{
"cells": [
{
"cell_type": "markdown",
"id": "dfe37963-1af6-44fc-a841-8e462443f5e6",
"metadata": {},
"source": [
"## Expert Knowledge Worker\n",
"\n",
"## Extra Jupyter Notebook - Day 4.5 - switch out Chroma for FAISS!\n",
"\n",
"FAISS is Facebook AI Similarity Search"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ba2779af-84ef-4227-9e9e-6eaf0df87e77",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "802137aa-8a74-45e0-a487-d1974927d7ca",
"metadata": {},
"outputs": [],
"source": [
"# imports for langchain\n",
"\n",
"from langchain.document_loaders import DirectoryLoader, TextLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.schema import Document\n",
"from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
"# from langchain_chroma import Chroma\n",
"from langchain.vectorstores import FAISS\n",
"import numpy as np\n",
"from sklearn.manifold import TSNE\n",
"import plotly.graph_objects as go\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "58c85082-e417-4708-9efe-81a5d55d1424",
"metadata": {},
"outputs": [],
"source": [
"# price is a factor for our company, so we're going to use a low cost model\n",
"\n",
"MODEL = \"gpt-4o-mini\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ee78efcb-60fe-449e-a944-40bab26261af",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv()\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "730711a9-6ffe-4eee-8f48-d6cfb7314905",
"metadata": {},
"outputs": [],
"source": [
"# Read in documents using LangChain's loaders\n",
"# Take everything in all the sub-folders of our knowledgebase\n",
"\n",
"folders = glob.glob(\"knowledge-base/*\")\n",
"\n",
"documents = []\n",
"for folder in folders:\n",
" doc_type = os.path.basename(folder)\n",
" loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader)\n",
" folder_docs = loader.load()\n",
" for doc in folder_docs:\n",
" doc.metadata[\"doc_type\"] = doc_type\n",
" documents.append(doc)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7310c9c8-03c1-4efc-a104-5e89aec6db1a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Created a chunk of size 1088, which is longer than the specified 1000\n"
]
}
],
"source": [
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"chunks = text_splitter.split_documents(documents)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cd06e02f-6d9b-44cc-a43d-e1faa8acc7bb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"123"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(chunks)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2c54b4b6-06da-463d-bee7-4dd456c2b887",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document types found: employees, products, company, contracts\n"
]
}
],
"source": [
"doc_types = set(chunk.metadata['doc_type'] for chunk in chunks)\n",
"print(f\"Document types found: {', '.join(doc_types)}\")"
]
},
{
"cell_type": "markdown",
"id": "77f7d2a6-ccfa-425b-a1c3-5e55b23bd013",
"metadata": {},
"source": [
"## A sidenote on Embeddings, and \"Auto-Encoding LLMs\"\n",
"\n",
"We will be mapping each chunk of text into a Vector that represents the meaning of the text, known as an embedding.\n",
"\n",
"OpenAI offers a model to do this, which we will use by calling their API with some LangChain code.\n",
"\n",
"This model is an example of an \"Auto-Encoding LLM\" which generates an output given a complete input.\n",
"It's different to all the other LLMs we've discussed today, which are known as \"Auto-Regressive LLMs\", and generate future tokens based only on past context.\n",
"\n",
"Another example of an Auto-Encoding LLMs is BERT from Google. In addition to embedding, Auto-encoding LLMs are often used for classification.\n",
"\n",
"More details in the resources."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "78998399-ac17-4e28-b15f-0b5f51e6ee23",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 123 vectors with 1,536 dimensions in the vector store\n"
]
}
],
"source": [
"# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
"# Chroma is a popular open source Vector Database based on SQLLite\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"# Create vectorstore\n",
"\n",
"# BEFORE\n",
"# vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
"\n",
"# AFTER\n",
"vectorstore = FAISS.from_documents(chunks, embedding=embeddings)\n",
"\n",
"total_vectors = vectorstore.index.ntotal\n",
"dimensions = vectorstore.index.d\n",
"\n",
"print(f\"There are {total_vectors} vectors with {dimensions:,} dimensions in the vector store\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "057868f6-51a6-4087-94d1-380145821550",
"metadata": {},
"outputs": [],
"source": [
"# Prework\n",
"vectors = []\n",
"documents = []\n",
"doc_types = []\n",
"colors = []\n",
"color_map = {'products':'blue', 'employees':'green', 'contracts':'red', 'company':'orange'}\n",
"\n",
"for i in range(total_vectors):\n",
" vectors.append(vectorstore.index.reconstruct(i))\n",
" doc_id = vectorstore.index_to_docstore_id[i]\n",
" document = vectorstore.docstore.search(doc_id)\n",
" documents.append(document.page_content)\n",
" doc_type = document.metadata['doc_type']\n",
" doc_types.append(doc_type)\n",
" colors.append(color_map[doc_type])\n",
" \n",
"vectors = np.array(vectors)"
]
},
{
"cell_type": "markdown",
"id": "b0d45462-a818-441c-b010-b85b32bcf618",
"metadata": {},
"source": [
"## Visualizing the Vector Store\n",
"\n",
"Let's take a minute to look at the documents and their embedding vectors to see what's going on."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "427149d5-e5d8-4abd-bb6f-7ef0333cca21",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hoverinfo": "text",
"marker": {
"color": [
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"blue",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"red",
"orange",
"orange",
"orange",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green",
"green"
],
"opacity": 0.8,
"size": 5
},
"mode": "markers",
"text": [
"Type: products
Text: # Product Summary\n\n# Rellm: AI-Powered Enterprise Reinsurance Solution\n\n## Summary\n\nRellm is an inno...",
"Type: products
Text: ### Seamless Integrations\nRellm's architecture is designed for effortless integration with existing ...",
"Type: products
Text: ### Regulatory Compliance Tools\nRellm includes built-in compliance tracking features to help organiz...",
"Type: products
Text: Join the growing number of organizations leveraging Rellm to enhance their reinsurance processes whi...",
"Type: products
Text: Experience the future of reinsurance with Rellm, where innovation meets reliability. Let Insurellm h...",
"Type: products
Text: # Product Summary\n\n# Markellm\n\n## Summary\n\nMarkellm is an innovative two-sided marketplace designed ...",
"Type: products
Text: - **User-Friendly Interface**: Designed with user experience in mind, Markellm features an intuitive...",
"Type: products
Text: - **Customer Support**: Our dedicated support team is always available to assist both consumers and ...",
"Type: products
Text: ### For Insurance Companies:\n- **Basic Listing Fee**: $199/month for a featured listing on the platf...",
"Type: products
Text: ### Q3 2025\n- Initiate a comprehensive marketing campaign targeting both consumers and insurers to i...",
"Type: products
Text: # Product Summary\n\n# Homellm\n\n## Summary\nHomellm is an innovative home insurance product developed b...",
"Type: products
Text: ### 2. Dynamic Pricing Model\nWith Homellm's innovative dynamic pricing model, insurance providers ca...",
"Type: products
Text: ### 5. Multi-Channel Integration\nHomellm seamlessly integrates into existing insurance platforms, pr...",
"Type: products
Text: - **Basic Tier:** Starting at $5,000/month for small insurers with basic integration features.\n- **S...",
"Type: products
Text: All tiers include a comprehensive training program and ongoing updates to ensure optimal performance...",
"Type: products
Text: With Homellm, Insurellm is committed to transforming the landscape of home insurance, ensuring both ...",
"Type: products
Text: # Product Summary\n\n# Carllm\n\n## Summary\n\nCarllm is an innovative auto insurance product developed by...",
"Type: products
Text: - **Instant Quoting**: With Carllm, insurance companies can offer near-instant quotes to customers, ...",
"Type: products
Text: - **Mobile Integration**: Carllm is designed to work seamlessly with mobile applications, providing ...",
"Type: products
Text: - **Professional Tier**: $2,500/month\n - For medium-sized companies.\n - All Basic Tier features pl...",
"Type: products
Text: ### Q2 2025: Customer Experience Improvements\n- Launch of a new **mobile app** for end-users.\n- Intr...",
"Type: contracts
Text: # Contract with GreenField Holdings for Markellm\n\n**Effective Date:** November 15, 2023 \n**Contract...",
"Type: contracts
Text: ## Renewal\n1. **Automatic Renewal**: This contract will automatically renew for sequential one-year ...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Matching**: Access to advanced algorithms that connect GreenField Holdin...",
"Type: contracts
Text: ## Support\n1. **Customer Support Access**: The Client will have access to dedicated support through ...",
"Type: contracts
Text: **Signatures:** \n_________________________ _________________________ \n**...",
"Type: contracts
Text: # Contract with Greenstone Insurance for Homellm\n\n---\n\n## Terms\n\n1. **Parties**: This Contract (\"Agr...",
"Type: contracts
Text: 4. **Payment Terms**: \n - The Customer shall pay an amount of $10,000 per month for the Standard T...",
"Type: contracts
Text: ---\n\n## Features\n\n- **AI-Powered Risk Assessment**: Customer will have access to enhanced risk evalu...",
"Type: contracts
Text: - **Customer Portal**: A dedicated portal will be provided, allowing the Customer's clients to manag...",
"Type: contracts
Text: ______________________________ \n[Name], [Title] \nDate: ______________________\n\n**For Greenstone In...",
"Type: contracts
Text: # Contract with Roadway Insurance Inc. for Carllm\n\n---\n\n## Terms\n\n1. **Agreement Effective Date**: T...",
"Type: contracts
Text: ---\n\n## Renewal\n\n1. **Automatic Renewal**: This agreement will automatically renew for an additional...",
"Type: contracts
Text: ---\n\n## Features\n\n1. **Access to Core Features**: Roadway Insurance Inc. will have access to all Pro...",
"Type: contracts
Text: ---\n\n## Support\n\n1. **Technical Support**: Roadway Insurance Inc. will receive priority technical su...",
"Type: contracts
Text: # Contract with Stellar Insurance Co. for Rellm\n\n## Terms\nThis contract is made between **Insurellm*...",
"Type: contracts
Text: ### Termination\nEither party may terminate this agreement with a **30-day written notice**. In the e...",
"Type: contracts
Text: ## Features\nStellar Insurance Co. will receive access to the following features of the Rellm product...",
"Type: contracts
Text: ## Support\nInsurellm provides Stellar Insurance Co. with the following support services:\n\n- **24/7 T...",
