyxaNMvV/vuPgnKuSkkJUJRIGozDy6IocXiAEpbvFlHiW/8rMl57Bb6ffkBwr46oOKMXws1bSJiI80viHSXJZTiwfxr+3hT/TtGFi6vQqhXvKhFEKUqSW1e8qn4CFCVcIWYQ4B0lZlCtY8ytxaWorg6iWV6TuDMoSiwMIcGpKEoSBMbTdRGgKNGFiSclQMAtoiQBJDw1RQIUJckBvHFaAKve9cYuzsoGnnyOd5REgVCUJLeujL6qvAx4f5UPZaVAt2NCyPu/9s4DzKrq6t9r+gyDMDRBKdLEiF1s2DtqbMQWiS2oyGc0xhZNCHajJnYsxBo19oIVRSHBElsE7C0oKKIggvTpM///ucTRwRnnnplzzl57nfc+z/c8X5x99lrr925g5p1zz/X8syUQJVGfEPYLEkCUKDgHiBIFEJppAVGil43PnSFKfKans3dEiU4uPneFKGkdvZn/zZXbb8mX99/LkV696uUXh9TKLrvVtm4zg1chStxDDSTJKb8plDmfr7rzqV2pyFXjqqTPOv7e9YQocX+uLHaAKFFAFVGiAAKiRC8Eg50hSgxCdTwSosQxAIPlESUGoSoYCVHiHkJwJ8mF5+Q3auSQX9bKyONr3DfXyg4QJa0Mjst+MgFEiYIDgihRAAFRoheCwc4QJQahOh4JUeIYQMLlg98EFxeLdFszvt8AI0oShpqScogS96ARJe4Z0IEfCSBKFHBClCiAgCjRC8FgZ4gSg1Adj4QocQwgofLBLfN/+H2hfPTBqlvmt92+TsaeXx1LdURJLLGmflNEifsjsGyZyMgjCmX58u8fOnzluGpZf3Cd++Za2QF3lLQyOC77yQQQJQoOCKJEAQREiV4IBjtDlBiE6ngkRIljAAmVf/D+PLntpsa3zF90WZUM2SL6O0sQJQlBTVkZRIkO4IsWisyYvuphrpsNqZNevaP/OyTJSRElSaadnlqIEgWsESUKICBK9EIw2BmixCBUxyMhShwDSKj8FX8pkMmTvv9ElaDsqBNrZPhB0T8sFFGSENSUlUGUpAx4QuMiShIKOmVlECUKgCNKFEBAlOiFYLAzRIlBqI5HQpQ4BpBQ+VdfzpXzxxY0VMvLE7np71Wy9trR/zYYUZIQ1JSVQZSkDPhPjFtVJfLEY/ny9ps50rdfnRz6yzopbd+6v8sQJZyrOBJAlMSRasg9ESUhA0twOR8PnGDYKSqFKEkR7IRGRZQkFLTjMvX1IpOezpUZ03KlpERkq6H1su120d9NEoyJKHEM22h5RIlRsK0Ya9zV+TLxibyGKzfcuE7+elXrnrmEKGkFAC5pMQFESYsRxb8AURJ/xq2tgChpbXJc91MJIEo4H1EngCiJOlH2Q5RwBuJIAFESR6p+7nnUiEJZMP/7B8oGUzz4WJW0b8VdJYgSP8+A9q4RJQoIIUoUQGimBUSJXjY+d4Yo8Zmezt4RJTq5+NwVosRnenp7R5ToZZN0Z787qUA++uD7Zy4VFdfLw49XSfCWwrAvREnYxFifTQKIkmxSinkNoiTmgNuwPaKkDeFxabMJIEo4HFEngCiJOlH2Q5RwBuJIAFESR6p+7jnluTwJ3n5TWSGSmysy4sha+dVRNa0aBlHSqti4qIUEECUKjgiiRAGEZlpAlOhl43NniBKf6ensHVGik4vPXSFKfKant3dEiV42LjoLHuj62exc6dmzTtqVtr4DREnrs+PK5hNAlCg4HYgSBRAQJXohGOwMUWIQquORECWOARgsjygxCFXBSIgSBRAMtoAocQd1zuc5Mv76Avng/RxZd906+c0pNdJnndZ9epG7KZqujChRQARRogACokQvBIOdIUoMQnU8EqLEMQCD5RElBqEqGAlRogCCwRYQJe6g/v60Annnre+fNdNvQL3ccFOVu4YirIwoiTDM1m6FKGltcvFfx1tv4s84jRUQJWmkHu/MiJJ4803j7oiSNFKPf2ZESfwZp7ECosQd9YMPKJIVy7+vHzxv5qHHKqWknbueoqqMKIkqyTbsgyhpQ3gxX4ooiTnglG6PKEkp+BjHRpTEGG5Kt0aUpBR8zGMjSmIOOKXbI0rcgT/9lEJ5/93vP+a5T996+dut3FGSFJHgZ4ooXzn19fWq3jiFKIkSb7R7IUqizZPdViWAKOEkRJ0AoiTqRNkPUcIZiCMBREkcqbInosTdGXjrzVz5xx158snMXOnbry7zyUVDtlD1o3arw+GOklZHF92FiJLosox6J0RJ1ImyH6KEMxBHAoiSOFJN956Iktbz/3Luqt+urt3Txg8LrU/ix1ciSqJMk72+SwBR0vxZWLIkR158PkeKinJk6HZ10r49fy9l+ycHUZJtUjGuQ5TEGG4bt0aUtDFALm8yAe4o4WBEnQCiJOpE2Q9REv4MBB91es4fCiT4DWvw2nyLejn3wiopLAy/l9UrECVWybqdC1HSdP4Lvs6R34wqlGXLVn29W/d6GXdjtXTsiCzJ5sQiSrJJKeY1iJKYA27D9oiSNoTHpc0mgCjhcESdAKIk6kTZD1ES/gw8/VSeXHtlfqMLz/5Ttey0S134zYxegSgxCtbxWIiSpgE8cG++3H5LXqMvnvb7GtljWK1jYn6UR5Qo4IQoUQChmRYQJXrZ+NwZosRnejp7R5To5OJzV4iS8PTGX58vjz3S+IeSQ35ZKyOPrwm/mdErECVGwToeC1GCKInjCCJK4kg15J6IkpCBJbgcUZJg2CkqhShJEeyERkWUJBR0isogSsLDfu+dHDnjd43fZ3PtjdWy7iDuKPkuTURJ+HPFFS0ngChpOqMv5uTI8cd8/3dSYZHIbXdWSZeuvPWm5VMlgijJJqWY1yBKYg64DdsjStoQHpc2mwCihMMRdQKIkqgTZT9ESevOwJTn8uSN/6x6mOtWW9fLLrtxi/sPk0SUtO5ccdVPJ4AoaT6fL78Umf5GbuZhrptuVifd1kSSZPvnCVGSbVIxrkOUxBhuG7dGlLQxQC5vMgFECQcj6gQQJVEnyn6IEs5AHAloFyWff5Yj11+TL//9b66sP7heRv+mWnr34QfLOM5ClHsiSqJMk72+SwBRouAsIEoUQGimBUSJXjY+d4Yo8Zmezt4RJTq5+NwVosRnenp71y5KThxVKLM+WXVHUPDaaJM6+cuV1XoDpbNMAogSDkIcCSBK4kg15J6IkpCBJbgcUZJg2CkqhShJEeyERkWUJBR0isogSlIEO8FRNYuS8pUiBx9QJHU/eKRMaXuRhx6rTDAhSrUmAURJa1LjmpYSQJS0lFACX0eUJBByK0sgSloZHJf9ZAKIEg5I1AkgSqJOlP0QJZyBOBLQLEqCeU84tlA+n/39HSWDN6yXK66piiMK9owwAURJhGGyVUMCiBIFhwFRogBCMy0gSvSy8bkzRInP9HT2jijRycXnrhAlPtPT27t2UTLtjRy5+858mT0rVwYMrJMjjq6VTTblU4v0nqhVnSFKtBPysz9EiQJuiBIFEBAleiEY7AxRYhCq45EQJY4BGCyPKDEIVcFI2kWJgohooRUJIEpaERqXtJgAoqTFiOJfgCiJP+PWVuCOktYmx3U/lQCihPMRdQKIkqgTZT9ECWcgjgQQJXGkyp6IEs5AHAkgSuJINeSeiJKQgSW4HFGSYNgpKoUoSRHshEZFlCQUdIrKIEpSBDvBURElCYadolKIkhTBTnBUREmCYTdXClGiAEIzLSBK9LLxuTNEic/0dPaOKNHJxeeuECU+09PbO6JELxufO0OU+ExPb++IEgVsECUKICBK9EIw2BmixCBUxyMhShwDMFgeUWIQqoKRECUKIBhsAVFiEKqCkRAlCiAgShRAQJTohWCwM0SJQaiOR0KUOAZgsDyixCBUBSMhShRAMNgCosQgVAUjIUoUQECUKICAKNELwWBniBKDUB2PhChxDMBgeUSJQagKRkKUKIBgsAVEiUGoCkZClCiAgChRAAFRoheCwc4QJQahOh4JUeIYgMHyiBKDUBWMhChRAMFgC4gSg1AVjIQoUQABUaIAAqJELwSDnSFKDEJ1PBKixDEAg+URJQahKhgJUaIAgsEWECUGoSoYCVGiAAKiRAEERIleCAY7Q5QYhOp4JESJYwAGyyNKDEJVMBKiRAEEgy0gSgxCVTASokQBBESJAgiIEr0QDHaGKDEI1fFIiBLHAAyWR5QYhKpgJESJAggGW0CUGISqYCREiQIIiBIFEBAleiEY7AxRYhCq45EQJY4BGCyPKDEIVcFIiBIFEAy2gCgxCFXBSIgSBRAQJQogIEr0QjDYGaLEIFTHIyFKHAMwWB5RYhCqgpEQJQogGGwBUWIQqoKRECUKICBKFEBAlOiFYLAzRIlBqI5HQpQ4BmCwPKLEDdS88jlSMu8Bya36Rio77yiV3fZ200hMVRElMQWb8m0RJSk/ADGNjyiJKdgw2yJKwqSV7Nqy0gKprKmT8sraZAtTzXQCiBLTeJ0MhyhxErvpooiS5PHm1K6QztMPkdyaJQ3Flw0cIxXd9km+mZgqIkpiCjbl2yJKUn4AYhofURJTsGG2RZSESSvZtYiSZPNOSzVESVpIJzcnoiS5rNNSCVGSPOmCJdOl7P2TGxWu6LKbLBt0QfLNxFQRURJTsCnfFlGS8gMQ0/iIkpiCDbMtoiRMWsmuRZQkm3daqiFK0kI6uTkRJcllnZZKiJLkSeeVfyad3xzRqHB59wNlef8zk28mpoqIkpiCTfm2iJKUH4CYxkeUxBRsmG0RJWHSSnYtoiTZvNNSDVGSFtLJzYkoSS7rtFRClLgh3eHDM6Xo25czxevyO8iSwddKTem6bpqJoSqiJIZQ2VIQJRyCOBJAlMSRasg9ESUhA0twOaIkwbBTVApRkiLYCY2KKEko6BSVQZS4g51b/a3kVi+UmpL+Ijm57hqJoTKiJIZQ2RJRwhmIJQFESSyxhtsUURIuryRXI0qSTDs9tRAl6WGd1KSIkqSSTk8dREm0rHPqKqT9rCulcNELUlfYVVb2GimVXXaNtogHuyFKPIDkYYvcUeIhNA9aRpQogIQoUQChmRYQJXrZ+NwZosRnejp7R5To5OJzV4iSaOm1m3OrlH5xW8Om9Tn5smjzR6SusEu0hZTvhihRDsjT9hAlnoJT3jaiRAEgRIkCCIgSvRAMdoYoMQjV8UiIEscADJZHlEQLteP7p0rhktcbbbpk/SukqmybaAsp3w1RohyQp+0hSjwFp7xtRIkCQIgSBRAQJXohGOwMUWIQquORECWOARgsjyiJFmrp5zdJu7l3NGxan5MrizafkHkbTppeiJI00U5uVkRJclmnqRKiRAFtRIkCCIgSvRAMdoYoMQjV8UiIEscADJZHlEQLNbfqG2k/63IpWPqm1BV0kYpue0t5zyOiLeLBbogSDyB52CKixENoHrSMKFEACVGiAAKiRC8Eg50hSgxCdTwSosQxAIPlESUGoSoYCVGiAILBFhAlBqEqGAlRogACokQBBESJXggGO0OUGITqeCREiWMABssjSgxCVTASokQBBIMtIEoMQlUwEqJEAQREiQIIiBK9EAx2higxCNXxSIgSxwAMlkeUGISqYCREiQIIBltAlBiEqmAkRIkCCIgSBRAQJXohGOwMUWIQquORECWOARgsjygxCFXBSIgSBRAMtoAoMQhVwUiIEgUQECUKICBK9EIw2BmixCBUxyMhShwDMFgeUWIQqoKRECUKIBhsAVFiEKqCkRAlCiAgShRAQJTohWCwM0SJQaiOR0KUOAZgsDyixCBUBSMhShRAMNgCosQgVAUjIUoUQECUKIDQTAtrlORLdW2dVFTV6W2SzrxLoEuHQlm4tMq7vmlYbwLFhblSkJ8ny1ZW622SzrxKAFHiFS5vms3NFQl+qF28nL+rvIHmQaPti/Olrr5eVlbWetAtLfqSQOc1CmXxsirR/FNg8MvXKF859fX19VFu2Na9ECVtTTC+68tKC6Sypk7K+Ys3vpBTuDN3lKQQeswjc0dJzAGncHtESQqhJzAyd5QkEHIKS3BHSQqhJzAyd5QkEHJLJRAlLSXk7uuIEnfZW66MKLFM181siBI3uVuuiiixTNfdbIgSd9lbrowosUzX3WyIEnfZN1RGlCiA0EwLiBK9bHzuDFHiMz2dvSNKdHLxuStEic/09PaOKNHLxufOECU+09PbO6JEARtEiQIIiBK9EAx2higxCNXxSIgSxwAMlkeUGISqYCREiQIIBltAlBiEqmAkRIkCCIgSBRAQJXohGOwMUWIQquORECWOARgsjyjJDmq7uXdJ8byHM4sruh8gK3v9OrsLU7oKUZJS8DGPjSiJOeCUbo8oUQAeUaIAAqJELwSDnSFKDEJ1PBKixDEAg+URJS1DLVj8Hyn74HeNFi5Z/wqpKtum5YtTugJRklLwMY+NKIk54JRujyhRAB5RogACokQvBIOdIUoMQnU8EqLEMQCD5RElLUNtN+dWKf3itkYLV/QaKSt7H9vyxSldgShJKfiYx0aUxBxwSrdHlCgAjyhRAAFRoheCwc4QJQahOh4JUeIYgMHyiJKWoRZ++2/p+OHvGy1cMuhCqeqya8sXp3QFoiSl4GMeG1ESc8Ap3R5RogA8okQBBESJXggGO0OUGITqeCREiWMABssjSrKAWlcj7WddLoWLX80sri7bWpb1O1MkNz+Li9O5BFGSTu5xT40oiTvhdO6PKFHAHVGiAAKiRC8Eg50hSgxCdTwSosQxAIPlESUGoSoYCVGiAILBFhAlBqEqGAlRogACokQBBESJXggGO0OUGITqeCREiWMABssjSgxCVTASokQBBIMtIEoMQlUwEqJEAQREiQIIiBK9EAx2higxCNXxSIgSxwAMlkeUGISqYCREiQIIBltAlBiEqmAkRIkCCIgSBRAQJXohGOwMUWIQquORECWOARgsjygxCFXBSIgSBRAMtoAoMQhVwUiIEgUQECUKICBK9EIw2BmixCBUxyMhShwDMFgeUWIQqoKRECUKIBhsAVFiEKqCkRAlCiAgShRAQJTohWCwM0SJQaiOR0KUOAZgsDyixCBUBSMhShRAMNgCosQgVAUjIUoUQECUKICAKNELwWBniBKDUB2PhChxDMBgeUSJQagKRkKUKIBgsAVEiUGoCkZClCiAgChRAAFRoheCwc4QJQahOh4JUeIYgMHyiBKDUBWMhChRAMFgC4gSg1AVjIQoUQABUaIAAqJELwSDnSFKDEJ1PBKixDEAg+URJQahKhgJUaIAgsEWECUGoSoYCVGiAAKiRAEERIleCAY7Q5QYhOp4JESJYwAGyyNKDEJVMBKiRAEEgy0gSgxCVTASokQBBESJAgiIEr0QDHaGKDEI1fFIiBLHAAyWR5QYhKpgJESJAggGW0CUGISqYCREiQIIiBIFEBAleiEY7AxRYhCq45EQJY4BGCyPKDEIVcFIiBIFEAy2gCgxCFXBSIgSBRAQJQogIEr0QjDYGaLEIFTHIyFKHAMwWB5RYhCqgpEQJQogGGwBUWIQqoKRECUKICBKFEBAlOiFYLAzRIlBqI5HQpQ4BmCwPKLEIFQFIyFKFEAw2AKixCBUBSMhShRAQJQogIAo0QvBYGeIEoNQHY+EKHEMwGB5RIlBqApGQpQogGCwBUSJQagKRkKUKICAKFEAAVGiF4LBzhAlBqE6HglR4hiAwfKIEoNQFYyEKFEAwWALiBKDUBWMhChRAAFRogACokQvBIOdIUoMQnU8EqLEMQCD5RElBqEqGAlRogCCwRYQJQahKhgJUaIAAqJEAQREiV4IBjtDlBiE6ngkRIljAAbLI0oMQlUwEqJEAQSDLSBKDEJVMBKiJAEIU16cLr8de+2PKk1/9mYpKiwQREkCEFpZoqy0QCpr6qS8sraVO3AZCfw4AUQJpyLqBBAlUSfKfogSzkAcCSBK4kiVPRElnIE4EkCUxJHqantOfnGa/OHPN8tDN5/f6Ct9eq4pOTk5iJIEGLS2BKKktclx3U8lgCjhfESdAKIk6kTZD1HCGYgjAURJHKmyJ6KEMxBHAoiSOFJtQpScf8Xf5cVHxzVZjTtKEoDQyhKIklYGx2U/mQCihAMSdQKIkqgTZT9ECWcgjgQQJXGkyp6IEs5AHAkgSuJItQlRcsrYcXLAsO2kqKhQtthkPRm285aSn5eXWYkoSQBCK0sgSloZHJchSjgDiSaAKEk07lQUQ5SkAnPiQyJKEo88FQURJanAnPiQiJI2RP7lvG/kqSmvNrvDEQftKSXFhfLOh7Nk0tTXpeMapfLl/IXywOP/khHDd5MxpxyZuXbpyuo2dMGlcSZQXJArtXX1Ul1bH2cZ9k5ZAsE/6M39ua+vF8nNzUlZIozb1gQK8nIkLy9XKqp4nlJbs+T6VQkEP9AGAi74N3Alz+niWESUQPDPW0lRnqyo4O+q1kRaV1eXeds+r8YJFBXkSvD9U1VNHdGQQGQJtC8pkBXl1aL5p8DgZ4ooXzn19cEfpba/Pvtivtz32D+b3ejkkcOlXUnxj77+yMQXZOxfbpO3ptyauatkGaKk7TBi2qG4ME9q6uqlhr94Y0o4nduu0a6g2T/3dYEo4XugdB6MNkxdkJ+b+cEWUdKGELm0UQIZUVKcv0qUVNSQDglEkkDwQ34g4FZwplqVJ98jNB1bUUGe1Eu9VFUjSlp1sLioyQQyoqSiOiPhtL6CnymifEUmSlrb1IuvvSOjz7pCpk26SYqLCnnrTWuDTOA63nqTQMgpLMEzSlIIPeaReetNzAGncHveepNC6AmMzFtvEgg5hSV4600KoScwMm+9SSDkeyZMkfUG9JbBg/rKkmXL5cwLxktBfp7cdtVZmeo8oyQBCK0sgShpZXBc9pMJIEo4IFEngCiJOlH2Q5RwBuJIAFESR6rsiSjhDMSRAKIkjlRX2/PKvz0gt947seG/bjx4gPx17GjptVY3REkC+belBKKkLelxbXMJIEo4G1EngCiJOlH2Q5RwBuJIAFESR6rsiSjhDMSRAKIkjlSb2LOiskoWLFwsa5S2k7KO7Rut4I6ShCC0ogyipBWhcUkzM06HAAAgAElEQVSLCSBKWoyIBSETQJSEDIzlLSaAKGkxIha0IgFESStC45IWE0CUtBgRC1qRAKKkFaFFfQmiJOpEo9sPURJdluz0fQKIEk5D1AkgSqJOlP0QJZyBOBJAlMSRKnsiSjgDcSSAKIkj1ZB7IkpCBpbgckRJgmGnqBSiJEWwExoVUZJQ0CkqgyhJEewER0WUJBh2ikohSlIEO8FRESUJht1cKUSJAgjNtIAo0cvG584QJT7T09k7okQnF5+7QpT4TE9v74gSvWx87gxR4jM9vb0jShSwQZQogIAo0QvBYGeIEoNQHY+EKHEMwGB5RIlBqApGQpQogGCwBUSJQagKRkKUKICAKFEAAVGiF4LBzhAlBqE6HglR4hiAwfKIEoNQFYyEKFEAwWALiBKDUBWMhChRAAFRogACokQvBIOdIUoMQnU8EqLEMQCD5RElBqEqGAlRogCCwRYQJQahKhgJUaIAAqJEAQREiV4IBjtDlBiE6ngkRIljAAbLI0oMQlUwEqJEAQSDLSBKDEJVMBKiRAEERIkCCIgSvRAMdoYoMQjV8UiIEscADJZHlBiEqmAkRIkCCAZbQJQYhKpgJESJAgiIEgUQECV6IRjsDFFiEKrjkRAljgEYLI8oMQhVwUiIEgUQDLaAKDEIVcFIiBIFEBAlCiAgSvRCMNgZosQgVMcjIUocAzBYHlFiEKqCkRAlCiAYbAFRYhCqgpEQJQogIEoUQECU6IVgsDNEiUGojkdClDgGYLA8osQgVAUjIUoUQDDYAqLEIFQFIyFKFEBAlCiAgCjRC8FgZ4gSg1Adj4QocQzAYHmfREl5Tbk8/t8H5YNv3pWBndaTg342QkrySwxS8X8kRIn/DDVOgCjRSMX/nhAlChgiShRAQJTohWCwM0SJQaiOR0KUOAZgsLxPouTSV86V5z+f3EBhaK8d5ZztLjFIxf+RECX+M9Q4AaJEIxX/e0KUKGCIKFEAAVGiF4LBzhAlBqE6HglR4hiAwfI+iZKDJwyTFVXLGygU55fIQ8MnSV5unkEyfo+EKPGbn9buESVayfjdF6JEAT9EiQIIiBK9EAx2higxCNXxSIgSxwAMlvdJlIx6eoTMWfpZA4VOxV3kngMeN0jF/5EQJf4z1DgBokQjFf97QpQoYIgoUQABUaIXgsHOECUGoToeCVHiGIDB8j6JkidmPiI3zbhWauqqJT83X0ZucqIMH3SYQSr+j4Qo8Z+hxgkQJRqp+N8TokQBQ0SJAgiIEr0QDHaGKDEI1fFIiBLHAAyW90mUBPFX1lbKnKWzpVeHdaQ4r9ggERsjIUpscNQ2BaJEGxEb/SBKFHBElCiAgCjRC8FgZ4gSg1Adj4QocQzAYHnfREkSCIJP13n4w3tk5rcfyfpdN5T91z2ET9cJGTyiJGRgLM8qAURJVjGxKGQCiJKQgcWxHFESR6rR7FlWWiCVNXVSXlkbzYbsQgIigijhGESdAKIk6kTZD1Hy4zNw3ktnyWtzX2r4wk59dpezh57PYQmRAKIkRFgszToBREnWUbEwRAKIkhBhxbUUURJXsm3fF1HS9gzZ4ccJIEo4FVEngCiJOlH2Q5Q0PgO1dbWy/0M7S119XcMXSgvbZz5dh1f2CSBKss+KldkngCjJPitWZp8AoiT7rGJbiSiJLdo2b4woaXOEbNBEAogSjkXUCSBKok6U/RAlPz4DIx7bX76tWNjwhd4d1pGb9r6HwxIiAURJiLBYmnUCiJKso2JhiAQQJSHCimspoiSuZNu+L6Kk7Rmyw48TQJRwKqJOAFESdaLshyj58RmY8PH9cttbN0hNXY3k5xbIqM1+K/sN/AWHJUQCiJIQYbE06wQQJVlHxcIQCSBKQoQV11JESVzJtn1fREnbM2QHRAlnIP4EECXxZ5y2CoiSpolX1FbIF0s/k94d+kpRXlHajkWb50WUtDlCNmgiAUQJxyKOBBAlcaQack9EScjAElyOKEkw7BSV4o6SFMFOaFRESUJBp6gMoiRFsBMcFVGSYNgpKoUoSRHsBEdFlCQYdnOlECUKIDTTAqJELxufO0OU+ExPZ++IEp1cfO4KUeIzPb29I0r0svG5M0SJz/T09o4oUcAGUaIAAqJELwSDnSFKDEJ1PJIrUVJfXy+TZj0pr335b+nerocMX+8w6V66luM0KB9FAoiSKFJkj9UTQJRwJuJIAFESR6rsiShRcAYQJQogIEr0QjDYGaLEIFTHI7kSJY9+/ID8bcY1DdN3a9ddbv35/VKQW+A4Ecq3NQFESVsT5PqmEkCUcC7iSABREkeq7IkoUXAGECUKICBK9EIw2BmixCBUxyO5EiVjnj9Vps97vdH01+15uwzoNMhxIpRvawKIkrYmyPWIEs5AUgkgSpJKOl11ECUKeCNKFEBAlOiFYLAzRIlBqI5HikOULK1cIi/PfSEz2dCeO0jHorIfTXnpK+fK859PbvTf797/Melc0tVxIpRvawKIkrYmyPWIEs5AUgkgSpJKOl11ECUKeCNKFEBAlOiFYLAzRIlBqI5HilqULKlcLKOfOVIWVyzKTFZW3FnG73XXj2TJewveknNf+r2sqFqeWbfzOnvKWduc6zgNykeRAKIkihTZY/UEeOsNZyKOBBAlcaTKnogSBWcAUaIAAqJELwSDnSFKDEJ1PFLUouTJmRPk+mmXN5pq1Ga/leGDDvvRpLV1tTJ7yScSPJ+kQ1FHx0lQPqoEECVRJck+P0wAUcJ5iCMBREkcqbInokTBGUCUKICAKNELwWBniBKDUB2P5FKUOB6d8jElgCiJKdiUb4soSfkBiGl8RElMwaZ8W0SJggOAKFEAAVGiF4LBzhAlBqE6HilqUbKwfIEc/eRBEtwtErzycvNk/LB/SK8OfRxPSvmkEkCUJJV0uuogStLFO6lpESVJJZ2uOogSBbwRJQogIEr0QjDYGaLEIFTHI0UtSoJxvl45T6bP+09msk27byE9StdyPCXlk0wAUZJk2umphShJD+skJ0WUJJl2emohShSwRpQogIAo0QvBYGeIEoNQHY8UhyhxPBLlHSeAKHEMwGh5RIlRsI7HQpQ4BmC0PKJEAVhEiQIIiBK9EAx2higxCNXxSIgSxwAMlkeUGISqYCREiQIIBltAlBiEqmAkRIkCCIgSBRAQJXohGOwMUWIQquORECWOARgsjygxCFXBSIgSBRAMtoAoMQhVwUiIEgUQECUKICBK9EIw2BmixCBUxyMhShwDMFgeUWIQqoKRECUKIBhsAVFiEKqCkRAlCiAgShRAQJTohWCwM0SJQaiOR0KUOAZgsDyixCBUBSMhShRAMNgCosQgVAUjIUoUQECUKICAKNELwWBniBKDUB2PhChxDMBgeUSJQagKRkKUKIBgsAVEiUGoCkZClCiAgChRAAFRoheCwc4QJQahOh4JUeIYgMHyiBKDUBWMhChRAMFgC4gSg1AVjIQoUQABUaIAAqJELwSDnSFKDEJ1PBKixDEAg+URJQahKhgJUaIAgsEWECUGoSoYCVGiAAKiRAEERIleCAY7Q5QYhOp4JESJYwAGyyNKDEJVMBKiRAEEgy0gSgxCVTASokQBBESJAgiIEr0QDHaGKDEI1fFIiBLHAAyWR5QYhKpgJESJAggGW0CUGISqYCREiQIIiBIFEBAleiEY7AxRYhCq45EQJY4BGCyPKDEIVcFIiBIFEAy2gCgxCFXBSIgSBRAQJQogIEr0QjDYGaLEIFTHIyFKHAMwWB5RYhCqgpEQJQogGGwBUWIQqoKRECUKICBKFEBAlOiFYLAzRIlBqI5HQpQ4BmCwPKLEIFQFIyFKFEAw2AKixCBUBSMhShRAQJQogIAo0QvBYGeIEoNQHY+EKHEMwGB5RIlBqApGQpQogGCwBUSJQagKRkKUKICAKFEAAVGiF4LBzqyLksWV38qi8oXSt2N/yc3JNUhQ30iIEn1MfO8IUeI7QZ39I0p0cvG9K0SJ7wR19o8oUcAFUaIAAqJELwRPO6uorZAbp10pL899QTqXdJUjNhgpO/TeNTONZVEyfsbV8tjHD2bmXKt9T7lsl3HSrV13Tyn60zaixB9WvnSKKPGFlF99Ikr84uVLt4gSX0j51SeiRAEvRIkCCIgSvRA87eyud2+Ve967raH7/Nx8uf3nD0rXdms2KUoWlX8jS6uWyjod+klOTo6XU89Z+pmMenpEo95/PnC4nDTkDC/n8alpRIlPtPzoFVHiByffukSU+EbMj34RJX5w8q1LRIkCYogSBRAQJXoheNrZ+S+dLa/OfbFR92O3v0S27bnjj0TJ5a9dJFNmP51Z269soFyy8zXSsajMu8mnfv6cXPbKeY363qjbZvKXXa/zbhbfGkaU+EZMf7+IEv2MfOwQUeIjNf09I0r0M/KxQ0SJAmqIEgUQECV6IXja2R3v3CT3vX9Ho+7v3O+RzNtQfvjWmw8XvienTh7VaN1h6x8lx2x8gneTr6haLiMe31+qaisbej9x89Nkv3UP8m4W3xpGlPhGTH+/iBL9jHzsEFHiIzX9PSNK9DPysUNEiQJqiBIFEBAleiF42lnwVppx0y6Xdxe8KZ2Lu8gu6+wpvxx8dGaaH4qSJ2dOkOunXd5oym167iDnbn+pl5O/OX+avPTFvzIPc91ozU1lnwEHSlFekZez+NQ0osQnWn70iijxg5NvXSJKfCPmR7+IEj84+dYlokQBMUSJAgiIEr0QDHb2Q1HybcVCOfKJ4VJbV9sw6ZnbnCO7rjPM4OSMFFcCiJK4kk3vvoiS9LKPc3JESZzppndvREl62cc5OaIkznSz3BtRkmVQDpaVlRZIZU2dlFd+/0OsgzYoaSyB1T/15vUvX5ZXv3xJllUtlU3WHCJ79d9Pgoe/8iKBbBNAlGSbFOuyTQBRkm1SrAuTAKIkTFqszTYBREm2SbEuTAKIkjBpxbQWURJTsBFsiyiJIES2+FEClj8eGNxuEkCUuMndclVEiWW67mZDlLjL3nJlRIlluu5mQ5S4y76hMqJEAYRmWkCU6GXjc2eIEp/p6ewdUaKTi89dIUp8pqe3d0SJXjY+d4Yo8Zme3t4RJQrYIEoUQECU6IVgsDNEiUGojkdClDgGYLA8osQgVAUjIUoUQDDYAqLEIFQFIyFKFEBAlCiAgCjRC8FgZ4gSg1Adj4QocQzAYHlEiUGoCkZClCiAYLAFRIlBqApGQpQogIAoUQABUaIXgsHOECUGoToeCVHiGIDB8ogSg1AVjIQoUQDBYAuIEoNQFYyEKFEAAVGiAAKiRC8Eg50hSgxCdTwSosQxAIPlESUGoSoYCVGiAILBFhAlBqEqGAlRogACokQBBESJXggGO0OUGITqeCREiWMABssjSvyFWlNXI6/MfUEWVSyULdfaVtZu31PNMIgSNShMNYIoMYVTzTCIEgUoECUKICBK9EIw2BmixCBUxyMhShwDMFgeUeIn1Nq6Wjltygny8aIPMgPk5xbIpTtfIxt020TFQIgSFRjMNYEoMYdUxUCIEgUYECUKICBK9EIw2BmixCBUxyMhShwDMFgeUeIn1A8WviunTT6hUfO799tHTt9qjIqBECUqMJhrAlFiDqmKgRAlCjAgShRAQJTohWCwM0SJQaiOR0KUOAZgsDyixE+oiBI/udF12xJAlLQtP65uOgFEiYKTgShRAAFRoheCwc4QJQahOh4JUeIYgMHyiBI/oQbPJzn6yYNkUfk3DQOM3f4S2bbnjioG4o4SFRjMNYEoMYdUxUCIEgUYECUKICBK9EIw2BmixCBUxyMhShwDMFgeUeIv1KWVS+Str6dlHua6YddNZECnQWqGQZSoQWGqEUSJKZxqhkGUKECBKFEAAVGiF4LBzhAlBqE6HglR4hiAwfKIEoNQFYyEKFEAwWALiBKDUBWMhChRAAFRogACokQvBIOdIUoMQnU8EqLEMQCD5RElBqEqGAlRogCCwRYQJQahKhgJUaIAAqJEAQREiV4IBjtDlBiE6ngkRIljAAbLI0oMQlUwEqKkeQhVtVXyxMyH5e3506Vv2QA5dP0jpLSgvQJq+ltAlOhn5GOHiBIF1BAlCiAgSvRCMNgZosQgVMcjIUocAzBYHlFiEKqCkRAlzUMYN+2vMnHmow0LNl5zM7lsl+sUUNPfAqJEPyMfO0SUKKCGKFEAAVGiF4LBzhAlBqE6HglR4hiAwfKIEoNQFYyEKGkewuGP7SeLKxY1LMjNyZWHhk+SkoJ2CsjpbgFRopuPr90hShSQQ5QogIAo0QvBYGeIEoNQHY+EKHEMwGB5RIlBqApGQpQ0D+GUycfLxwvfb1jQrqBUHv7Fswqo6W8BUaKfkY8dIkoUUEOUKICAKNELwWBniBKDUB2PhChxDMBgeUSJQagKRkKUNA9h0qdPyo0zrpLKmgoJ7iYZscGv5VcbjFRATX8LiBL9jHzsEFGigBqiRAEERIleCAY7syJKFpV/I0urlso6HfpJTk6OQVL+jIQo8YeVL50iSnwh5VefiJKf5hU80PWzJZ9KzzV6S3BHCa/sEkCUZJcTq8IlgCgJl1csqxElscQayaZlpQVSWVMn5ZW1kezHJiQQJGBBlFz+2kUyZfbTGaD9ygbKJTtfIx2LygDsKAFEiaPgjZX9fOlsuX7a5fLfRR/JhmtuJH/a+SxZu7SPfLO00tikjOMqAUSJq+Rt10WU2ObrajpEiavkf1AXUaIAQjMtIEr0svG5M99FyYcL35NTJ49qhOCw9Y+SYzY+wWcsXveOKPEan5rmT5x0tMxaPDPTT3CX2Fa9hsh1e41HlKgh1HQjK6qXy5fLvshI6/zcfNXdIkpU4/G2OUSJt+hUN44oUYAHUaIAAqJELwSDnfkuSp6bNVGufP3iRmS26bmDnLv9pQZp+TESosQPTpq7LK9eKQdPGCZ19XUNoqSsZA159lf/RJQoBvfkzAkyfsZVUltXK52Ku8iftrtYBnfdSG3HiBK1aLxuDFHiNT61zSNKFKBBlCiAgCjRC8FgZ76Lkm8rFsoxTx4iVbXf345/+tZ/kt377m2QVrQjLa1cIl+vnCf9Og6UvNy8yDZHlEQWZao3OuGZI+TzJbMaRMmQnpvKjXvfjChReirKa8rl0Al7SU1dTUOHQ3psLRftdKXSjkUQJWrRZBr7YOG7ctOMcTJ7ySeycbfN5OQtzpSu7dbU3bSIIErUI/KyQUSJAmyIEgUQECV6IRjszHdREiB546tX5eW5L8iyqqWyyZpDZK/++6m/5dv1UXrww7vltrduyLTRrbSHnLf9ZdK/bGAkbSFKIokx9ZtMm/e63P3ebTJ78SeybpdBcsrQE2XjbpsjSpSejE++/VhOevbXjbrr1q6H3Lnfw0o7RpSoBfO/xo564iBZsHJeQ5u+3C2KKNF+svzsD1GigBuiRAEERIleCAY7syBKDGKJdaTgLpwjHj+w4W0NQbGd+uwuZw89P5K6iJJIYmSTHyTAp97oPw7B26SOm/hL+Wr53IZmh6/3Sxm16clqm+eOErVoJPgku189fkCjBsuKO8u9Bzyht+n/dYYoUY/IywYRJQqwIUoUQECU6IVgsDNEiUGoLYz01vzpcvbUxj+89Fqjj9y8z72RhIEoiSRGNkGUeHcGPl08UybPflrmLv1cBnfbSPbqv7/qTyBDlOg+YoHQX1i+oKHJrdbeVs7f4a+6m+atN+r5+NogokQBOUSJAgiIEr0QDHaGKDEItYWRgmcIHP3kQZnf2H33OnzwMXLURsdHEgaiJJIY2QRRwhmIOQFEScwBt3H7F+ZMkYc/vFeCjwpfr/P6ctymJ8nATuu1cdf4L+eOkvgzTmMFRIkC6ogSBRAQJXohGOwMUWIQahYjfbzoA/nnZ5Nk3oqvZMOum8iw/vvKGoUdsriy5SWIkpYzYkW4BHjrTbi8WJ1dAoiS7HJiVbgEECXh8mJ1dgkgSrLLKetVNbW1kpuTK7m5OT+6ZtnylRJ8vVPHNRp9DVGSdbyJLywrLZDKmjopr6xNvDYF7SaAKLHL1tVkiBJXydutiyixy9blZIgSl+nbrY0oscvW5WSIkgjTL6+oksNOOE9GHbGf7LvH0IadV5ZXyFkX/U3++e8Zmf+28eABMu6i30rXzh0z/xtREiGEiLdClEQcKNtlEkCUcBCiTgBREnWi7Ico0XkGqmqr5OW5z8uSysUydO0dZM3//wlaPr0QJT7R8qdXRIk/rHzqFFESEa3Lx98vt9/3dGa3y8ac0EiU3HLPU/LgE1PlrnFjpKS4UP7v7KukX5+15MLfj0SURJR/XNsgSuJKNt37IkrSzT+O6RElcaSa7j0RJfr4B5Lk9CmjZea3H2WaK8orlst2GSfrdRmsr9lmOkKUeIPKq0YRJV7h8qZZRElEqBYvWS4VVVUy4sQL5bRRhzYSJQcff64M23lLOf5X+2aqTZr6upx23g3y7r9ul5ycHO4oiYhBHNsgSuJIlT0RJZyBqBNAlESdKPshSvSdgaY+PWvvAQfIb7f4vb5mESXeMLHQKKLEAkV9MyBKImYy7PAz5eSRv2gkSrbce7RcdNaxGVkSvN7/eLYcMuo8efmJ66XjGqWIkogZRLkdoiTKNNnruwQQJZyFqBNAlESdKPshSvSdAUSJPiZ0pCMBRIkODta6QJS0QPSJZ1+WeQsWNblq8KC+st2WGzb62uqipL6+Xjbc5ddywyWnyk5DN8ms/WT2XNn/mDEy+f4rZK3uXWTx8ipr58rMPCVFeVJTWy/VNXVmZmIQ9wmUtS9s9s99fb00+TBo913TgeYECvNzJS8vV8orazS3SW8eJZCflyOlxfmZfwNXVHCuNKCrqKmQXz16sCz8wceMX7brVbJ1z++fi6ehz5/qITcnR0pL8mTZSs5Ua1jV1dVLzo8/L6I1W5m6prgwT+pFpLKKD18wBdbxMB1KC2XZyioJvjfX+gp+pojylVMf2IssX3c/Mlm++GpBk6s332hd2WPHLX5SlARfDO4oufjs42TPnVatXf2OEr4ByRKGg2VF+blSW1+f+UaRFwlElUDww0dzf+6Db4Ka+tSsqGqzj80Egh9qg/f+V1YjdW0STn6q4DwFP3zU1tVLBT98JA+gmYpLKpfIf+a+Josrv5XNe2wh/TsNSKS34FvnTxbPlLKiTtK1XddW1wx+yC8uyJNyzlSrMuR7hKZjC35ZEJzRar5fb9W54qKmE2hXlJ/5BZTmnwKDnymifIUSJWELN/XWm+AZJXvtspUcN+Lnme14RknYVN2t56037rK3XHn1t95U1lbKLW9eJ1M/fy7zTegRGx4rO/XZ3XIEzBZxArz1JuJA2U546w2H4LsEFqycL2NfOEM+W/Jp5j8dMOgQGb3Z71oVEA9zbVVsXNRCArz1hiMSRwK89SaiVGtqa6W+rl72PeoPMvqo/WXf3YdKQcEqw3Pz3U/KQ08+n/nUm3YlRTL6rCv51JuIco97G0RJ3Amnc//VRcmEj++Xm2Zc2xBG8JDnW/a5X9Zu3zOdATF16AQQJaEj44IWEkCUcES+S+D2t8fLAx/c1SiQ64f9XfqXrRs6JERJ6Mi4IIsEECVZhMSS0AkgSkJH1vQFwafYBHeK/PD15J2XZITIipUVcsYFN8oLr76V+fKG6/WTcRefImt2Lcv87y8XlkfUBdtEnQCiJOpE2S9IYHVRcsnL58gLc6Y0CuesoefJzn32IDASyCoBRElWMbEoRAKIkhBhGV865vlTZfq8xt/jtvbfKESJ8cPiaDxEiaPgjZdFlCQIeMmyFVJdXSNdO3dsVBVRkiCEkKUQJSEDY3lWCawuSh768B659a3rG117yz73Sc81eme1H4tIAFHCGYg6AURJ1In6u98znz4h1/zn0oYBCvOK5I79Hs68VTTsC1ESNjHWZ5MAoiSblFgTNgFESdjEYliPKIkh1Ii2RJREFCTbNEpgdVGypHKxXDftcnlz/huZbzx367uX/HLw0aRGAlkngCjJOioWZpkAoiTLoFKwLHiO1rOfPikzgn+jijvJjr13k027D2nV5IiSVsXGRS0kgCjhiMSRAKIkjlRD7okoCRlYgssRJQmGnaJSq4uSFI3OqDElgCiJKdgUb4soSTH8GEdHlMQYboq3RpSkGH6MoyNKYgw3260RJdkmlfw6REnymaehIqIkDZSTnRFRkmzeaaiGKEkD5eRnRJRkl/mni/8rf5txjXy86EMZ3HUjOWnImbJW+7WzuziFqxAlKYSewMiIkgRCbqkEoqSlhNx9HVHiLnvLlREllum6mQ1R4iZ3y1URJZbpupsNUZJd9idOOlpmLZ7ZsHijbpvJX3a9LruLU7gKUZJC6AmMjChJIOSWSiBKWkrI3dcRJe6yt1wZUWKZrpvZECVucrdcFVFima672RAlLWdfXr1SDp4wTOrq6xoWlxa2l4eGT2r54pSuQJSkFHzMYyNKYg44m+0RJdmk5GYNoiT63GvqajK/JVl7jV5SWtA++gIe7Igo8QCSZy0iSjwD5kG7iBIPIHnYIqIkO2gnPHOEfL5kVsPiwV03lit2uzG7i1O4ClGSQugJjIwoSSDklkogSlpKyN3XESXRZv/+N+/IRf8eI99WLJS83DwZvdmpsu/A4dEW8WA3RIkHkDxrEVHiGTAP2kWUeADJwxYRJdlBe/3Ll+W+D+7M/GJpYKf15JiNRskG3TbJ7uIUrkKUpBB6AiMjShIIuaUSiJKWEnL3dURJtNn/6fnTZNq81xo2zc/NlweGPyMl+SXRFlK+G6JEOSAP20OUeAhNecuIEuWAPG0PUeIpOOVtI0qUA/K0PUSJAnCIEgUQmmkBURItm6OeOEgWrJzXaNPr9rxdBnQaFG0h5bshSpQD8rA9RImH0JS3jChRDsjT9hAlnoJT3jaiRDkgT9tDlCgAhyhRAAFRkgiEm94cJxM+uq+h1lrte8ot+9wnuTm5idTXUgRRooWEnT4QJXZYauC6Y74AACAASURBVJkEUaKFhK0+ECW2eGqZBlGihYStPhAlCngiShRAQJQkAmFJ5WJ55tPH5f0F70jPDn1k9757S/+ygYnU1lQEUaKJho1eECXNc6yorZAvln4mvTv0laK8IhvAE5jCR1ESfErIq1++JPNXfCVb9NhGendYJ4GkKBEmAURJmLRYm20CiJJsk2JdmAQQJWHSimktoiSmYCPYlrfeRBAiW/woAUQJhyLqBBAlTSf68hcvyF9eO18qayqkXUGpnL7Vn2TbXjtGEn/ww/iEj+6X+SvnydZrbyfD+u0rOTk5keytYRMfRcnZ/zpZ3vp6eia+4BlY525/mWyx1jYa4qSH/yUQhyhZWb1C5i6bI+t07C+FeYVkncIEECUphJ7AyIiSBEJuqQSipKWE3H0dUeIue8uVESWW6bqZDVHSdO6/evwAWVT+TcMXgzsMbtr7njZDqq6rlpFPHSrfrPy6Ya8TNjtFDhx0aJv3TmqDpZVLZMHK+dK344DMp5Ct/vJNlMxZ+pmMenpEozG26bmDnLv9pUlFSp0sEohalDw5c4L8bcbVUlNXI2sUdZTztr9MBnfdKItOWGIpAUSJJZp6ZkGUKGCBKFEAoZkWECV62fjcGaLEZ3o6e0eU/JjL8qplcsiEvRp9IT+3QJ44ZGqbIX7y7cdy0rO/brTP5j22kot3uqrNeyexwZ3v3Cz3vv/3TKlupT3kkp2ulp5r9G5UGlGSBIn01YhSlNTW1cpBj+wplbUVDUGu33UjuXK38ekLNuUTI0pSfgBiGh9RElOwYbZFlIRJK9m1iJJk805LNURJWkgnNyeipOms/zD1FHlz/hsNX9xqrW3l/B3/2mYwwV0qwd0qP3zt1Gd3OXvo+W3eO+4Nvq1YKCMe279RmZ3X2VPO2uZcr0VJfX29HP/04Zm3YHz3Om2rMbJHv33ijpT9QyQQpShp6i6i0sL28tDwSSE6YqmFBBAlFijqmwFRooAJokQBhGZaQJToZeNzZ4gSn+nF03vwQ96Uz56Rf3/xvHQt6SYH/2yEdC9dK+tiiJKmo/pq+Zcy6dMnZPaST6R/2aDMD81rtV8761x/auFlr54vUz97NrMk+OHs/O3/Iht02ySSvePc5I2vXpWxL5zeqES/soFyw7A7vBYlQfMrqpfLm/Onydcr58kGXTeWQZ3XjzNK9m5FAlGKkqD86GeOlM+WfNrQyV7995NTtjy7FZ1xic8JIEp8pqe3d0SJAjaIEgUQECUqIUye/bQED2PsUtI1897/1W8NV9l0Fk0hSrIIKWVLnpr5qFw37fs7Hbq16y7j97or8wDSbF6IkmxSin5NS8/5iL5i23esqq2SXz2+vwRvTfruddRGx8vhg4/xXpS0PR12iDuBqEXJp4tnyj8/myRzlsyW9boOlr37HyCdijvHPQb7K0sAUaIMiJF2ECUKQCJKFEBAlKiDMHn2RLnitYsb+upQVCa3//yBrH9wVDfQDxpKUpQED2tcUb1C+nbsrzmS1Pd2/ktny6tzX2yUw6U7j5NNum+eVTaIkqxiYtH/EnhvwVvy4hf/kvkrVt158fMBB0pJQTtECSck9gSiFiWxN0wBLxJAlHiBybsmESUKkCFKFEBAlKiDcMnL58gLc6Y06uvCHa8w8VGPSYmSH741YGCn9eSina6UjkVl6ljTkMi4aX+ViTMfbRRF8Okswae0ZPNClGSTEmvCJODbw1zDzMZadwn4Jkremj9dnpn1RCawfQceKBt01f/2Ond03VVGlLjL3nJlRIkCuogSBRAQJeog3Dj9KrnrvVtlRdVyKcgtkLLiTnLbzx+QPh36qus1bENJiJJp816XPz1/aqPWfr3xaDl0/SPDtsv6BBL4aOH7medGLKtamqm2Q+9d5Y/bXph1ZURJ1lGxMMsEECVZBsWyUAn4JEo+XPienD5ltNTV12VmzM3JlRuG3SnrdOwXamYWx58AoiT+jNNYAVGigDqiRAEERIk6CH+bca1c8fpFUldfm+mtS0k3efGIt6Uwr1Bdr2EbSkKUTPj4frlpxrWNWtu93z5y+lZjwrbL+oQSCL4Zn7V4pnRp103KijqFqoooCRUXi7NIAFGSRUgsCZ2AT6LkrndvlXveu63RjKM2+60MH3RY6Lm5IN4EECXx5pvW3RElCsgjShRAQJSogzDm+VNl2rzXpKq2UvJy8iU/N1+u2/N2GdBpkLpewzaUhCj5cvlcGfX04VJbt0o0Ba9zt79Mtum5fdh2We9BAogSDyB51iKixDNgnrTrkyhZ/SHbQcTBR4AHHwXOS1cCiBJdPKx0gyhRQBJRogACokQdhEtfOVee/3xyo77u3v8x6VzSVV2vYRtKQpQEPb325b/llbkvZB7muln3LSX42MTg1mFe9hJAlNhj6noiRIlrAvHWD/59/ce7t8riym9l5z57yHGbniRFeUXxFhURn0RJ8FbIU547Tr5aPjeTS/DJe9ft+Xcpzi+OPScKhEsAURIuL1ZnlwCiJLucYl2FKIk13jZtXlZaIJU1dVJe+f1v5du0IRdnnUDwqQznvvT7zDNKgtfO6+wpZ21zbtbXa16YlCjRnAG9RZsAoiTaPNlNBFFi9xQEdxweN/Ewqa+vbxgyqbeU+CRKvgvny+VfZP7ftdv3snsoPJ8MUeI5QKXtI0oUgEGUKIDQTAuIErdsgreNzF7yiXRr1106FHV020yE1RElEYbJVpkEECUchKgTQJREnaie/aZ+/pxc9sp5jRrasfdu8odtL4i9SR9FSeyhUKDNCSBK2hwhGzSRAKJEwbFAlCiAgCjRC8FgZ4gSg1Adj4QocQzAYHlEiUGo/xtp7rI5ctzEXzYa8NhNfiMH/2xE7EMjSmKPOJUFECWpxB770IiS2CNuuQCipOWMXK3gjhJXyduuiyixzdfFdIgSF6nbrokosc33vvfvkCmzn8k8o2TT7lvISUPOkI5FZbEPjSiJPeJUFkCUpBJ77EMjSmKPuOUCiJKWM3K1AlHiKnnbdREltvm6mA5R4iJ12zURJbb5upoOUeIqedt1ESW2+bqaDlHiKvkf1EWUKIDQTAuIEr1sfO4MUeIzPZ29I0p0cvG5K0SJz/T09o4o0cvG584QJT7T09s7okQBG0SJAgiIEr0QDHaGKDEI1fFIiBLHAAyWR5QYhKpgJESJAggGW0CUGISqYCREiQIIiBIFEBAleiEY7AxRYhCq45EQJY4BGCyPKDEIVcFIiBIFEAy2gCgxCFXBSIgSBRAQJQogIEr0QjDYGaLEIFTHIyFKHAMwWB5RYhCqgpEQJQogGGwBUWIQqoKRECUKICBKFEBAlOiFYLAzRIlBqI5HQpQ4BmCwPKLEIFQFIyFKFEAw2AKixCBUBSMhShRAQJQogIAo0QvBYGeIEoNQHY+EKHEMwGB5RIlBqApGQpQogGCwBUSJQagKRkKUKICAKFEAAVGiF4LBzhAlBqE6HglR4hiAwfKIEoNQFYyEKFEAwWALiBKDUBWMhChRAAFRogACokQvBIOdIUoMQnU8EqLEMQCD5RElBqEqGAlRogCCwRYQJQahKhgJUaIAAqJEAQREiV4IBjtDlBiE6ngkRIljAAbLI0oMQlUwEqJEAQSDLSBKDEJVMBKiRAEERIkCCIgSvRAMdoYoMQjV8UiIEscADJZHlBiEqmAkRIkCCAZbQJQYhKpgJESJAgiIEgUQECV6IRjsDFFiEKrjkRAljgEYLI8oMQhVwUiIEgUQDLaAKDEIVcFIiBIFEBAlCiAgSvRCMNgZosQgVMcjIUocAzBYHlFiEKqCkRAlCiAYbAFRYhCqgpEQJQogIEoUQECU6IVgsDNEiUGojkdClDgGYLA8osQgVAUjIUoUQDDYAqLEIFQFIyFKFEBAlCiAgCjRC8FgZ4gSg1Adj4QocQzAYHlEiUGoCkZClCiAYLAFRIlBqApGQpQogIAoUQABUaIXgsHOECUGoToeCVHiGIDB8ogSg1AVjIQoUQDBYAuIEoNQFYyEKFEAAVGiAAKiRC8Eg50hSgxCdTwSosQxAIPlESUGoSoYCVGiAILBFhAlBqEqGAlRogACokQBBESJXggGO0OUGITqeCREiWMABssjSgxCVTASokQBBIMtIEoMQlUwEqJEAQREiQIIiBK9EAx2higxCNXxSIgSxwAMlkeUGISqYCREiQIIBltAlBiEqmAkRIkCCIgSBRAQJXohGOwMUWIQquORECWOARgsjygxCFXBSIgSBRAMtoAoMQhVwUiIEgUQECUKICBK9EIw2BmixCBUxyMhSr4H8MZXr8pzsyZKSUGJ7DPgQBnUeX3HdPwsjyjxk5v2rhEl2gn52R+ixE9u2rtGlCgghChRAAFRoheCwc4QJQahOh4JUbIKwIz5b8gfp57SQCM/t0Bu2ede6V66lmNC/pVHlPjHzIeOESU+UPKvR0SJf8x86BhRooASokQBBESJXggGO0OUGITqeCREySoAt719ozz4wT8a0ThtqzGyR799HBPyrzyixD9mPnSMKPGBkn89Ikr8Y+ZDx4gSBZQQJQogIEr0QjDYGaLEIFTHIyFKVgF44IO75Pa3xzeicdFOV8qQHls7JuRfeUSJf8x86BhR4gMl/3pElPjHzIeOESUKKCFKFEBAlOiFYLCzNIiSTxf/V/424xr5eNGHMrjrRnLSkDNlrfZrG6QZ30hVtVXy8tznZUnlYhm69g6yZmmPZoshSlZFs7B8gZw6+QRZsHJ+5n/3Kxso1+5xq+Tn5scHyujOiBKjYB2PhShxDMBoeUSJUbCOx0KUOAYQlEeUKICAKNELwWBnaRAlJzxzhHy+ZFYDvY26bSZ/2fU6gzTjGSmQJKdPGS0zv/0oU6Aor1gu22WcrNdlcJMFESWNY5mz9DMpzi+Wbu26xwMoBbsiSlIA2cGIiBIHoaegJKIkBZAdjIgocRD66iURJQogIEr0QjDYmXVRsrxqmRwyYa9G5EoL28tDwycZpBnPSG/Nny5nTz250eZ7DzhAfrvF7xEl8UTOrqslgCjRcyQ+WPiuTPzkMamqqZRh/feTzXtsqae5kJ0gSkIGxvKsEkCUZBUTi0ImgCgJGVgcyxElcaQazZ5lpQVSWVMn5ZW10WzILiQgItZFSQB55FOHylfL5zbwHtx1Y7litxvhn2UCiJIsg2JZbAkgSmKLNtTGwd1RJ046Wmrqqhuuu2r3m+RnXTYItY+WxYgSLSRs9YEoscVTyzSIEgUkECUKIDTTAqJELxufO0uDKHn5ixfkoY/ukVmLZ8rATuvJMRuNkg26beIztkR7r6ipkGMnHiaLyr9pqHvhjlfIFmtt02QfvPUmUTypKIYo0YH5yZkT5Ppplzdq5pD1j5CRG/+fjgZDdoEoCRkYy7NKAFGSVUwsCpkAoiRkYHEsR5TEkWo0eyJKosmRXRonkAZRAvO2J7C0colMn/965mGum6w5RPp27N/spoiStufNDo0TQJToOBH//uJ5uejff2zUzG+GnCH7Dhyuo8GQXSBKQgbG8qwSQJRkFROLQiaAKAkZWBzLESVxpBrNnoiSaHJkF0QJZyDeBBAl8eabxt0RJTqoB3eXnTpllMxe/EmmoW7teshVu4+XLiXddDQYsgtEScjAWJ5VAoiSrGJiUcgEECUhA4tjOaIkjlSj2RNREk2O7IIo4QzEmwCiJN5807g7okQX9XkrvpLq2irp3WEdXY2F7AZREjIwlmeVAKIkq5hYFDIBREnIwOJYjiiJI9Vo9kSUtJzjiqrl8uqXL0l5Tbls23MH6VzSteWLUr6Ct96k/ADEMD6iJIZQU74loiTlByCm8RElMQWb8m0RJSk/ADGNjyiJKdgw2yJKwqSV7FpEyU/nXV69Uk545khZsHJeZmFpQXsJnsbv+2+84j5liJK4E07f/oiS9DGPe2JESdwJp3N/REk6ucc9NaIk7oTTuT+iRAF3RIkCCM20gCj5aTZTP39OLnvlvEaLRmwwUo7c8Fi9UBV0hihRAMFYC4gSY0AVjIMoUQDBYAuIEoNQFYyEKFEAwWALiBIFUBElCiAgSloFAVHSqtgEUdK63Liq+QQQJX6cjgUr50vwcE4f7rpDlPhxpnzrElHiGzE/+kWU+MHJty4RJQqIIUoUQECUtArCsqqlcsTjB0pVbWXD9dfscYsM6rx+q/ZLy0WIElukq2qrZMLH98n7C96RdTv/TIavd1jmbWhJvhAlSaYdvlZtXa38+ZWx8vIXz2cuXq/LBvLnna6SdgWl4TdL6ApESUJBp6wMoiRlwBMaF1GSUNApK4MoUQAcUaIAAqKk1RAWli+QN+dPyzzMdfMeW8ra7Xu1eq+0XIgosUX6itculsmzJzYMNaTH1nLRTlcmOiSiJNG4QxebNu81+dPzpzW6buQmJ8ohP/tV6L2SugBRklTS6aqDKEkX76SmRZQklXS66iBKFPBGlCiAgCjRC8FgZ4gSW1APf2w/WVyxqGGo3JxcefzgqZKXm5fYoNpFSfDg55fnviArq1fItr12lC4l3RLLRkOhBz64S25/e3yjVnbvt4+cvtUYDe012QOiRC0arxtDlHiNT23ziBK1aLxuDFGiAB+iRAEERIleCAY7Q5TYgjrq6REyZ+lnDUN1Ku4i9xzweKJDahYlgSQ5ZfJxDRkV55dI8Ba9Ph36JpqRy2JfLp8rxz51aKMWzt/hr7LV2tu6bOsna1sTJQ9/dK889vFDUl1XJXv130+O3miU2uwtN4YosUzX3WyIEnfZW66MKFFAF1GiAAKiRC8Eg50hSmxBnfTpk3LdtMulpq5a8nPz5cgNj5ND1z8y0SE1i5LgTpILX/pDozwOWf8IGbnx/yWaketiL30xVd746hUpry6XzXpsKcP67Ss5OTmu22q2viVR8tb86XL21JMbzfrHbS+UHXrvqjZ/q40hSqySdTsXosRt/larI0oUkEWUKICAKNELwWBnFkVJ8Iyax//7oHzwzbsysNN6ctDPRkhJfolBek2PVFlbKZ8vmSW9O/aV4rzixOdGlCQeufmClkTJhI/vl5tmXNuI2QHrHiKjN/+deY7aBkSUaCNiox9EiQ2O2qZAlCgggihRAAFRoheCwc4sipJLXzlXnv98cgOtob12lHO2u8QgPZ0jaRYlwadjjXzqUFletawhvCt3/5us32VDnWHSVSYBS6Jk+rz/yJjnG0uRM7YeK7v13QvaCSeAKEk48JSUQ5SkBHTCYyJKEg68qXKIEgUQECV6IRjszKIoOXjCMFlRtbyBVvAcioeGT0r0gaYGj0rWI2kWJcEQi8q/kRnz38g8zHWz7ltKrw59sp6NhW4SsCRK6uvr5cYZV8mrc/+deUZJ8MlUJw05Q4rzk7/7yw1NPVURJXpYWOoEUWKJpp5ZECUKWCBKFEBAlOiFYLAzi6JEwwNNDR6VrEfSLkqyHoSFahKwJErUhEojgijhEMSRAKIkjlTZE1Gi4AwgShRAQJTohWCwM4ui5ImZj2SeAfDdA01HbnKiDB90mEF6OkdClOjk4nNXiBKf6entHVGil43PnSFKfKant3dEiQI2iBIFEBAleiEY7MyiKAkwBQ80nbN0tvTqsI6TB5oaPCpZj4QoyToqFmaZAKIky6BYFioBREmouFicZQKIkiyDYlmoBBAloeKKZzGiJJ5co9i1rLRAKmvqpLyyNort2IMEMglYFSXgdZcAosRd9lYrI0qsknU7F6LEbf5WqyNKrJJ1OxeixG3+meqIEgUQmmkBUaKXjc+dIUp8pqezd0SJTi4+d4Uo8Zme3t4RJXrZ+NwZosRnenp7R5QoYIMoUQABUaIXgsHOECUGoToeCVHiGIDB8ogSg1AVjIQoUQDBYAuIEoNQFYyEKFEAAVGiAAKiRC8Eg50hSgxCdTwSosQxAIPlESUGoSoYCVGiAILBFhAlBqEqGAlRogACokQBBESJXggGO0OUGITqeKQ0i5K6+jp5dtZT8uqXL0mPdmvJoesfIZ1Lujom4n95TaLkja9eledmTZSSghLZZ8CBMqjz+v4HnNIJECUpBR/z2IiSmANO6faIEgXgESUKICBK9EIw2BmixCBUxyOlWZQ88MFdcvvb4xsI9Fqjj9y4112Sn5vvmIrf5bWIkhnz35A/Tj2lIcz83AK5ZZ97pXvpWn4HnNLuESUpBR/z2IiSmANO6faIEgXgESUKICBK9EIw2BmixCBUxyOlWZT8/p8nyTsLZjQicNPe90jvDus4puJ3eS2i5La3b5QHP/hHozBP22qM7NFvH78DTmn3iJKUgo95bERJzAGndHtEiQLwiBIFEBAleiEY7AxRYhBqCyOtqF4uD3zwD5m9+BPZuPvmst/Ag6QwrzCyINIsSi595Vx5/vPJjbK8e//HePtNG0+XFlGy+h1DwVgX7XSlDOmxdRsn5HIXCSBKXKRuvyaixD5jFxMiSlykvlpNRIkCCIgSvRAMdoYoMQi1hZHO/Odv5N0Fbzas2mfggXLykDMjCyLNouTN+dPkopf/KCuqlmfy3Kv/fnLKlmdHlm1aN9IiShaWL5BTJ58gC1bOz6DoVzZQrt3jVt5a5enBRJR4Ck5524gS5YA8bQ9RogAcokQBBESJXggGO0OUGIT6EyMtr1omh0zYq9GKbu16yJ37PRxZEGkWJUGItXW1MmvJTFmzXQ/pUNQxsly/XP5FZq+12/eKbE9fNtIiSr7La87Sz6Q4v1i6tevuS4T02UQCiBKORRwJIEriSJU9ESUKzgCiRAEERIleCAY7Q5QYhPoTIwU/xB/0yJ5SWVvRsGq9LhvI1bvfFFkQaRclkQX5v42qaqvknBdOl7e+np75L5v32Eou2OFyycvNi7qU2v20iRK1QdFYqAQQJaHiYnGWCSBKsgyKZaESQJSEiqvlxTW1tZKbkyu5uTktL/7fCkRJ1lElvrCstEAqa+qkvLI28doUtJsAosQu2+Ymu/u92+Se926X4KNsi/KLM2+72a1v47tM2pIKoqQt6f342qc/eVyufeOyRl/447YXyg69d422kOLdECWK4XjcGqLEY3iKW0eUKIbjcWuIkgjhlVdUyWEnnCejjthP9t1jaMPOU16cLr8de+2PKk1/9mYpKiwQREmEECLeClEScaBsl0kAUZLOg7CyeoXMXTZH1unYP9IHuQZpIkqiPVPjp18tj/33wUabjthgpBy54bHRFlK8G6JEMRyPW0OUeAxPceuIEsVwPG4NURIRvMvH3y+33/d0ZrfLxpzQSJRMfnGa/OHPN8tDN5/fqFqfnmtKTk4OoiQiBnFsgyiJI1X2RJRwBqJOAFESbaLBg3eDB/D+8HXdnrfLgE6Doi2keDdEiWI4HreGKPEYnuLWESWK4XjcGqIkIniLlyyXiqoqGXHihXLaqEN/JErOv+Lv8uKj45qsxh0lEUGIYRtESQyhsiV3lHAGIk8AURJ5pDJl9jPyxrzXMhtvvfa2snOfPaIvonhHRIliOB63hijxGJ7i1hEliuF43BqiJGJ4ww4/U04e+YsfiZJTxo6TA4ZtJ0VFhbLFJuvJsJ23lPy8VQ+FQ5REDCHC7RAlEYbJVg0JcEcJhyHqBBAlUSfKfogSzkAcCSBK4kiVPRElnIE4EkCUtJDqE8++LPMWLGpy1eBBfWW7LTds9LWmRMk7H86SSVNfl45rlMqX8xfKA4//S0YM303GnHJk5tqFy6riYMueESTQvihPquvqpbK6LoLd2IIEViXQZY3C5v/c19eL5GT/MGgyJYEggeKCXMnPy5XlFTUEQgKRJFCQlyPBDx/VtfWydGV1JHuyCQnk5Yis0a5AFq/gTLXqNPA9QpOxlRblSV29SHkVH77QqnPFRU0m0HmNQlm8rEo0/xQY/EwR5Sunvj74Wya7192PTJYvvlrQ5OLNN1pX9thxixZFyeoXPzLxBRn7l9vkrSm3Zu4qqeQPdXYwHKzKz8+Vurr6zP/xIoGoEigqbP7PfW29SPCNJC8SCJNA8Elrwf/V1Gj+5zzMRKx1nUBuTo4UFORKXX29VPPLAtc47NTPyZHC/Byp4ky1iinfIzQdW15erojUS20QEC8SiCiBwoI8qaqpDY6W2lfwM0WUr1CiJGzhpu4oWX2PF197R0afdYVMm3STFBcV8tabsCEnuJ633iQYdopK8dabFMFOaFTeepNQ0Ckqw1tvUgQ7wVF5602CYaeoFG+9SRHsBEflrTcRhV1TWyv1dfWy71F/kNFH7S/77j5UCgryM7vfM2GKrDegtwRv1VmybLmcecF4KcjPk9uuOivzdZ5REhGEGLZBlMQQKlvyMFdlZ+CNr16V52ZNlJKCEtlnwIEyqPP6yjpsuR1EScsZsSJcAoiScHmxOrsEECXZ5cSqcAkgSsLlxersEkCUZJdTi6tOO++GzHNIfvh68s5LpF+fteTKvz0gt947seFLGw8eIH8dO1p6rdUNUdJism4XIErc5m+1OneU6CE7Y/4b8seppzQ0lJ9bILfsc690L11LT5NZdIIoySIkloRKAFESKi4WZ5kAoiTLoFgWKgFESai4WJxlAoiSLINq67KKyipZsHCxrFHaTso6tm+0HXeUtDXd+K5HlMSXbZp3RpTooX/b2zfKgx/8o1FDp201Rvbot4+eJrPoBFGSRUgsCZUAoiRUXCzOMgFESZZBsSxUAoiSUHGxOMsEECVZBhXnMkRJnOm2bW9ESdvy4+qmE0CU6DkZD3xwl9z+9vhGDV2005UypMfWeprMohNESRYhsSRUAoiSUHGxOMsEECVZBsWyUAkgSkLFxeIsE0CUZBlUnMsQJXGm27a9ESVty4+rESXaz8DC8gVy6uQTZMHK+ZlW+5UNlGv3uFXyc1c9Y8qXF6LEF1L+9Iko8YeVT50iSnyi5U+viBJ/WPnUKaJEAS1EiQIIzbSAKNHLxufOuKNEH705Sz+T4vxi6dauu77msugIUZJFSCwJlQCiJFRcLM4ydfDBUAAAERJJREFUAURJlkGxLFQCiJJQcbE4ywQQJVkGFecyREmc6bZtb0RJ2/Lj6qYTQJRwMqJOAFESdaLshyjhDMSRAKIkjlTZE1HCGYgjAURJHKmG3BNREjKwBJcjShIMO0WlECUpgp3QqIiShIJOURlESYpgJzgqoiTBsFNUClGSItgJjoooSTDs5kohShRAaKYFRIleNj53hijxmZ7O3lcXJfX19TJrySdSVlQmnUu66mw6i64WlX8jj3x8v3yx7HPZvPuWsu/AX0huTm4WV7KkrQkgStqaINc3lQCihHMRRwKIkjhSZU9EiYIzgChRAAFRoheCwc4QJQahOh7ph6IkeDDt2BfOkM+WfJrp6oBBh8jozX7nuMPw5evq6+T/njlSPl86u+HiX20wUo7Y8Njwm3FF6AQQJaEj44IsEkCUZBESS0IngCgJHRkXZJEAoiSLkOJegiiJO+HW788dJa3PjiubTwBRwumIOoEfipLg446Djz3+4ev6YX+X/mXrRl021v3mrfhKfv3kwY1qrNdlA7l695tircvmqxJAlHAS4kgAURJHquyJKOEMxJEAoiSOVEPuiSgJGViCyxElCYadolKIkhTBTmjUH4qSMc+fKtPnvd6o8llDz5Od++yRUDfRlCmvKZdDJgyT2rrahg2H9NhaLtrpymgKsMtPJoAo4YDEkQCiJI5U2RNRwhmIIwFESRyphtwTURIysASXI0oSDDtFpRAlKYKd0Kg/FCXPfPqEXPOfSxsqF+YVyR37PSxlRZ0S6ia6MtdNu1wmfvKoBM9cKc4vkTHbXiRbrLVNdAXYqdkEECUcjjgSQJTEkSp7Iko4A3EkgCiJI9WQeyJKQgaW4HJESYJhp6gUoiRFsBMa9YeipLK2Up799EmZMf8NKSvuJDv23k027T4koU6iL7Oierl8tXyu9O04QPJz86MvwI5NJoAo4WDEkQCiJI5U2RNRwhmIIwFESRyphtwTURIysASXI0oSDDtFpRAlKYKd0Kh8PHBCQaeoDKIkRbATHBVRkmDYKSqFKEkR7ARHRZQkGHZzpRAlCiA00wKiRC8bnztDlPhMT2fviBKdXHzuClHiMz29vSNK9LLxuTNEic/09PaOKFHABlGiAAKiRC8Eg50hSgxCdTwSosQxAIPlESUGoSoYCVGiAILBFhAlBqEqGAlRogACokQBBESJXggGO0OUGITqeCREiWMABssjSgxCVTASokQBBIMtIEoMQlUwEqJEAQREiQIIiBK9EAx2higxCNXxSIgSxwAMlkeUGISqYCREiQIIBltAlBiEqmAkRIkCCIgSBRAQJXohGOwMUWIQquORECWOARgsjygxCFXBSIgSBRAMtoAoMQhVwUiIEgUQECUKICBK9EIw2BmixCBUxyMhShwDMFgeUWIQqoKRECUKIBhsAVFiEKqCkRAlCiAgShRAQJTohWCwM0SJQaiOR0KUOAZgsDyixCBUBSMhShRAMNgCosQgVAUjIUoUQECUKICAKNELwWBniBKDUB2PhChxDMBgeUSJQagKRkKUKIBgsAVEiUGoCkZClCiAgChRAAFRoheCwc4QJQahOh4JUeIYgMHyiBKDUBWMhChRAMFgC4gSg1AVjIQoUQABUaIAAqJELwSDnSFKDEJ1PBKixDEAg+URJQahKhgJUaIAgsEWECUGoSoYCVGiAAKiRAEERIleCAY7Q5QYhOp4JESJYwAGyyNKDEJVMBKiRAEEgy0gSgxCVTASokQBBESJAgiIEr0QDHaGKDEI1fFIiBLHAAyWR5QYhKpgJESJAggGW0CUGISqYCREiQIIiBIFEBAleiEY7AxRYhCq45EQJY4BGCyPKDEIVcFIiBIFEAy2gCgxCFXBSIgSBRAQJQogIEr0QjDYGaLEIFTHIyFKHAMwWB5RYhCqgpEQJQogGGwBUWIQqoKRECUKICBKFEBopoWOpQVSXVMnKytr9TZJZ94lgCjxDpn6hhEl6hF51yCixDtkXjSMKPECk3dNIkq8Q+ZFw4gSBZgQJQogIEr0QjDYGaLEIFTHIyFKHAMwWB5RYhCqgpEQJQogGGwBUWIQqoKRECUKICBKFEBAlOiFYLAzRIlBqI5HQpQ4BmCwPKLEIFQFIyFKFEAw2AKixCBUBSMhShRAQJQogIAo0QvBYGeIEoNQHY+EKHEMwGB5RIlBqApGQpQogGCwBUSJQagKRkKUKICAKFEAAVGiF4LBzhAlBqE6HglR4hiAwfKIEoNQFYyEKFEAwWALiBKDUBWMhChRAAFRogACokQvBIOdIUoMQnU8EqLEMQCD5RElBqEqGAlRogCCwRYQJQahKhgJUaIAAqJEAQREiV4IBjtDlBiE6ngkRIljAAbLI0oMQlUwEqJEAQSDLSBKDEJVMBKiRAEERIkCCIgSvRAMdoYoMQjV8UiIEscADJZHlBiEqmAkRIkCCAZbQJQYhKpgJESJAgiIEgUQECV6IRjsDFFiEKrjkRAljgEYLI8oMQhVwUiIEgUQDLaAKDEIVcFIiBIFEBAlCiAgSvRCMNgZosQgVMcjIUocAzBYHlFiEKqCkRAlCiAYbAFRYhCqgpEQJQogIEoUQECU6IVgsDNEiUGojkdClDgGYLA8osQgVAUjIUoUQDDYAqLEIFQFIyFKFEBAlCiAgCjRC8FgZ4gSg1Adj4QocQzAYHlEiUGoCkZClCiAYLAFRIlBqApGQpQogEALJEACJEACJEACJEACJEACJEACJEACJOAqgZz6+vp6V8WpSwIkQAIkQAIkQAIkQAIkQAIkQAIkQAKaEkCUaKJBLyRAAiRAAiRAAiRAAiRAAiRAAiRAAk4TQJQ4jd9G8RUrK2Tp8pXSvWsnyc3NsTEUU5AACZhJoKa2VhYsXCKdy9aQosICM3MxSLIJfLNoiZS2K5GS4sJkC1PNZAJ1dfWyaPFSKSjIl45rlJqckaFIgARsJbDw26WZgbp06mBrsGamQZSkAnM8Qz7/ylty2fX3yGdfzM8UmHDbRTKof694irFrqhIIztaJf7hKbrjkVNlp6Capmp1ho03g5ruflKtvfqhh02E7bynnnnaMdOzADybRJm13t8/nzpfRZ13Z8G/dL/bZUc457WgpyM+zOzSTxZrAK2+8J78dO05Wlldk6my56c/kjP87TDZcr1+sddk8PQlcddODcss9T8krT94gHdq3S8/gTBp5AoHUvfXep+TOByfJosXLpF1Jsfzn6fGR19G4IaJEIxUPepr68pvymz9eLcf/al85YNh20qnjGlJUVMhv2jxgp73Fjz6ZI0ecdHHmG0hEiXZa+vt78Mmp0nvtNWWTwQNlzpdfy7GnXSbHHv5zOeawvfQ3T4cqEhh15uXSvrRELj77eJn39UI59ITz5ZxTj5L99txWRX804V8Cr05/XxZ8s1h2HLqJVFRUyQVX3SHBDyM3Xnqqf8PQsboEJjz9ovzpslszfSFK1OHxrqErxj8gjz7zoow+6gDZe9etpaq6Wnp06+zdHK1pGFHSmtRSfk3w/N9fHDtW1hvYRy7946iUp8H4USawYOFiOWz0+XLaqEPl/CvvkMvP+T/uKIkyYPaSsX+5TeZ+tUBuu+os0iCBFhNYsmyFbLvfb+Qf142RzTZcN7P+4mvuknlfL5JxF5/S4vUsIIFsEnji2Zfl7D/fJG9NuVXy87hTKZvMWNN0Av9580M58Q9XywVn/lrOuOBGRAkHpU0JBN+X73zQ7+Sis46V4Xvv0Ka9fLwYUeIjNcc9B7dd7XDgybLrdptJdU2NrFhZKUOHDJaRh+8jxUW8d9sxHm/Ll1dUyTGnXCI7bL2xnDRyuGy592hEibc0dTZeXVMrww4/Q36+21A5ffShOpukK1UJfDJ7rux/zBiZ+vDV0q1LWaa3ux56Vh6b9G956ObzVfVKM/4mEEiSmbPmcqb8Raii8+Ct8Acff65cfcFJmecGHvDrMYgSFWT8bWLKi9Plt2OvlV8esKt8/OkXUlRUIPvvua3sv+d2/g4VonNESYiw0rB02tsfy/R3Pm5y1ODtNQfvu5N88N/PMn8RH7LvzrLtlhvK0mUr5LLr75Wf77aNnHfGMWmIiRlDJFBbWye33Tex2St222GI9O3VI/Obj+AV3EUSPBQYURIi5BQu/XLeN/LUlFebnfyIg/b80VsBz738dpk45TV56q5LZc2uq37o5UUCP5XAjHf/m3kr4MtPXN/wwM0Hnpgq4+98TP754FWERwJtTuC7u0luufxMGbrFBm3ejw3SmcCSpSvk0BPOk6MP3UtGDN8tI94QJek8C1FOffcjk+XP1/4j8wvM9fr3lo8+nSPX3TZB/jJ2dObnPusvRIl1wiHne/G1t+XlN95r8qrgEyOCZ5J8J0pefHRc5lMkgtcjE1+QS8bdI69PvFFycvjkm5Cxm14efOJI8P7G5l4H7rV95hk3uxz8u4yIKy0pziy948FJsvO2m2asdfAATl4k8MMEgt+c3ffYP5sN5eSRwzMPHPvudcPfH5Xr//6o3Df+XNnoZzwwkdOUXQLf3VHy/CPXSNfOHTMXcUdJdtmxquUE/v2fdyV4Bs65px0th+6/S8sXsIIEmklg0tTX5bTzbpCjDhkmwXfhi5Ysk0DCHXbArnLIvjvJ+uuuQ3YkEDqBQJTc/9g/5fE7/txwbXAHXPBspeDOJesvRIl1wjHM9917tu+9YaxsPHhApsIDj/8r80yJd/55Ox8RHEPm1rcMHtz6j4efazTmNbc8LPvuMVT23X1o5u04vEigNQkED0i8Yvz9EtwFcMc1Z8vgQX1bsw3XpDSBpp5RcuFVd8rX33zLM0pSeiaiGvu7H2zT+t7/qHJkn1UJBFJ3ykvTG+IIPs48+CH3hCP3y/zmf0DfnkRFAqET+O5TKN+cfGvDJ70Fd4CXV1TK9X/+Xej9fLsAUeIbMSX9jj7riswT2gOb+M2ipXLmBTfKWt27pMIuKkFgvg3eemMecSIDBk/+Dz4BYPxlp0v/ddZqqNm9WycempgIAf+LHHfGX6VD+1K5+Ozj+NQb/3GqmCB4xs0fL7lZzj5phOy6/eYNPXXq2L7RnXAqmqUJLxPgrTdeYlPX9NLlK2W3Q06Tow8ZJv939AHy7kezZMSJF8qYU47MvMXL+gtRYp1wTPN98dUC+d0512XehhO8tt5s/cz71b67NTmmsmybogQQJSmCHeOoww4/U4K/r1Z/TfzHZbJOr+4xVmZrKwnM+vwrGX3WlQ3nKHi74HmnHyMFBflWRmSOhBO44Ko7M7ezr/7i7pKEQRguhygxDDfh0V554z357dhxEtz9HbwCQXLWSSNS8csmREnCh81aua+/WSz5+XkNzyqxNh/zkAAJkAAJkECQwPwF30r70hIpbff9s29IhgRIgARIgASsJxA8bzD4NzBtd70hSqyfbOYjARIgARIgARIgARIgARIgARIgARLIOgFESdZRsZAESIAESIAESIAESIAESIAESIAESMB6AogS64SZjwRIgARIgARIgARIgARIgARIgARIIOsEECVZR8VCEiABEiABEiABEiABEiABEiABEiAB6wkgSqwTZj4SIAESIAESIAESIAESIAESIAESIIGsE0CUZB0VC0mABEiABEiABEiABEiABEiABEiABKwngCixTpj5SIAESIAESIAESIAESIAESIAESIAEsk4AUZJ1VCwkARIgARIgARIgARIgARIgARIgARKwngCixDph5iMBEiABEiABEiABEiABEiABEiABEsg6AURJ1lGxkARIgARIgARIgARIgARIgARIgARIwHoCiBLrhJmPBEiABEiABEiABEiABEiABEiABEgg6wT+H+Wv4QGMTH7dAAAAAElFTkSuQmCC",
"text/html": [
"