"Type: contracts
Text: # Contract with TechDrive Insurance for Carllm\n\n**Contract Date:** October 1, 2024 \n**Contract Dura...",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This contract shall automatically renew for additional one-yea...",
"Type: contracts
Text: ## Support\n\n1. **Customer Support**: Insurellm will provide 24/7 customer support to TechDrive Insur...",
"Type: contracts
Text: **TechDrive Insurance Representative:** \nName: Sarah Johnson \nTitle: Operations Director \nDate: _...",
"Type: contracts
Text: # Contract with EverGuard Insurance for Rellm: AI-Powered Enterprise Reinsurance Solution\n\n**Contrac...",
"Type: contracts
Text: 4. **Usage Rights**: EverGuard Insurance is granted a non-exclusive, non-transferable license to acc...",
"Type: contracts
Text: 1. **Core Functionality**: Rellm provides EverGuard Insurance with advanced AI-driven analytics, sea...",
"Type: contracts
Text: 1. **Customer Support**: Insurellm will provide EverGuard Insurance with 24/7 customer support, incl...",
"Type: contracts
Text: ---\n\n**Signatures** \n**For Insurellm**: __________________________ \n**Name**: John Smith \n**Title...",
"Type: contracts
Text: # Contract with Belvedere Insurance for Markellm\n\n## Terms\nThis Contract (\"Agreement\") is made and e...",
"Type: contracts
Text: ## Renewal\n1. **Renewal Terms**: This Agreement may be renewed for additional one-year terms upon mu...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Matching**: Belvedere Insurance will benefit from Markellm's AI-powered ...",
"Type: contracts
Text: ## Support\n1. **Technical Support**: Technical support will be available from 9 AM to 7 PM EST, Mond...",
"Type: contracts
Text: **Belvedere Insurance** \nSignature: ______________________ \nName: [Authorized Signatory] \nTitle: ...",
"Type: contracts
Text: # Contract with Apex Reinsurance for Rellm: AI-Powered Enterprise Reinsurance Solution\n\n## Terms\n\n1....",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This Agreement will automatically renew for successive one-yea...",
"Type: contracts
Text: 2. **Seamless Integrations**: The architecture of Rellm allows for easy integration with existing sy...",
"Type: contracts
Text: 1. **Technical Support**: Provider shall offer dedicated technical support to the Client via phone, ...",
"Type: contracts
Text: **Insurellm, Inc.** \n_____________________________ \nAuthorized Signature \nDate: ________________...",
"Type: contracts
Text: # Contract with Velocity Auto Solutions for Carllm\n\n**Contract Date:** October 1, 2023 \n**Contract ...",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This contract will automatically renew for successive 12-month...",
"Type: contracts
Text: ## Support\n\n1. **Customer Support**: Velocity Auto Solutions will have access to Insurellm’s custome...",
"Type: contracts
Text: # Contract with GreenValley Insurance for Homellm\n\n**Contract Date:** October 6, 2023 \n**Contract N...",
"Type: contracts
Text: 4. **Confidentiality:** Both parties agree to maintain the confidentiality of proprietary informatio...",
"Type: contracts
Text: 1. **AI-Powered Risk Assessment:** Access to advanced AI algorithms for real-time risk evaluations.\n...",
"Type: contracts
Text: 3. **Regular Updates:** Insurellm will offer ongoing updates and enhancements to the Homellm platfor...",
"Type: contracts
Text: # Contract with BrightWay Solutions for Markellm\n\n**Contract Date:** October 5, 2023 \n**Contract ID...",
"Type: contracts
Text: 3. **Service Level Agreement (SLA):** \n Insurellm commits to a 99.9% uptime for the platform with...",
"Type: contracts
Text: 2. **Real-Time Quote Availability:** \n Consumers sourced via BrightWay Solutions will receive rea...",
"Type: contracts
Text: 3. **Training and Onboarding:** \n Insurellm agrees to provide one free training session on how to...",
"Type: contracts
Text: # Contract with Pinnacle Insurance Co. for Homellm\n\n## Terms\nThis contract (\"Contract\") is entered i...",
"Type: contracts
Text: ## Renewal\n1. **Renewal Terms**: At the end of the initial term, this Contract shall automatically r...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Risk Assessment**: Utilized for tailored underwriting decisions specific...",
"Type: contracts
Text: ## Support\n1. **Technical Support**: Insurellm shall provide 24/7 technical support via an email and...",
"Type: company
Text: # Overview of Insurellm\n\nInsurellm is an innovative insurance tech firm with 200 employees across th...",
"Type: company
Text: # Careers at Insurellm\n\nInsurellm is hiring! We are looking for talented software engineers, data sc...",
"Type: company
Text: # About Insurellm\n\nInsurellm was founded by Avery Lancaster in 2015 as an insurance tech startup des...",
"Type: employees
Text: # HR Record\n\n# Alex Chen\n\n## Summary\n- **Date of Birth:** March 15, 1990 \n- **Job Title:** Backend ...",
"Type: employees
Text: ## Annual Performance History\n- **2020:** \n - Completed onboarding successfully. \n - Met expecta...",
"Type: employees
Text: ## Compensation History\n- **2020:** Base Salary: $80,000 \n- **2021:** Base Salary Increase to $90,0...",
"Type: employees
Text: Alex Chen continues to be a vital asset at Insurellm, contributing significantly to innovative backe...",
"Type: employees
Text: # HR Record\n\n# Oliver Spencer\n\n## Summary\n- **Date of Birth**: May 14, 1990 \n- **Job Title**: Backe...",
"Type: employees
Text: ## Annual Performance History\n- **2018**: **3/5** - Adaptable team player but still learning to take...",
"Type: employees
Text: ## Compensation History\n- **March 2018**: Initial salary of $80,000.\n- **July 2019**: Salary increas...",
"Type: employees
Text: # HR Record\n\n# Emily Tran\n\n## Summary\n- **Date of Birth:** March 18, 1991 \n- **Job Title:** Digital...",
"Type: employees
Text: - **January 2017 - May 2018**: Marketing Intern \n - Supported the Marketing team by collaborating ...",
"Type: employees
Text: - **2021**: \n - Performance Rating: Meets Expectations \n - Key Achievements: Contributed to the ...",
"Type: employees
Text: - **Professional Development Goals**: \n - Emily Tran aims to become a Marketing Manager within the...",
"Type: employees
Text: # HR Record\n\n# Jordan Blake\n\n## Summary\n- **Date of Birth:** March 15, 1993 \n- **Job Title:** Sales...",
"Type: employees
Text: ## Annual Performance History\n- **2021:** First year at Insurellm; achieved 90% of monthly targets. ...",
"Type: employees
Text: ## Other HR Notes\n- Jordan has shown an interest in continuing education, actively participating in ...",
"Type: employees
Text: # Avery Lancaster\n\n## Summary\n- **Date of Birth**: March 15, 1985 \n- **Job Title**: Co-Founder & Ch...",
"Type: employees
Text: - **2010 - 2013**: Business Analyst at Edge Analytics \n Prior to joining Innovate, Avery worked as...",
"Type: employees
Text: - **2018**: **Exceeds Expectations** \n Under Avery’s pivoted vision, Insurellm launched two new su...",
"Type: employees
Text: - **2022**: **Satisfactory** \n Avery focused on rebuilding team dynamics and addressing employee c...",
"Type: employees
Text: ## Compensation History\n- **2015**: $150,000 base salary + Significant equity stake \n- **2016**: $1...",
"Type: employees
Text: ## Other HR Notes\n- **Professional Development**: Avery has actively participated in leadership trai...",
"Type: employees
Text: # HR Record\n\n# Maxine Thompson\n\n## Summary\n- **Date of Birth:** January 15, 1991 \n- **Job Title:** ...",
"Type: employees
Text: ## Insurellm Career Progression\n- **January 2017 - October 2018**: **Junior Data Engineer** \n * Ma...",
"Type: employees
Text: ## Annual Performance History\n- **2017**: *Meets Expectations* \n Maxine showed potential in her ro...",
"Type: employees
Text: - **2021**: *Exceeds Expectations* \n Maxine spearheaded the transition to a new data warehousing s...",
"Type: employees
Text: ## Compensation History\n- **2017**: $70,000 (Junior Data Engineer) \n- **2018**: $75,000 (Junior Dat...",
"Type: employees
Text: # Samantha Greene\n\n## Summary\n- **Date of Birth:** October 14, 1990\n- **Job Title:** HR Generalist\n-...",
"Type: employees
Text: ## Annual Performance History\n- **2020:** Exceeds Expectations \n Samantha Greene demonstrated exce...",
"Type: employees
Text: ## Compensation History\n- **2020:** Base Salary - $55,000 \n The entry-level salary matched industr...",
"Type: employees
Text: - **2023:** Base Salary - $70,000 \n Recognized for substantial improvement in employee relations m...",
"Type: employees
Text: # HR Record\n\n# Alex Thomson\n\n## Summary\n- **Date of Birth:** March 15, 1995 \n- **Job Title:** Sales...",
"Type: employees
Text: ## Annual Performance History \n- **2022** - Rated as \"Exceeds Expectations.\" Alex Thomson achieved ...",
"Type: employees
Text: ## Other HR Notes\n- Alex Thomson is an active member of the Diversity and Inclusion committee at Ins...",
"Type: employees
Text: # HR Record\n\n# Samuel Trenton\n\n## Summary\n- **Date of Birth:** April 12, 1989 \n- **Job Title:** Sen...",
"Type: employees
Text: ## Annual Performance History\n- **2023:** Rating: 4.5/5 \n *Samuel exceeded expectations, successfu...",
"Type: employees
Text: ## Compensation History\n- **2023:** Base Salary: $115,000 + Bonus: $15,000 \n *Annual bonus based o...",
"Type: employees
Text: - **Engagement in Company Culture:** Regularly participates in team-building events and contributes ...",
"Type: employees
Text: # HR Record\n\n# Alex Harper\n\n## Summary\n- **Date of Birth**: March 15, 1993 \n- **Job Title**: Sales ...",
"Type: employees
Text: ## Annual Performance History \n- **2021**: \n - **Performance Rating**: 4.5/5 \n - **Key Achievem...",
"Type: employees
Text: - **2022**: \n - **Base Salary**: $65,000 (Promotion to Senior SDR) \n - **Bonus**: $13,000 (20% o...",
"Type: employees
Text: # HR Record\n\n# Jordan K. Bishop\n\n## Summary\n- **Date of Birth:** March 15, 1990\n- **Job Title:** Fro...",
"Type: employees
Text: ## Annual Performance History\n- **2019:** Exceeds Expectations - Continuously delivered high-quality...",
"Type: employees
Text: ## Compensation History\n- **June 2018:** Starting Salary - $85,000\n- **June 2019:** Salary Increase ...",
"Type: employees
Text: ## Other HR Notes\n- Jordan K. Bishop has been an integral part of club initiatives, including the In...",
"Type: employees
Text: # HR Record\n\n# Emily Carter\n\n## Summary\n- **Date of Birth:** August 12, 1990 \n- **Job Title:** Acco...",
"Type: employees
Text: - **2017-2019:** Marketing Intern \n - Assisted with market research and campaign development for s...",
"Type: employees
Text: ## Compensation History\n| Year | Base Salary | Bonus | Total Compensation |\n|------|--------...",
"Type: employees
Text: Emily Carter exemplifies the kind of talent that drives Insurellm's success and is an invaluable ass..."
],
"type": "scatter",
"x": [
-5.657416,
-5.351562,
-4.974328,
-6.758723,
-5.1783767,
-8.013705,
-7.724633,
-7.009421,
-6.2622795,
-7.9906154,
-6.5681453,
-7.1537523,
-6.2945085,
-6.160263,
-6.581191,
-5.3914347,
-8.6511,
-8.733992,
-7.8306694,
-7.409052,
-7.850587,
-3.530956,
-0.3459931,
-9.164472,
-5.58201,
-0.42522067,
-2.365495,
-2.261155,
-7.4755054,
-1.9723155,
-0.5107074,
1.3728929,
0.13096334,
-4.7760177,
0.39533168,
-1.5076412,
-1.1420527,
-3.9531612,
-2.2061682,
1.4366357,
-0.0283329,
1.1999503,
1.9628308,
-2.8523593,
-3.594074,
-4.188691,
-2.7429156,
-0.9163674,
-3.9898236,
-0.10057961,
-7.456868,
-0.85561204,
-1.487623,
-2.7916193,
-3.697631,
-5.029476,
-1.3533958,
-0.5565509,
1.0467838,
-0.31597954,
0.58721346,
-2.8429143,
-3.255299,
-7.970828,
-3.3990865,
-3.9981933,
-4.9977264,
-5.7905965,
-3.4425216,
-1.8723228,
-0.18046375,
-8.393366,
-1.232387,
1.1742404,
2.166663,
1.3753349,
6.3670363,
11.381568,
11.183392,
4.079516,
6.262372,
11.423692,
11.232132,
7.7912073,
8.14449,
10.054505,
7.760033,
6.486052,
10.746775,
4.7841415,
5.8416777,
7.727125,
8.072181,
8.027484,
12.168078,
6.0563207,
7.114507,
9.875833,
10.239397,
9.473044,
12.688811,
8.840358,
10.427024,
10.3331375,
9.706115,
6.3000236,
10.958657,
5.7937546,
7.3150578,
11.871614,
11.910032,
13.061915,
6.655021,
11.099371,
9.484625,
5.4972415,
11.272516,
12.569222,
4.6411586,
7.664327,
9.094102,
10.352197,
4.157297
],
"y": [
0.7798145,
-0.4125835,
0.22908512,
-0.1450787,
1.5344744,
-2.1764004,
-2.41252,
-2.737259,
-2.7436514,
-1.3173401,
2.8930082,
3.5930097,
3.459859,
4.7082214,
5.0432906,
2.8561232,
0.80448514,
0.9469641,
1.1897537,
1.2518775,
-0.080258876,
-2.737328,
6.3525867,
3.1305952,
-2.9265158,
-4.270697,
3.4452105,
5.347361,
4.0795245,
2.4435525,
-4.6639924,
4.209005,
5.227655,
5.0731006,
2.2517204,
-0.7313133,
-0.47301573,
-0.76657516,
-0.6829508,
3.0451128,
3.5946355,
1.623684,
1.5679804,
0.45906195,
0.49434322,
-0.11256464,
-0.41779423,
-2.4533215,
-3.2616763,
6.742018,
-3.3956776,
0.9610314,
-4.0819,
1.1845034,
1.231206,
-0.7055925,
0.81709856,
-3.8108573,
3.4220817,
3.589021,
1.459784,
3.9098797,
3.5756776,
3.4562,
3.0881908,
-4.189291,
-4.884311,
-4.4303226,
-4.382128,
3.4798448,
6.542574,
4.3561063,
1.6589234,
-1.2312827,
-1.6579704,
-1.3990626,
-7.7941036,
-2.9172833,
-7.0027833,
-3.0962424,
-8.113277,
-3.001593,
-7.4111953,
-5.2768683,
-4.462352,
-5.668144,
-4.534077,
-6.814041,
-6.3125286,
-6.295914,
-2.1399581,
-1.7445399,
-1.214211,
-1.0575716,
-7.6512303,
-2.1686187,
-9.198332,
-1.1552562,
-2.2693605,
-1.583731,
-6.318401,
-8.300538,
-3.3643255,
-8.334439,
-8.15388,
-6.096204,
-4.844879,
-5.4305058,
-7.6300592,
-5.20332,
-6.3011627,
-3.9755912,
-6.398866,
-5.650257,
-6.393014,
-7.6237082,
-2.4054966,
-7.1599183,
-6.897935,
-6.2120833,
-3.916245,
-7.0163136,
-3.5302787
]
}
],
"layout": {
"height": 600,
"margin": {
"b": 10,
"l": 10,
"r": 20,
"t": 40
},
"scene": {
"xaxis": {
"title": {
"text": "x"
}
},
"yaxis": {
"title": {
"text": "y"
}
}
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "2D FAISS Vector Store Visualization"
},
"width": 800,
"xaxis": {
"autorange": true,
"range": [
-10.51561250768825,
14.41305550768825
],
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
-10.200368730668071,
7.744054730668069
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABEoAAAJYCAYAAAB1iANKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snXd8FFXXgM+WNFIoodkQxC6KvX+ioiI2VATFhlhAEUXBgg0RFbugAiIWsGFBVAR7L/jae1csKNggQAKpW77fHdwlG9JuZmZ3yjP/vK/Jvefe85wTYJ/M3AnE4/G4cEEAAhCAAAQgAAEIQAACEIAABCAAAQhIAFFCF0AAAhCAAAQgAAEIQAACEIAABCAAgTUEECV0AgQgAAEIQAACEIAABCAAAQhAAAIQ+I8AooRWgAAEIAABCEAAAhCAAAQgAAEIQAACiBJ6AAIQgAAEIAABCEAAAhCAAAQgAAEIpBLgjhI6AgIQgAAEIAABCEAAAhCAAAQgAAEI/EfAN6KkorJa/l22XGpqItK5Y7Hkt8r1ZBOolxiVrCiT0rLV0qZ1gbQuLJBgMNBgrpVV1fLP0uUSDoWkbZsiycvN9iQXK5PSZWzl2pmKFYlGpbKyWrKzwpKdnZWpbRjrzn/5f7J8ZZmcdMxBxn9ncm/lFZUSi8WlID8vo0xYHAIQgAAEIAABCEAAAhCwjoDnRcknX/4gV098QH74+Y8Uagfus7Nceu6J0rF9m+TXL7p6mjz76nvJ/26VlyuFBXmy3Vbd5ciD95a9d9vWEArNuerGqjvn+kuHyuEH7Zn88qDhV8sX3yyUdm0K5Y05t0koFEyZMmrcFHnxjQ9TvjbxqhFyUK+dja8pETTz8eflvkeeF/Xhrfa11y49ZMDh+4rKOXF9/s1Cue3uJ+T9T79NGavWP+zAPeWMEw4z9lLf9elXP8qJI66V/9ttW5l2w+h6x6xaXSG7HXqWbLheB3nxkZuag6xZYxYt/ltmz3tTeu3RU3buuUWz5lg1SIdxJvfZVL4tqd+8l96VMROmG31x3hnHNLWErd9Xvady+PqNmcY6du+tsVruP+B8+fvf5fLBc9M8K19tLSbBIQABCEAAAhCAAAQg4EACnhcls556Va697UFDEmy/zaaiPsDPe/ld+ePPf2WHHpvJg3dcKoHAmjsuRo2bKi++8YEcduAeUtAqT5avXCW/LFqSlCy9/29HmThuxDoSo766JmLtv9cOUlSYv86Q/of2kh233cz4uvog1veEi5NjZkwcI7vusGXKnDf/97l8v3CR3HbPHEM+DB54sOy9aw/pskEnY9zE6bPlnlnPGnJj3z13kM032dCI++lXP8m3P/6WIjX+WbpCDj1pjCFUdtx2c+N70VhMfvz5D3n7/S+Nr8+aeoX03Lp7vS0bjcZk3/4jjTtX3n76jnqFynOvvi8XXn2nnHVyPxlx6lGWtf4Hn34nQ86/Xi46e5AMHtDHsrjNCaTDOJP7bCqXltTvvU++kfsff9EQc0f1/b+mlrD1+3VFid17a6yWl11/j/FzMPGqsyU3h7uxbC08wSEAAQhAAAIQgAAEIJAmAp4XJeoujZycbNmi+0ZJpGWrymX3w4Yb//3KY7fIep2KU0TJ8w/fKF026Jgcr0TDxdfcJQt/WyInD+gjF589qMnyJERJ3Vj1Tbz74fky6e4n5ISjD5CHn3xFBh6xn1w5avA6Q9XjBnv3O0fUHSLTb7og+f2fflks/YZcZsiRWVPHrvP4jLoTRX2YTMRM3O1y0xVnySG9d0tZZ2nJSrl52mNy8jEHydabd20wz1vvelzufeQ5ueqCIXLMYb3WGXf2pZPkjXc/k6dnXCObddsw5fvq0ZWEnGoSZJ0BmRIQuowztc/m8jRTv+auYde4uqLErnUScc3U0kyv250X8SEAAQhAAAIQgAAEIACB+gl4XpQ0VPizxkyUt977XB6afJlxZ4m6GpMbf/1bIgPOuNL47XF9d3zUXUdHlBxy4sXy77KV8uaTk6TX0ecZod6Ze4fk1DkLoiFRoh4XUvJDndkwZsTxTfZ64nGBt566XYrbFjU5vr4B3/zwqwwYOk522X5LmTlpTMqQlaWrZc8jzpbuG68vz9w/wfieOkfiwdkvyQuvfyBfff+LcVfMPrtvJ+ee1l8KC1qlzF/w4Vcy66lXjEeRsrLCss3mXeXwg/aSzh3ayrW3PZScv8nG6xvz1J056pEQdf35T4lMvOtx+d/HXxu1UvtT31NyKXF9/f2vMnnGU3Jcv/1low06yvyX3zXuptlj5x5y/FG96+Whw1jtu6l9qkfCpt4/Vz7/eqHk5mTJTtttIaOGDUjeIaQ20Zx9Khn1wOwX5cvvfjH2vfuOW8kFZx0nG2+45k6jhi7d+ilZePu9T8rAI/aV/fbcwQirpJqSZQs++NKQiGpN9bOkuG671SbGmCtuvM/436svOjVlK+rup4+/+EFuHXd2UuzdNPVR+ejz72XJ30uN2qkeObDXzjLk2L4pfVpXlNTd2+9L/pEJtz/cYO6XnHOCIUJVne584Bn5+bclxh1m6lG7bbfsJicNOCiZY1O1VHte/NdSmTR+RMp6s+e/IU/MezPZq+pRsZGnH5PyeM4NUx4xHts5e8iRMmXG0/L2+18YMQ7eb1e5aPhx6/xcNFpQvgkBCEAAAhCAAAQgAAEIWEbAl6JEHb7Y6+hzjQ9jL8y6UTZaf83dI03JjWdeWiCXTLjb+HA/7KTDGy1CU7ESk9WHvGPOuFKOPmQf48PkhNsfMu4qmTxhZPLDWmJsQ6Lkz7+XyQHHjjY+WCppkbhDpqENXnXr/fL4M6/L+UMHGB9C656H0tzu6jPoQuMD5utPTEo56+Wp59+Wy2+4Vy4481gZclxfUb9VH37JJENMqQ+j6hEm9eFa8e+xRTd55M6xyQNnZzz6vHFHi7r22b2nrChdZXygVdf9t10i6lEHtaZ6xKhTh3bG1/fceRsZNWygLFr8j/Q/fazx6JASI+qRJ/XIkvrvCZecIf367GWMVx9Iz7z4Vtlqs42Nx5ISlzozRp0dU9+lw1h92G9sn6+8/bGMvOIOY5k+++5inC+j2KjrqfuuMe4Mas4+a7NScVT+iXzq1qS+nJpbPzX3fx99LadfcJNxro+680nt+dhh4wxBojhu0mU9+fGXP4zH1BK9bOQ36EJj6brn1Fww/k55/rX35X/zp0rRf6Ls/448RyqraqTnNt2lqCBfvv7+F6PWqkcennp58nyguqKk7t5+++NvQxzWvioqq4y9quu5h24wpE6iTxXvjTfsbPSJknTqmnrd+cY5OE3Vsr67W26c8ojcP/tFo0f32nVb+eW3Pw1hotacc8/VSTF07LCrjK8nLpXnz4v+NPZRm2Fzfx4ZBwEIQAACEIAABCAAAQhYQ8CXoiTxwUp9wHvi7quSJJuSG+qD4JFDLjc+wN95/fmNViARS91VkZebkzL22H77GR+E1JU490I9SqM+3KsPZoNHXid9999Nbh57Vsq8hkSJGnTSORNE3aVgfDjdd1fjN+NbbtpFemzZbZ3fTKsDXE89/wZjrPrwpu4QUGO33nxj6d51g2Z31l0PzpPb750jl408KeVOjKEX3mx84Hzp0Ztlg87tjXNfFI9j++0vY84eZLw1Rd1hctUt98uTz70ld1w7UtRZLomzWuoKnyV/LZXb73vSkBiNPQaReKToxivOlEN7727koX7br2qmrtefmGi8nSQhStTXTj/+UOM3+B3bt5Xqmois13GNfKnv0mHc0D6rqmuk7wkXGXcSzH/gOunWZT1jKSV0hl8yMeUsmcb2GY1GDQmheviemy803nCkrsSHf3V+izrHpbGrufVTMerKiMR/q/N8brhsWHIZdReMukMjcVCxjihRkmezTTZMChElNEdecbu8tuBTmTvjWtm025rebEqU1JdzQkCefcqRMvyUI40hqgbqEbDaBzqr/Q8cNs74Gbp13JrH8xrrubp7WfjrYjnilMuMusyYeHHyZy/xqNPoMwfKqccdYsRNiJIzTz5CTj/+MEOgLFteKgcff5EhS7549b4WS8xm/xAzEAIQgAAEIAABCEAAAhBYh4DvRIk6yLT/6VcYdzOouy/UoxmJqylRUl1dIzscdIbxm2J1iGljVyJWfW+OUR+MTjj6QEkcqql+i/7uvCmSFQ4ZAmG//ucZ+3v/2TtTXjvamChRH/qumfSA8aGy7qXeUnJi/4NSzi6Z8+xbMunu2cY6tS91uKu67T/x6ERjOf6y6E857ORLZLutu8sjU68whqrHMXodPdJ4BEM91qSuxGNO6q6C9TquOQ9GXercFCVVzh5ylAwf3E/ue/Q5uWXa43LdpWfIEQetufuj7tXQh1bFrWfv01Ie90nMnTrzaZky8+nkXQIJAZG446W5fy7oMG5on4k3zqj6X3ruCSlLJz50J+6yaGyfMx9/QdRjH0oKHbzvrsk4q8orZM/DzzYO6VUHFVtRPxWjrihJyDYl924ae5a0rufAYjVPR5So8UqOqAOU//hTPX5TKq+/+6m8+vYnMmXCebLvntsb6eiKEnXnirqDRe31zutHrSMfVpatFiU4/l22wvh5uGbSg8ZdPeruHnXpiBL1SJGSn+pRnNpvmUq8Baq2nFWiRN1B8uHzqXe/JN5w9cacSdKheO1buZrbp4yDAAQgAAEIQAACEIAABMwR8JUoWbFylZx87gTjFnx1loc606P21ZQoSdzxsMfO2xi/xW/saiqWmqvOaFD7UR8A1Yf2xKXebPPyWx8Zv6lXv7FPXI2JksQY9Rvpr777xXhDjnrjTeKRDnWHhfpQXftSoua7nxbJDz//bsxRH0qVDFDXMzOvbdbdJeqxIXUnQOLuEfVIj3q0Rx0cqw6lVVfiEY+GeKnDYNWhsOo8C3WHiTrXRN2JU9/V0IdWdefIQcddYNzJUPfxGcXyvLGTk3e+JATE2PNPNu5y0b2aw7ihfSZeZases0rcVZRYX52r8fCTL8uce8Ybd/g0ts/E41MN7b1Th7by2uyJTabWnPqpIHVFSU0kKvsfs0boqUu9OannNptK/0N6pdyhoSNK1CNJV90ycx15p+In7jpS/19HlKif9SMGX2rIzbkzJ6S8oUkJEnVXk7rjqe7VUlGS6OHadwslYquziNRjQYnXGjckShK1ffnRm2X9zu2brCEDIAABCEAAAhCAAAQgAAFrCfhGlKg7Hc644CbjDAV1h0Xi8M/aOJuSG+o32+decbvxulv12tvGrqZiqblXT3xAHp37WoNh1IfPaTeMTn6/OaKkbrDEowDq6x+9MH2dN+LUHl9TE5EJdzxsnF/SEKO68dUHe/UB/8KzjpNTjj04+QhQ7YNid+l7pvEogZIh9V1dN+osO/fcwvitv/rtv7rzRD1+U9/VkIBIfCCu72wHJYBGXHpb8swUs6KkOYwb2qc65HPczTMNmZN4PCURT90hou4UUXfnqLt0Gttn4jGjc049Wtq3a70OKnUWTN03GtXHszn1U/PqihL1tdJV5TL9oXny3KvvJQWb+vrEq0YYrxFWV3NFSSK+2rf6+dpuq01kg84d5NV3Pjbu8GiJKFE9p0SQkhP1ve46IVyUqFSyruuGnaVd2yI57KQxBtOW3FGSqEtCHNZmftSplxt//nz1+gzjkZ+GREnizwVEibV/2RENAhCAAAQgAAEIQAACzSXgC1Gi7jZQZ3KogyHV4w7qsYf6rsbkhnql8AlnX2PcjXLvrRfJ7jtu3SjjpkSJeoxnr37nGDHUYyd1L/UYivpt/ZtP3pb8INyQKFGPnYRDoQb3c8p518uHn32XvEuksfGNnZFS3wLqUab9jjnPOJNBHUDbe8Codc5wSXwg/fD5u6RVXup5LbVjTpnxlPEmGHW3jrprp74rISBqn/WgxqnDRXc+eGi9b+F55OlXjQ/b6swJdfZES0SJLuOG9pkQAkpwqEewal+JRy4SB7E2ts/E40T33nKR7L5T473YWKM2p35qfn2ipHZcJSLnv/I/43Gg2o9iKVGihEXdR9XqHuaq3gCj3t6jxKAShIkrceZKS0TJxdfeJfNf/l/yANra+038LKkDVB+768oUROpQ2fpESd2eU5Pq3t1yx31PyrQHnjEOHlbyL3Gpu7fUK8k7FLc2DpNVF6KkuX9NMQ4CEIAABCAAAQhAAALpJeB5UaIeC1HnYCjpUN9v8VM/qE41bsN//uEbjdeHJi51jsA1Ex8QdS6Den2sOry0qaspUZI4vPPkAX3k4noO3Zx09xNy98PzpfbjIQ2JkpmPvWC8PWPU0AHr3Kqv3taiDpdUH1Y/e+Ve4xwU9UHwouGD5NAD9ki+bSaRjzojREmaxB0iTeWpvq8klGKjfiv/xPw3jUd8Eoepqu+rA1/VwaGnDTrEeDtN7Usd1KoegVCiRb3q9uxLJxkflKdMOD/lLAl19oo68FU9KqTebFNfHRKPkdR+dEcJDvVaZ/Wb/MQbjloiSnQZN7TPxBku6tEY1WeJV0Cr108ryaS+/urjtxp3HDS2T3VYruprdRbMjEljjLomLlVr9drhhmRT3Zo2VT81vq4oUYeeqtca1z78Vz2Oo85HUesnHi9JSDr1GJDKTV1Kzgy76GajJonzWBLipLaEVLVTb5BRb4HSFSWPzX1Nxk98wBBjt1x5lsGz9pW406r2WTrq++ruE/WITO1HbxrrubqiJPFzXfeQ25fe/EjOv3JyyttsECXN+dOFMRCAAAQgAAEIQAACEEg/Ac+LEvVKU/UhTz3Ksfeua39TnUC9wXrtk2+hSMgN9SG/oKCVrFhZJov/XJp8hac6nPHmK89q9O6NRNymREnit93qwFP1Ya3ulXhtcOKDnPoAps4dUeeXqFwGDzxY9t61h3TZoJOoD/E33fmoEUK9kWebzbtKbm62cQZK4oyS8ReeKv0PXfOmnW32PcX4X/XGG3WY7aZdNzDeOKM+fKsPiurrs6dfJfmtcpvVkYnf+icGf/DctJS56iBL9aYXJavU/vbbawdRj/l8+d3Pos7sSLxyVr1G+LRRNxrSZbcdtpK+vXczDrx99pX3jDf6qA/f6kN4r6PPM/5XPaKhXi0bCoXkuH77G/tX8kCdR6EOiM3PyzXeAqPiqe9fcf7JxhZbKkp0GDe2z4Q4UndeqH0pFlPvf9p4fCVx10tz9nnOZbcZh/eq81yUpMpvlSff/fSbvPD6B7LDtpvJ7Vefa0n9VJC6ouTxeW8Y54mox4d22m5zyc3Oljff+9x4dErdIaX4q+vOB+bK5PueMsTDYQfuKb8v/kfU40eJKyFKEmJD9fbhB+4pymuoM0uUTFGXjiip/biZej11YX6rFA4H7LOTdFm/o+w/4HyjJ9XP+9ZbdJUff/5Dnn7hHWNsbVHSWC3rihLVw8effY3xSmvFptfuPY072ZT4VFftR3IQJc1qTwZBAAIQgAAEIAABCEAg7QR8I0oaIlv7MYHEb7UTY9V5Cep1sZt221CO6ru38Rv6xh5xqb1GY+dtVFZVy059hhq/YX/lsVvXuasjESdx+OMrj98qN0yeZRzwWvu6ddzZ0mffXWTR4n/kiflvGFKg7lts1Idodd7I/nvvmJz6zEsLjHMl3n7/y3WwqDs1hp10RL3nXjTEUN0Rou4kUFd9h8aqr6u7CG656zHjUYjalxIian+qDupSsSbf96TMeurV5DBVB8VfCRV1KWmk7rZRb5Cpu6ZidOl19xgiJXGpD8vnnnq08VpidSWESu0DZ5v6ydNl3Ng+1Z0S0x+aL+pRo9q9pu4eqn1uSVP7VH0047Hn5b5Hnk/JV4ku9VhPQ28Oqptrc+r33sffyGmjb0weiKvuYLr+jlnJGiRiDjhsX7nk3BOSd8ooSaYeKVK5JK4Tjj5Afv39L+Nr782farxCVzG58qYZSVGhxqqeUIfaqjNz1GNd6jXW6qorJ+ruLXFXR0M1TbyR5pMvfzReP1z7Z0a9PnjGYy/Ihuu1T55R0lgt6+7F6OHS1XLVrTPlxTc+TG5BCaCbrxxuvLY7cTUkSq697UGj/9XPfWOvq26qZ/k+BCAAAQhAAAIQgAAEINAyAp4XJS3D4t5Z6iyVf0tWSiwaMx7DaexMEPXhdFlJqfEa1nZtioxXkQaDqY8oWE1CrakeB1KvgVWiKDcnu94l1Dh1h4XaTccObesVVEq+qN/g1923iq1+i69EgpIGicdbrMpFh7Fas6F9qjtJ1J084XDYuEsoFAq2aIuKgXqkR31AV0yVeEjXpc6G+eufZcZynTsW13tYsNrfX/+UGBJMHdzbUM0TrNRreovbFUnnDu1sT6Oqusa4i0pdG63fsdHDjhurZX0bVZLo9yX/SHHb1ilvArI9KRaAAAQgAAEIQAACEIAABEwRQJSYwsdkCEAAAhCAAAQgAAEIQAACEIAABLxEAFHipWqSCwQgAAEIQAACEIAABCAAAQhAAAKmCCBKTOFjMgQgAAEIQAACEIAABCAAAQhAAAJeIoAo8VI1yQUCEIAABCAAAQhAAAIQgAAEIAABUwQQJabwMRkCEIAABCAAAQhAAAIQgAAEIAABLxFAlHipmuQCAQhAAAIQgAAEIAABCEAAAhCAgCkCiBJT+JgMAQhAAAIQgAAEIAABCEAAAhCAgJcIIEq8VE1ygQAEIAABCEAAAhCAAAQgAAEIQMAUAUSJKXxMhgAEIAABCEAAAhCAAAQgAAEIQMBLBBAlXqomuUAAAhCAAAQgAAEIQAACEIAABCBgigCixBQ+JkMAAhCAAAQgAAEIQAACEIAABCDgJQKIEi9Vk1wgAAEIQAACEIAABCAAAQhAAAIQMEUAUWIKH5MhAAEIQAACEIAABCAAAQhAAAIQ8BIBRImXqkkuEIAABCAAAQhAAAIQgAAEIAABCJgigCgxhY/JEIAABCAAAQhAAAIQgAAEIAABCHiJAKLES9UkFwhAAAIQgAAEIAABCEAAAhCAAARMEUCUmMLHZAhAAAIQgAAEIAABCEAAAhCAAAS8RABR4qVqkgsEIAABCEAAAhCAAAQgAAEIQAACpgggSkzhYzIEIAABCEAAAhCAAAQgAAEIQAACXiLgOFGyZFmFZXxzsoKSnxuWkrJqy2ISCAJ+I1BclC1l5RGpjsT8ljr5QsASAu0KsyU3O2T8XVRZHbUkJkEg4DcCbQqypbomKuVV/Az5rfbkaw2BQECkc9s8+bPEus9a1uyMKBCwhsD6xXnWBPovCqLEUpwEg4D3CCBKvFdTMkovAURJenmzmjcJIEq8WVeySh8BREn6WLNSZgggSjS4c0eJBiyGQqABAogSWgMC5gggSszxYzYEFAFECX0AAXMEECXm+DHb+QQQJRo1QpRowGIoBBAl9AAEbCGAKLEFK0F9RgBR4rOCk67lBBAlliMloMMIIEo0CoIo0YDFUAggSugBCNhCAFFiC1aC+owAosRnBSddywkgSixHSkCHEUCUaBQEUaIBi6EQQJTQAxCwhQCixBasBPUZAUSJzwpOupYTQJRYjpSADiOAKNEoCKJEAxZDIYAooQcgYAsBRIktWAnqMwKIEp8VnHQtJ4AosRwpAR1GAFGiURBEiQYshkIAUUIPQMAWAogSW7AS1GcEECU+KzjpWk4AUWI5UgI6jACiRKMgiBINWAyFAKKEHoCALQQQJbZgJajPCCBKfFZw0rWcAKLEcqQEdBgBRIlGQRAlGrAYCgFECT0AAVsIIEpswUpQnxFAlPis4KRrOQFEieVICegwAogSjYIgSjRgMRQCiBJ6AAK2EECU2IKVoD4jgCjxWcFJ13ICiBLLkRLQYQQQJRoFQZRowGIoBBAl9AAEbCGAKLEFK0F9RgBR4rOCk67lBBAlliMloMMIIEo0CoIo0YDFUAggSugBCNhCAFFiC1aC+owAosRnBSddywkgSixHSkCHEUCUaBQEUaIBi6EQQJTQAxCwhQCixBasBPUZAUSJzwpOupYTQJRYjpSADiOAKNEoCKJEAxZDIYAooQcgYAsBRIktWAnqMwKIEp8VnHQtJ4AosRwpAR1GAFGiURBEiQYshkIAUUIPQMAWAogSW7AS1GcEECU+KzjpWk4AUWI5UgI6jACiRKMgiBINWAyFAKKEHoCALQQQJbZgJajPCCBKfFZw0rWcAKLEcqQEdBgBRIlGQRAlGrAYCgFECT0AAVsIIEpswUpQnxFAlPis4KRrOQFEieVICegwAogSjYIgSjRgMRQCiBJ6AAK2EECU2IKVoD4jgCjxWcFJ13ICiBLLkRLQYQQQJRoFQZRowGIoBBAl9AAEbCGAKLEFK0F9RgBR4rOCk67lBBAlliMloMMIIEo0CoIo0YDFUAggSugBCNhCAFFiC1aC+owAosRnBSddywkgSixHSkCHEUCUaBQEUaIBi6EQQJTQAxCwhQCixBasBPUZAUSJzwpOupYTQJRYjpSADiOAKNEoCKJEAxZDIYAooQcgYAsBRIktWAnqMwKIEp8VnHQtJ4AosRwpAR1GAFGiURBEiQYshkIAUUIPQMAWAogSW7AS1GcEECU+KzjpWk4AUWI5UgI6jACiRKMgiBINWAyFAKKEHoCALQQQJbZgJajPCCBKfFZw0rWcAKLEcqQEdBgBRIlGQRAlGrAYCgFECT0AAVsIIEpswUpQnxFAlPis4KRrOQFEieVICegwAogSjYIgSjRgMRQCiBJ6AAK2EECU2IKVoD4jgCjxWcFJ13ICiBLLkRLQYQQQJRoFQZRowGIoBBAl9AAETBMIlJdL9oK3JLh6tVTtvY/E2ncQRIlprASAgCBKaAIImCOAKDHHj9nOJ4Ao0agRokQDFkMhgCihByBgioCSJG3PPl1Ci34z4sTz8mT5lHukdY/NJTc7JCVl1VJZHTW1BpMh4FcCiBK/Vp68rSKAKLGKJHGcSgBRolEZRIkGLIZCAFFCD0DAFIGcBW9J0dhLUmKUH3ei5IwaiSgxRZbJEBDuKKEJIGCSAKLEJECmO54AokSjRIgSDVgMhQCihB6AgCkCiBJT+JgMgUYJcEcJDQIBcwQQJeb4Mdv5BBAlGjVClGjAYigEECX0AARMEQiUlUq7EwdKcFVZMs6KO+6Swt125I4SU2SZDAHuKKEHIGCWAKI0DCS8AAAgAElEQVTELEHmO50AokSjQogSDVgMhQCihB6AgGkCwWVLJeuTj4zDXKt32kWiG3XhMFfTVAkAAUQJPQABswQQJWYJMt/pBBAlGhVClGjAYigEECX0AAT0CcTjkvPyC5LzzpvGG24qBh4v0c7rpcThrTf6WJkBgboEePSGnoCAOQKIEnP8mO18AogSjRohSjRgMRQCiBJ6AALaBHLnPS2Fk25Kzot27CTL73vYeONN4kKUaGNlAgTWIYAooSkgYI4AosQcP2Y7nwCiRKNGiBINWAyFAKKEHoCANoGisWMkZ8HbKfPUuSQ1W/dAlGjTZAIEGiaAKKE7IGCOAKLEHD9mO58AokSjRogSDVgMhQCihB6AgDaBgkk3Sd68p1PmlcyYJdEuGyNKtGkyAQKIEnoAAnYRQJTYRZa4TiGAKNGoBKJEAxZDIYAooQcgoE0g/N030nrMaAmWlRpzq3rtL6Vjr06Jw6M32liZAIF1CHBHCU0BAXMEECXm+DHb+QQQJRo1QpRowGIoBBAl9AAEWkYgFpPwzz8Zh7nG2rRdJwaipGVYmQWB2gQQJfQDBMwRQJSY48ds5xNAlGjUCFGiAYuhEECU0AMQqJ9AVZUU3DVZcl59WeJt28rqwadJ1X4HNJsWoqTZqBgIgQYJIEpoDgiYI4AoMceP2c4ngCjRqBGiRAMWQyGAKKEHIFAvgVaPz5L8u6YkvxcPBGT5A49JdP0NmkUMUdIsTAyCQKMEECU0CATMEUCUmOPHbOcTQJRo1AhRogGLoRBAlNADEKiXQH1vtikdf51U7bVPs4ghSpqFiUEQQJTQAxCwkQCixEa4hHYEAUSJRhkQJRqwGAoBRAk9AIF6CbR6cIbkz7wn5Xsl9z8q0Q03ahYxREmzMDEIAogSegACNhJAlNgIl9COIIAo0SgDokQDFkMhgCihByBQL4HgsqVSMHmSZH3ykXFGSeWBB0v5CYObTQtR0mxUDIRAgwR49IbmgIA5AogSc/yY7XwCiBKNGiFKNGAxFAKIEnoAArYQQJTYgpWgPiOAKPFZwUnXcgKIEsuREtBhBBAlGgVBlGjAYigEECX0AARsIYAosQUrQX1GAFHis4KTruUEECWWIyWgwwh4SpTU1ETkn2UrpEO71pKdnWWgXrKswjLkiBLLUBLIxwSKi7KlrDwi1ZGYjymQOgRaTgBR0nJ2zIRAggCihF6AgDkCiBJz/JjtfAKeECW/LPpTxt40Qz758geD+BXnnyzH9dsfUeL8/mOHPiSAKPFh0UnZUgKIEktxEsynBBAlPi08aVtGAFFiGUoCOZSA60XJ3/8ul/0HnC99999Njj+qt2y1WVeprKqStq0LESUObTq25W8CiBJ/15/szRNAlJhnSAQIIEroAQiYI4AoMceP2c4n4HpRcuOUR2Tey+/K63MmSTgUWoc4j944vwnZob8IIEr8VW+ytZ4AosR6pkT0HwFEif9qTsbWEkCUWMuTaM4j4HpRcsTgSyUvN0fW61Qsf/69TLbabGM5c/AR0rlDO+4ocV6/sSMICKKEJoCAOQKIEnP8mA0BRQBRQh9AwBwBRIk5fsx2PgHXi5Jt9j1FdtthKzmq7/9JdnZY7n74WSmvqJS5M66VrKywlFVELKtCOBiQrHBQKqqjlsUkEAT8RqBVTkiqamISjcXTnno8HpeA+pudCwIuJpCXHZJwKGD8XRSJpv/nyMXo2DoEkgRys0MSjcakhp8huuI/AvwbQa8V1L+mCvKs/ayltwNGQ8BeAoV5YUsXCMTVnzJpvJQouf3qc6X3/+1orKoOdj3s5EvkyXuvli26byRl5TWW7SYUCki2EiVViBLLoBLIdwTyckJSnSlRIgEJSFr/iPJdfUnYfgJ5OeE1oqQqgiixHzcreJSAIUpicanhDWwerbB+WnH+jaAHLSBSkJslqyqs+6yltwFGQ8BeAoWt1rxF16or7aLkmDOulEN77y5Djutr5LDw18VyxCmXyaPTrpRtt+zG64GtqixxIGARAR69sQgkYXxLgEdvfFt6EreQAI/eWAiTUL4kwKM3viy7r5J2/aM39z36nMx49HlDjBTk58nEu2bLq+98LC89eovk5WYjSnzVziTrBgKIEjdUiT06mQCixMnVYW9uIYAocUul2KdTCSBKnFoZ9mUVAdeLkurqGrn0+nvk+dfeN5h06tBWJl01Qrbburvx37z1xqpWIQ4ErCGAKLGGI1H8SwBR4t/ak7l1BBAl1rEkkj8JIEr8WXc/Ze16UZIoVumqclm9ukI6d2yXclgjosRP7UyubiCAKHFDldijkwkgSpxcHfbmFgKIErdUin06lQCixKmVYV9WEfCMKGkICKLEqlYhDgSsIYAosYYjUfxLAFHi39qTuXUEECXWsSSSPwkgSvxZdz9ljSjRqHZOVlDyc8NSUlatMYuhEIBAbQKIEvoBAuYIIErM8WM2BBQBRAl9AAFzBBAl5vgx2/kEECUaNUKUaMBiKAQaIIAooTUgYI4AosQcP2ZDAFFCD0DAPAFEiXmGRHA2AUSJRn0QJRqwGAoBRAk9AAFbCCBKbMFKUJ8R4I4SnxWcdC0ngCixHCkBHUYAUaJREESJBiyGQgBRQg9AwBYCiBJbsBLUZwQQJT4rOOlaTgBRYjlSAjqMAKJEoyCIEg1YDIUAooQegIAtBBAltmAlqM8IIEp8VnDStZwAosRypAR0GAFEiUZBECUasBgKAUQJPQABWwggSmzBSlCfEUCU+KzgpGs5AUSJ5UgJ6DACiBKNgiBKNGAxFAKIEnoAArYQQJTYgpWgPiOAKPFZwUnXcgKIEsuREtBhBBAlGgVBlGjAYigEECX0AARsIYAosQUrQX1GAFHis4KTruUEECWWIyWgwwggSjQKgijRgMVQCCBK6AEI2EIAUWILVoL6jACixGcFJ13LCSBKLEdKQIcRQJRoFARRogGLoRBAlNADELCFAKLEFqwE9RkBRInPCk66lhNAlFiOlIAOI4Ao0SgIokQDFkMhgCihByBgCwFEiS1YCeozAogSnxWcdC0ngCixHCkBHUYAUaJREESJBiyGQgBR4tkeCP65RAon3SRZX38pkc23lFXDR0pk0808m6/TEkOUOK0i7MeNBBAlbqwae3YSAUSJk6rBXuwggCjRoIoo0YDFUAggSjzbA21GjZCszz9N5hfp2k2W3/uQZ/N1WmKIEqdVhP24kQCixI1VY89OIoAocVI12IsdBBAlGlQRJRqwGAoBRIlne6B9vz4SWLUqJb+lc1+QeEGhZ3N2UmKIEidVg724lQCixK2VY99OIYAocUol2IddBBAlGmQRJRqwGAoBRIlne6DNyLMk66svkvlF199ASh583LP5Oi2x+kRJcMliyXnvXYkWF0vNHntLPDvbadtmPxBwFAFEiaPKwWZcSABR4sKisWUtAogSDVyIEg1YDIUAosSzPRD+8nPJv2+6ZP34vUQ22VTKjz1eqvfax7P5Oi2xuqJE1aPNhSMlUFNjbLVm8y1lxeTpIqGQ07bOfiDgGAKIEseUgo24lACixKWFY9vNJoAoaTYqEUSJBiyGQgBRQg9AwBYCdUVJ4Y3XSu6Lz6WsteKOu6Rm6x62rE9QCHiBAKLEC1Ukh0wSQJRkkj5rp4MAokSDMqJEAxZDIYAooQcgYAsBRIktWAnqMwKIEp8VnHQtJ4AosRwpAR1GAFGiURBEiQYshkIAUUIPQMAWAnVFSc6Ct6Ro7CXJtaLF7aVk1hyRcNiW9QkKAS8QQJR4oYrkkEkCiJJM0mftdBBAlGhQRpRowGIoBFooSsI/L5TcuXMkWFoqVb0PlKq9e8ESAhCoRaC+w1zDP/0gWV98LrHiYqneYSeJF7WGGQQg0AgBRAntAQFzBBAl5vgx2/kEECUaNUKUaMBiaJLA74sCMm1Klnz7TUA22ywmI86LyEZd4r4lVFyULWXlEamOxNZhEFyxXNqdOEACFRXJ75VeNQFZ4ttuIfH6CPB6YPoCAuYJIErMMySCvwkgSvxdfz9kjyjRqDKiRAMWQ5MERo/Mlm++CiT/e4ut4jJpcrVvCTUmSuo+QqAgVfY5RMouusy3vEgcAnUJIEroCQiYJ4AoMc+QCP4mgCjxd/39kD2iRKPKiBINWAxNEjj84ByJrHlrp3GFs0TmvVDlW0KNiZKsb7+WNiOGprApH3SSrD79TN/yInEIIEroAQhYTwBRYj1TIvqLAKLEX/X2Y7aIEo2qI0o0YDE0SeCcM7Pkpx+Dyf/u0jUud93LHSX1PXoj8bi0OW+4ZH31hcEr1q5YVtx2p0TX34COggAE/iPAHSW0AgTME0CUmGdIBH8TQJT4u/5+yB5RolFlRIkGLIYmCXz8UUAefTgsC38KStduMTnh5IjstDNnlNQrSv6jFly2VAKlpRLt2k1E/U3MBQEIJAkgSmgGCJgngCgxz5AI/iaAKPF3/f2QPaJEo8qIEg1YDIVAAwQae/QGaBCAQNMEECVNM2IEBJoigChpihDfh0DjBBAldIjXCSBKNCqMKNGAxVAIIEroAQjYQgBRYgtWgvqMAKLEZwUnXcsJIEosR0pAhxFAlGgUBFGiAYuhEECU0AMQsIUAosQWrAT1GQFEic8KTrqWE0CUWI6UgA4jgCjRKAiiRAMWQyGAKKEHIGALAUSJLVgJ6jMCiBKfFZx0LSeAKLEcKQEdRgBRolEQRIkGLIZCAFFCD0DAFgKIEluwEtRnBBAlPis46VpOAFFiOVICOowAokSjIIgSDVgMtZzASy+EZPajISktDch+vaNy2tCIZGVZvoztATnM1XbELOBxAogSjxeY9NJCAFGSFsws4mECiBIPF5fUDAKIEo1GQJRowGKopQR+XxSQYadmS7zWW4WHDo/IUf2jlq6TjmCIknRQZg0vE0CUeLm65JYuAoiSdJFmHa8SQJR4tbLklSCAKNHoBUSJBiyGWkrg5RdDcuuN4ZSYB/SJyeiLaixdJx3BECXpoMwaXiaAKPFydcktXQQQJekizTpeJYAo8WplyQtR0oIeQJS0ABpTLCHwy88BGX5Gdkqs04ZF5JiB3FFiCWCCQMBFBBAlLioWW3UsAUSJY0vDxlxCAFHikkKxzRYT4I4SDXSIEg1YDLWcwIx7QvLuO2vOKOm5fVTOHRWVgoJaz+JYvqI9AbmjxB6uRPUPAUSJf2pNpvYRQJTYx5bI/iCAKPFHnf2cJaJEo/qIEg1YDIVAAwQQJbQGBMwRQJSY48dsCCgCiBL6AALmCCBKzPFjtvMJIEo0aoQo0YDFUAggSugBCNhCAFFiC1aC+owAosRnBSddywkgSixHSkCHEUCUaBQEUaIBi6EQQJTQAxCwhQCixBasBPUZAUSJzwpOupYTQJRYjpSADiOAKNEoCKJEAxZDIYAooQcgYAsBRIktWAnqMwKIEp8VnHQtJ4AosRwpAR1GAFGiURBEiQYshkIAUUIPQMAWAogSW7AS1GcEECU+KzjpWk4AUWI5UgI6jACiRKMgiJK1sLK++Uqyvv5SajbfUmp67qBBkaF+J8Bhrn7vAPI3SwBRYpYg8yHAYa70AATMEkCUmCXIfKcTQJRoVAhRsgZW3uxHpGDa5CS58gGDZPWZIzRIMtTPBBAlfq4+uVtBAFFiBUVi+J0Ad5T4vQPI3ywBRIlZgsx3OgFEiUaFECVrYLU7vr+E/v4rSS6elydL574oEgpp0GSoXwkgSvxaefK2igCixCqSxPEzAUSJn6tP7lYQQJRYQZEYTiaAKNGoDqIEUaLRLgxtgACihNaAgDkCiBJz/JgNAUUAUUIfQMAcAUSJOX7Mdj4BRIlGjRAla2DlT5kkrZ6cnSRXuW9vKbtivAZJhvqZAKLEz9UndysIIEqsoEgMvxNAlPi9A8jfLAFEiVmCzHc6AUSJRoUQJf/BikYl+8vPJfzj91LTrbtEttte4tnZGiQZ6mcCiBI/V5/crSDgdVESqKmR/OlTJOfVlyVeVCTlx50olQcfagU6YkAgSQBRQjNAwBwBRIk5fsx2PgFEiUaNECUasBgKgQYIIEpoDQiYI+B1UZI35zEpmHp7ElI8EJDl9z0s0S4bmwPHbAjUIoAooR0gYI4AosQcP2Y7nwCiRKNGiBINWAyFAKKEHoCALQS8LkoKb7xWcl98LoVd2UWXSWWfQ2zhSVB/EkCU+LPuZG0dAUSJdSyJ5EwCiBKNuiBKNGBlcGho8R/G6tENNszgLli6IQLcUUJvQMAcAa+LklaPz5L8u6akQCq5+wGJbtLdHDhmQ6AWAUQJ7QABcwQQJeb4Mdv5BDwlSiZOny33zHpW/jd/qhQVtDLoL1lWYVkVECWWobQlUKC6WoquuFiyP/rAiF+9/Y5Set0tnJ9iC+2WB0WUtJwdMyGgCHhdlARWlUnBrTdK9mefGGeUVO7dS8pPP5PiQ8BSAogSS3ESzIcEECU+LLrPUvaMKHnq+bfl8hvuNcqHKPFZF/+Xbs7rr0jRNVemJF826mKpPPQIfwJxaNaIEocWhm25hoDXRYlrCsFGXU0AUeLq8rF5BxBAlDigCGzBVgKeECUffvadDL9kkoy/cIhcMP5ORImtLePc4Pl33ymtHn0oZYPlRw+Q1Wef59xN+3BniBIfFp2ULSWAKLEUJ8F8SgBR4tPCk7ZlBBAllqEkkEMJuF6U/PbH33LMGVfKpPEjpFP7ttJvyGWIEoc2m93bCv/wnbQ967SUZZZPmiqRbXvavTTxNQggSjRgMRQC9RBAlNAWEDBPAFFiniER/E0AUeLv+vshe1eLkpWlq2XgsHEyeODBcvxRveWnXxavI0qisbhldQyISCAQkFjcupiWbY5ABoHACy+ILFiwhsYee0j8EN6S4LTWCGbwZygSjUs4pH6SfXAtXSqB5cslvumm6g8uHyTsnxSDwYCoisZiceFvI//UnUytJaD+LorH+Rmylqq7o/nq3wgWlSoUDIiVn7Us2hZhIGAJAdXfVl6BuPpbJ03Xi298IKPGTZWTB/Qx/tFYsrJM5r30rhzbb38ZcFgv2WqzjeXvFZWW7SYnHJS8nLCsWF1tWUwCQcBvBNoWZMvqiohUR2NpTz0QD0g8kLY/otKeX2LB/DsmSe6Ts43/jHTrJmXX3yKxjp0yth8WtpZAm/xsUYeLq7+LqmrS/3NkbTZEg0BmCBS1ypaaSFQqqqOZ2QCrOo6AX/6NYBV49dmrQ+tc+WeldZ+1rNobcSBgBYFObXKtCJOMkVZRsvDXxfLqO58kF19aslIefvIVGXbS4XJo792le9cNeOuNpeUlGATME+DRG/MMG4sQ/u4baXv2GSlDygedJKt5a4i94NMYnUdv0gibpTxLgEdvPFtaEksTAR69SRNolskYAVc/elOXWn2P3vB64Iz1FgtDoF4CiBJ7GyP3xeek8MZrUxap3nlXWXnDRHsXJnraCCBK0oaahTxMAFHi4eKSWloIIErSgplFMkgAUaIBX93qnJ8blpIyHr3RwMZQCKQQQJTY2xDBFcul3fH9JVBVlVyobPQYqTzkcHsXJnraCCBK0oaahTxMAFHi4eKSWloIIErSgplFMkjAU6KkPo7cUZLB7mJpCNRDAFFif1tkffqx5LzxqgSXL5eaHXeWir6HieTk2L8wK6SFAKIkLZhZxOMEECUeLzDp2U4AUWI7YhbIMAFEiUYBuKNEAxZDIdAAAUQJrQEBcwQQJeb4MRsCigCihD6AgDkCiBJz/JjtfAKIEo0aIUo0YDEUAogSegACthBAlNiClaA+I4Ao8VnBSddyAogSy5ES0GEEECUaBUGUaMBiKAQQJfQABGwhgCixBStBfUYAUeKzgpOu5QQQJZYjJaDDCCBKNAqCKNGAxVAIIEroAQjYQgBRYgtWgvqMAKLEZwUnXcsJIEosR0pAhxFAlGgUBFGiActFQysqRJ55KizffhOQTTeLSf+BUcnLc1ECLtsqZ5Q0XbDQLz9LPD9fYh07NT2YEa4lECgvl+wFb0mgokKq9/o/iRW3bzSX8M8LJXfuHGlVuVrCh/aVkp33ksrqqGvzZ+MQyCQBREkm6bO2FwggSrxQRXJojACiRKM/ECUasFw09PprsuTN14PJHf9fr6hcOjbiogzctVVEScP1Cq5cIUUXj5KsH783BlUe0EfKLhnrrgKz22YRUJKk7RknS+ivP43xsYICWXHHdIl22bje+cZrn08cYEiVcCgo6h+opeOvk1W77d2s9RgEAQikEkCU0BEQMEcAUWKOH7OdTwBRolEjRIkGLBcNPaZfjqxetXbD+QUiT8ytclEG7toqoqTheuU98qAU3DMtZcCKGyZKzc67uqvI7LZJAjmvvSxF145LGbf65FOlfPBp9c7NWfCWFI29xPheQpSUH9pPVpx7QZNrMQACEFiXAKKEroCAOQKIEnP8mO18AogSjRohSjRguWjo6YOzZfEfgeSOO3QSeWAWosSuEiJKGiZbePVYyX3j1ZQBq4afKxX9j7WrHJmLG49L6NdfJF5U1OQjJ5nbpH0r64qSrG+/ljYjhqaKkuNOlBVDhtm3SSJDwMMEECUeLi6ppYUAoiQtmFkkgwQQJRrwESUasJoxVN1ynjvnMQn9/ZdU776XVPY9TIz7ydN8PTUnJPfdHZZIjUg4LHLq0Igc1T9zz/17/cwUREnDDZ7z1utSdNXlaweEQrLs/kcltt76af6pWHe54LKlElyxQiKbdDf9c6oeMWp94UgJL/zJWKiyzyFSdtFlGc8xnRsIlJVK8bFHSqBqjZSNi8iKqfdIZIut6t9GPC5tzhsuWV99seaOkvbFsuK2O6W8w3rp3DZrQcAzBBAlnikliWSIAKIkQ+BZNm0EECUaqBElGrCaGBqoqZG2Jw2U0L//JEeuGnmBVBxxlHWLaERSn1V+XxSUDTeKS26u+siSuavumSl77BWTseNrMrchi1dGlDQCNBKR3BeeleyPPzQOc63aax+p3mMviyugH65gyiTJe3K2MTHSbRNZOeFmUwfN5t97l7Sa9UDKRlZMni41W22jvzkXzwgu/VeyPv3YOHekZqddJLrBhk1mo4RV22iF5Gy5mZSsqnH8Ya6hP36XvCcfl+DSpVK19z5SdVDfJnNkAATSQQBRkg7KrOFlAogSL1eX3BQBRIlGHyBKNGA1MTTrm6+kzTmpt4xX77yrrLxhonWLuDRS3TNTcvPWnJkSCrk0oTrbRpS4q47hn36UtsNOSdl0+aCTZPXpZ7Y4kaKxYyRnwdsp89UdJerOEq6mCbjl9cCB1auNA2iDpSuTSVHnpuvLiPQQQJSkhzOreJcAosS7tSWzNQQQJRqdgCjRgNXEUPVb0eKB/VJGVR7UV8ourvXYgXXLuSrS0CHZ8vuitY8gtW0nMmu2d85MQZS4qh2lvrM0zErNnJeel6IbrkmCiOfkSMlDsyXWrthdcDK0W7eIkqzPPpE2o89J/XN+395SdsX4DJFjWQisJYAooRsgYI4AosQcP2Y7nwCiRKNGiBINWM0YWjT+Csl+8zVRSiCuXo15zY0S2bZnM2Z6e8i8uSGZfqdzzkyxmjaixGqi9sYzXkt7fP/kWRpqtbLRY6TykMNbvnAkInnPzTMeO4kVFUm1esRo191bHs9nM90iSkKLfpN2Q45PqU7F4UfKqvMu9FnFSNeJBBAlTqwKe3ITAUSJm6rFXltCAFGiQQ1RogGrmUMDpSsl9M/fEunWXTzzbEkzc29smJPOTLEgnZQQiBKridofTwmNnDdeleDy5VKz485SoQ5ezsmxf2FWqJeAW0SJ2nzRZRdKznvvGnnECotk5c23S2TTzagsBDJOAFGS8RKwAZcTQJS4vIBsv0kCiJImEa0dgCjRgMVQCDRAAFFCa0DAHAE3iRKVqborKbhsmXEQsASD5pJnNgQsIoAosQgkYXxLAFHi29L7JnFEiUapESUasBgKAUQJPQABWwi4TZTYAoGgEDBJAFFiEiDTfU8AUeL7FvA8AESJRokRJRqwGAoBRAk9AAFbCCBKbMFKUJ8RQJT4rOCkazkBRInlSAnoMAKIEo2CIEo0YDEUAogSegACthBAlNiClaA+I4Ao8VnBSddyAogSy5ES0GEEECUaBXGKKMl+9x3Jv3eahJb+K1V795JVw0dKPD9fIxOGQiBzBDijJHPsWdkbBBAl3qgjWWSWAKIks/xZ3f0EECXuryEZNE4AUaLRIU4QJcGSZdJu0NESiESSO1998qlSPvg0jUwYCoHMEUCUrGGf886bkvPqy8brcSv79ZfIJt0zVxRWdhUBRImrysVmHUoAUeLQwrAt1xBAlLimVGy0hQQQJRrgnCBKsj94T1pfMjpl19U77yorb5iokQlDIZA5AogSkewFb0nrsZckixBv1UpKHnxcYm3aZq4wrOwaAn4TJVnffCVZX38pNZtvKTU9d3BNndioswkgSpxdH3bnfAKIEufXiB2aI4Ao0eDnBFESXLZU2h13lARiseTOy08YLKtPHaqRCUMhkDkCiBKRgok3St78uSlFKB1/nVTttU/mCsPKriHgJ1GSN/sRKZg2ee3fdwMGyeozR7imVmzUuQQQJc6tDTtzBwFEiTvqxC5bTgBRosHOCaJEbTdvzuOS++xcCS1bKtU9d5BVI86XWMdOGpkwFAKZI4AoEcm/Z5q0euTBlCKsmDxdarbaJnOFYWXXEPCTKGl3fH8J/f1XsjbxvDxZOvdFkVDINfVio84kgChxZl3YlXsIIErcUyt22jICiBINbk4RJRpbZigEHEcAUSISWrJY2ow8S9SZQ+qq6bGdrJg0VUT9q4MLAk0QQJQgSvghMU8AUWKeIRH8TQBR4u/6+yF7RIlGlRElGrAYCoEGCCBK/gMTj0vo118kXlQkseL29AsEmk3AT6Ikf8okafXk7CSbyn17S9kV45vNioEQaIgAooTegIA5AogSc/yY7XwCiBKNGiFKNGAxNIXAt98E5fersHMAACAASURBVLn5IamuikufQ2Ky405rz5jxGypEid8qTr5WE/CTKJFoVLK//FzCP34vNd26S2S77SWenW01UuL5kACixIdFJ2VLCSBKLMVJMAcSQJRoFAVRogGLoUkCvy8KyPCh2RKpWQtl4uQa2XIrd8mSlSsDMvvRkKh8dto5JoccHpVwWL/QiBJ9ZsyAQG0CvhIllB4CNhFAlNgElrC+IYAo8U2pfZsookSj9IgSDVgMTRKY/0xQptyWlULk+JMjctLgqKsonT00W35euPYMjYGDojLk9Ih2DogSbWRMgEAKAUQJDQEB8wQQJeYZEsHfBBAl/q6/H7JHlGhUGVGiAYuhSQJvvh6U669JFSUjzovIoYe7R5SoM0dPGJiTUtVu3eMydXq1dqURJdrImAABRAk9AAGLCSBKLAZKON8RQJT4ruS+SxhRolFyRIkGLIYmCVRWipx/Trb8+vOauzE6dIrLlLuqpbDQPZAqKkQG9MtRxwUkr512ick119d6nqiZ6SBKmgmKYRBogAB3lNAaEDBPAFFiniER/E0AUeLv+vshe0SJRpURJRqwGLoOgb/+CkhNtchGXeKupDP9zrA8PSck8bhIbp7IhZfUyJ576Z+zgihxZfnZtIMIIEocVAy24loCiBLXlo6NO4QAosQhhWAbthFAlGigRZRowGKoJwmsXhWQJUsC0m2TWIsOclVQECWebA2SSiMBREkaYbOUZwkgSjxbWhJLEwFESZpAs0zGCCBKNNAjSjRgMRQCDRBAlNAaEDBHAFFijh+zIaAIIEroAwiYI4AoMceP2c4ngCjRqBGiRAMWQyGAKKEHIGALAUSJLVgJ6jMCiBKfFZx0LSeAKLEcKQEdRgBRolEQRIkGLIZCAFFCD0DAFgKIEluwEtRnBBAlPis46VpOAFFiOVICOowAokSjIIgSDVgMhQCihB6AgC0EECW2YCWozwggSnxWcNK1nACixHKkBHQYAUSJRkEQJRqwGAoBRAk9AAFbCCBKbMFKUJ8RQJT4rOCkazkBRInlSAnoMAKIEo2CIEo0YDEUAogSegACthBAlNiClaA+I4Ao8VnBSddyAogSy5ES0GEEECUaBUGUaMBiKAQQJfRALQLhnxdK1icfSnTDLlK92x4i6l9YXC0igChpETYmQSCFAKKEhoCAOQKIEnP8mO18AogSjRohSjRgMRQCiBJ64D8COW++JoVXj5VAPG58pWqf/aT0ymvg00ICiJIWgmMaBGoRQJTQDhAwRwBRYo4fs51PAFGiUSNEiQYshkIAUUIP/EegzagRkvX5pyk8lj0+V2LF7WHUAgKIkhZAYwoE6hBAlNASEDBHAFFijh+znU8AUaJRI0SJBiyGQgBRQg8gSmzpAUSJLVgJ6jMCiBKfFZx0LSeAKLEcKQEdRgBRolEQRIkGLIZCAFFCD/xHIG/OY1Iw9fYkj8hW28jyydPh00ICiJIWgmMaBGoRQJTQDhAwRwBRYo4fs51PAFGiUSNEiQYshkIAUUIPJAjE45L1zVcS/vZria6/odRsv6PEW7WCTwsJIEpaCI5pEECU0AMQsIwAosQylARyKAFEiUZhECUasBgKAUQJPQABWwiYFSXZ/1sguS89L/H8fKk4sr9ENt3cln0SFAJOJsAdJU6uDntzAwFEiRuqxB7NEECUaNBDlGjAYigEECX0AARsIWBGlGR/+L60HjMquS91Z0/JPQ9KrFNnW/ZKUAg4lQCixKmVYV9uIYAocUul2GdLCSBKNMghSjRgMRQCiBJ6AAK2EDAjSvKnTJJWT85O2VfpZeOkav8DbdkrQSHgVAKIEqdWhn25hQCixC2VYp8tJYAo0SCHKNGAxVAIIEroAQjYQsCMKMl75EEpuGdayr5WXn+rVO+ymy17JSgEnEoAUeLUyrAvtxBAlLilUuyzpQQ8IUoi0aj8u2yltGtTKDnZWSksliyraCmbdeYhSixDSSAfEyguypay8ohUR2I+pkDqEGg5ATOiJPj3X9LmnGESWrbU2EDN1j1kxcQpIuFwyzfETAi4kACixIVFY8uOIoAocVQ52IwNBFwvSu5+eL5MuvuJJJo+++4iV446RVoX5RtfQ5TY0DWEhIAJAogSE/CYCgERMSNKEgBDv/xsHOYa69gJphDwJQFEiS/LTtIWEkCUWAiTUI4k4HpRMnv+G7LR+h2l59abyu9L/pHTRt0gpw06VE459mBEiSNbjk35nQCixO8dQP5mCVghSszugfkQcDsBRInbK8j+M00AUZLpCrC+3QRcL0rqArrixvtk8Z//yn0TL0aU2N09xIdACwggSloAjSkQqEUAUUI7QMA8AUSJeYZE8DcBRIm/6++H7D0lSmoiUekz6AI5tPceMvrMgYgSP3QwObqOAKLEdSVjww4jgChxWEHYjisJIEpcWTY27SACiBIHFYOt2ELAU6LkyptnyHOvvi/PPni9dGzfxgC2rLTKMnBZ4aDkZoekrLzGspgEgoDfCBS1ypLyqqhEouk/zDUeF1F/sXNBwM0ECltlSXY4aPxdxKHIbq4ke88kgYK8LKmJxKSqJprJbbC2gwjwbwTNYgRE2hXkSEmZdZ+1NHfAcAjYSqC4KMfS+IF4XP0xk/5r6synZcrMp+XRaVfKtlt2S26gqsa6D2PBgEgoGJCaaEZSTD9UVoSADQSywgGJRuMSy8CPUTQelxCmxIaqEjKdBJS0V38fqQ95mfg5SmeurAUBuwiEQwFR/2TNgLO3KyXimiTAvxH0AKrfO2VnBcXKz1p6O2A0BOwloN54a+WVdlESi8XllmmPyePz3pD7bxsjW2/eNSUf3npjZXmJBQHzBHj0xjxDIvibAI/e+Lv+ZG8NAR69sYYjUfxLgEdv/Ft7v2Tu+kdvLr/hXnnq+bdl2g2jZZON10vWrVOHthIOhXg9sF86mTxdQwBR4ppSsVGHEkCUOLQwbMtVBBAlrioXm3UgAUSJA4vCliwl4HpR0mfQhfLHn/+uA+W5h26QjTfshCixtF0IBgHzBBAl5hkSwd8EECX+rj/ZW0MAUWINR6L4lwCixL+190vmrhclTRWKR2+aIsT3IZBeAoiS9PJmNe8RQJR4r6ZklH4CiJL0M2dFbxFAlHirnmSzLgFEiUZXqANd8nPDUlJWrTGLoRCAQG0CiBL6AQLmCCBKzPFjNgQUAUQJfQABcwQQJeb4Mdv5BBAlGjVClGjAYigEGiCAKKE1IGCOAKLEHD9mQwBRQg9AwDwBRIl5hkRwNgFEiUZ9ECUasBgKAUQJPQABWwggSmzBSlCfEeCOEp8VnHQtJ4AosRwpAR1GAFGiURBEiQYshkIAUUIPOIBAcOUKKZh4k2R/8qFENuwi5UOHS/X2OzpgZy3fAqKk5eyYCYEEAUQJvQABcwQQJeb4Mdv5BBAlGjVClGjAYigEECX0gAMIFN54reS++FxyJ7Gi1rJs9jMi4bADdteyLXhBlAT//UcKJt0k2Z9/KpFu3WX1WedIzdY9WgaEWRBoAQFESQugMQUCtQggSmgHrxNAlGhUGFGiAYuhEECU0AMOINDulEES+n1Ryk6Wz5glkS4bO2B3LduCF0RJ0dgxkrPg7bUCq1NnWfbg4yKhUMugtGBWoLpaQr/+LNENNpJ4fn4LIjDFzQQQJW6uHnt3AgFEiROqwB7sJIAo0aCLKNGAxVDfEigtFfnn74B02yRe72ceDnP1bWtkJPHCCVdJ7qsvJdeOFxTI0jnPckdJRqqxdtF2x/eX0N9/peyi5OEnJNp5vbTsLOuTj6To6rESLF0p8XBYVl14qVQe0Ccta7OIMwggSpxRB3bhXgKIEvfWjp03jwCipHmcjFGIEg1YDPUlgdmPheS+6WseaejQSWTc1dWySfd4CgtEiS9bI2NJh377VQqm3iZZ334t0fU3lIqjjpHKPodkbD9WLOyFO0paX3ahZL/3bhJHrE1bWfb43LTdUdJmxFCjJxJXvFUrWfr0C2lb34o+IIY5AogSc/yYDQFECT3gdQKIEo0KI0o0YDHUdwSWl4iceGyOxGJrU++1X0zGXF6DKPFdN5CwnQTSIUrCi36TeHa2bXd4hH/8XvKnTZas77+VSJeuUtl/oFT2PshObCmx2/frI4FVq1K+ls47WtKWKAs1SABRQnNAwBwBRIk5fsx2PgFEiUaNECUasBjqOwKffxaQMaOzU/LecKO43D2zGlHiu24gYTsJ2ClKAuXl0vqS0ZL11RdGClV77i2l4yZ47k6LwpsmSO4LzybLFNlsC1k+7T47y0ZshxFAlDisIGzHdQQQJa4rGRvWJIAo0QCGKNGAxVDfEYhERAYfny0lywLJ3AedGJWTh0QQJb7rBhK2k4CdoiR33tNSOOmmlO2vvPoGqd5zbztTSnvs4LKlkvvcPAl/941E1R0tfQ+TqIsP+E07QA8siCjxQBFJIaMEECUZxc/iaSCAKNGAjCjRgMVQXxL44fuAvPZKSP76KyA9to1Jn75RKSxMRcEZJb5sDZK2kICdoqRg4o2SN39uym5Xn36mlA86ycIMCAWBzBNAlGS+BuzA3QQQJe6uH7tvmgCipGlGyRGIEg1YDIVAAwQQJbQGBMwRsFOUqLfBtLlwZHKD6ijmFdPvl0j3Tc1tmtkQcBgBRInDCsJ2XEcAUeK6krFhTQKIEg1giBINWAyFAKKEHoCALQTsFCUSj0vui89J1ofvi+TkSNVue0h1r/1tyYOgEMgkAURJJumzthcIIEq8UEVyaIwAokSjPxAlGrAYCgFECT0AAVsI2CpKbNkxQSHgPAKIEufVhB25iwCixF31Yrf6BBAlGswQJRqwMjy0sjIgd94RknffCUq79iInnhyV/+sVzfCuWF4R8OqjN8FVqyS45A+JbrKpxMNhig0B2wggSmxDS2AfEUCU+KjYpGoLAUSJLVgJ6iACiBKNYiBKNGBleOiD94dk1gNrP6yqz60zHqqW9h3UE/dcmSTgRVGS+8xTUjh5okg0KrF2xVI67lqp2WbbTGJmbQ8TQJR4uLikljYCiJK0oWYhjxJAlHi0sKSVJIAo0WgGRIkGLBNDX3ohJLMfDUlpaUD26x2V04ZGJCtLL+BVY7PkvQXBlElXjI/InntxV4keSetHe02UBCoqpPjIgyWg3o/831W9y26y8vpbrYenGTH7s0+k1fSpEv5jkVTvuIusOv9CibVuoxmF4U4jgChxWkXYjxsJIErcWDX27CQCiBInVYO92EEAUaJBFVGiAauFQ39fFJBhp2ar8wST19DhETmqv57guP++sDz6cChlFw88Ui0dOnJHSQtLY9k0r4mS8E8/SNthQ1L4RDt1lpJZcyxj1qJAVVVSfNxREixdmZxe2ecQKbvoshaFY5JzCCBKnFMLduJeAogS99aOnTuDAKLEGXVgF/YRQJRosEWUaMBq4dCXXwzJrTemnu9wQJ+YjL6oRitiyTKRO27Lkq8+D0i7YjHuTDnuBD3ZorUgg5tNwGuiRGIxaTv4OAkvWZxkUHHMcbLqrHOazcSOgfUJHPWK1+XT77djOWKmkQCiJI2wWcqzBBAlni0tiaWJAKIkTaBZJmMEECUa6BElGrBaOPSXnwMy/IzslNmnDYvIMQORHC1E6rhpnhMlIhJe+JPkvvS8BP9YJJFttpXKQ4/I/CMu6o6Sow+RYGVlsgcqex8kZZde6bieYEN6BBAlerwYDYH6CCBK6AsImCOAKDHHj9nOJ4Ao0agRokQDlomhM+5Rb6tZc0ZJz+2jcu6oqBQU8MiMCaSOmupFUeIowLU2k/vcPMl75ikJLflDarbaRlYNHynRjbs6dbvsq5kEECXNBMUwCDRCAFFCe0DAHAFEiTl+zHY+AUSJRo0QJRqwGAqBBgggSmgNCJgjgCgxx4/ZEFAEECX0AQTMEUCUmOPHbOcTQJRo1AhRogGLoRBAlNADHiEQqKyU0O+/SaRLV5GcnIxnhSjJeAnYgAcIIEo8UERSyCgBRElG8bN4GgggSjQge02U/P1XQJ6aE5K//w7IbrvHpE/fqKg/9LggYCcB7iixky6xrSaQveAtKZpwlShZEs/Pl9JLx0n17ntavYxWPESJFi4GQ6BeAogSGgMC5gggSszxY7bzCSBKNGrkJVFSUyNy6knZsvTftWZk2PCIHKn5Gl4NfAyFgEEAUUIjuIlAu4H9JLRsaXLLkY27yvL7Hs5oCoiSjOJncY8QQJR4pJCkkTECiJKMoWfhNBFAlGiA9pIoWfhTQEYMS327zI47x+TaG/Rew6uBj6EQQJTQA64iEFhVJu37HZyy53hWlix94Y2M5oEoySh+FvcIAUSJRwpJGhkjgCjJGHoWThMBRIkGaC+JkpJlIicMTH3Wvtd+MRlzOaJEoyUY2gIC3FHSAmhMyRiB1qPPkezPPkmuX7V3Lym9akLG9qMWRpRkFD+Le4QAosQjhSSNjBFAlGQMPQuniQCiRAO0l0SJSvuGCWF549WQQSC/QOSsETXGK3k7dRbZdbeohMMacBgKgWYSQJQ0ExTDtAkE//1HCibdJNmffyqRbt1l9VnnSM3WPbTj1J4Q/HOJ5D03T0K/LJTIpptL1cGHSrTzeqZimp2MKDFLkPkQ4K039AAEzBJAlJglyHynE0CUaFTIa6JEpV5aKvLvPwHjrJJrxmVJJLIGSM/t43L9LdUadBjqRgKL/wjI00+GRB3BsOfeMTngoJjtaSBKbEfs2wWKxo6RnAVvJ/OPduosJbPmeI4HosRzJSWhDBDgjpIMQGdJTxFAlHiqnCRTDwFEiUZbeFGUJNK/amyWvLcgmEJj+oxq2ahLXIMQQ91EoHy1yCkn5khZ6dpdj74oIgf0idqaBqLEVry+Dl58zOESXF6SwmDZ43MlVtzeU1wQJZ4qJ8lkiACiJEPgWdYzBBAlnikliTRAAFGi0RqIEg1YDHU8gc8/C8iY0akH+u6zb1QuueK/24psygBRYhNYwkrryy6U7PfeTZKItu8gJY897TkyiBLPlZSEMkAAUZIB6CzpKQKIEk+Vk2TqIYAo0WgLL4uSl18Mya03rj2UZIMN43L3zGpRfwhyeZPA74sCMnRIqig55PConHMeosSbFfd+VuEfv5f8aZMl6/tvJdKlq1QMHCRV+/b2XOKIEs+VlIQyQABRkgHoLOkpAogST5WTZBAl5nrAy6JEkfnh+4B8/VVQOnaKy/bbxyW/gMduzHWM82dfeVmWfPDemkeuCgtFrr+5WjbZ1N66c0eJ8/uCHTqbAKLE2fVhd+4ggChxR53YpXMJIEqcWxt2Zg0B7ijR4Oh1UaKBgqEeIrBiRUDU66K7dotLMPWYGluyRJTYgpWgPiKAKPFRsUnVNgKIEtvQEtgnBBAlPim0j9NElGgUH1GiAYuhEGiAAKKE1oCAOQKIEnP8mA0BRQBRQh9AwBwBRIk5fsx2PgFEiUaNECUasBgKAUQJPQABWwggSmzBSlCfEUCU+KzgpGs5AUSJ5UgJ6DACiBKNgiBKNGAxFAJ+FyXRqIR//kminTpLvKg1/QABywggSixDSSAfE0CU+Lj4pG4JAUSJJRgJ4mACiBKN4iBKNGAxFAI+FiXhhT9J6ysuluDff4k6Gnf10OFScewJ6euJWMyQNLH2HSTWpm361mWltBBAlKQFM4t4nACixOMFJj3bCSBKbEfMAhkmgCjRKACiRAMWQyHgY1FSdM2VkvP6K2sJhEKydM58iRcW2d4XoT9+l6JLRkt4yWJjrfITT5HVQ86wfV0WSB8BREn6WLOSdwkgSrxbWzJLDwFESXo4s0rmCCBKNNgjSjRgMRQCPhYl7U4ZJKHfF6UQWHHHXVKzdQ/b+6Jg0k2SN+/plHVKZj4i0Y262L42C6SHAKIkPZxZxdsEECXeri/Z2U8AUWI/Y1bILAFEiQZ/RIkGLIZCwMeiJH/G3dLqoZlJAtHi9rJ81hyJh8O290WbUSMk6/NPU9YpHX+dVO21j+1rs0B6CCBK0sOZVbxNAFHi7fqSnf0EECX2M2aFzBJAlGjwR5RowGIoBHwsSgJlpZL3/HwJf/m5xDqvJ5UH9JHIFlulpSdyn5wthVMmJdeKFRRKycNPSLygIC3rs4j9BBAl9jNmBe8TQJR4v8ZkaC8BRIm9fImeeQKIEo0aIEo0YDEUAj4WJZksfqCyUnKfnWvcVRIrbi+V+x8okW17ZnJLrG0xAUSJxUAJ50sCiBJflp2kLSSAKLEQJqEcSQBRolEWRIkGLIZCAFFCD0DAFgKIEluwEtRnBBAlPis46VpOAFFiOVICOowAokSjIIgSDVgMhUADBGrKs+Wll+OSXxiVPfeOSXY2qCAAAR0CiBIdWoyFQP0EECV0BgTMEUCUmOPHbOcTQJRo1AhRogGLoRCoh8D33wXk8otyZHW5SDwel802j8nNt9UgS+gWCGgQQJRowGIoBBoggCihNSBgjgCixBw/ZjufAKJEo0aIEg1YDIVAPQRunxiWl5/PkmgsbogSdV1/S7X03H7N/+eCAASaJoAoaZoRIyDQFAFESVOE+D4EGieAKKFDvE4AUaJRYUSJBiyGQgBRQg9AwBYCiBJbsBLUZwQQJT4rOOlaTgBRYjlSAjqMgGdESdmqcolEo9K2dWEK4iXLKixDjiixDCWBfErgow+CctXlOck7StoVx+XeB6olN9enQEgbAi0ggChpATSmQKAOAUQJLQEBcwQQJeb4Mdv5BFwvSsorKuXia+6S1xZ8atDebuvucsc150r7dq2N/0aUOL8J2aG/CKz8N1veeXfNYa477hyToiJ/5U+2EDBLAFFiliDzISCCKKELIGCOAKLEHD9mO5+A60XJPbOeldnz3pAH77hM8nKz5awxE6Vbl/Xk6otORZQ4v//YoQ8JFBdlS1l5RKojMR9mT8oQME8AUWKeIREggCihByBgjgCixBw/ZjufgOtFyTFnXCl99t1FzjjhMIP2i298IKPGTZWvXp8hgUCAO0qc34Ps0GcEECU+KzjpWk4AUWI5UgL6kACixIdFJ2VLCSBKLMVJMAcScL0o2aXvmXLNxacZskRd3/zwqwwYOk7enTdFWhfmI0oc2HRsyd8EECX+rj/ZmyeAKDHPkAgQQJTQAxAwRwBRYo4fs51PwNWiRL1etMd+Q2TqdedLrz16GrQX/rpYjjjlMnnlsVtkvU7Fzq8AO1yHwMqVIn/+KbLZZiKhEIAgAAEIQAACEIAABCAAAQhAAALuJRCIK3uRxkvdUXLtmNPloF47G6vWvaMkjVthKQsIPPCAyO23rwnUubPIxIlrhAkXBCwlEIuJ/PijSMeOIm3bWhqaYBCAAAQgAAEIQAACEIAABGoTSLsoUWeUHLzfrnL68Yca++CMEvc25PISkROPzRH1GTZx9dovJmMur3FFUn/9FZCaapGNuqTVFbqCTe1NZvrRm9Afv0vRJaMlvGSxsa3yE0+R1UPOcB1HNuxfAjx649/ak7l1BHj0xjqWRPInAR698Wfd/ZS1qx+9UYW6++H58sT8N4233rTKy5EzL76Vt964tIM//ywgY0Znp+x+w43icvfMakdnFI2KXD0uS95/N2jsc+secbl6QrW0ynf0tjO2uUyLkoJJN0nevKdT8i+Z+YhEN+qSMSYsDAEdAogSHVqMhUD9BBAldAYEzBFAlJjjx2znE3C9KFldXikXjL9T3nrvc4N2jy26yR3XjpSO7dsY/71kWYVlVcjJCkp+blhKypz9wd2yhNMcKBIRGXx8tpQsCyRXHnRiVE4eEknzTvSWe/vNkEwYH06ZNOK8iBx6eFQvkE9GZ1qUtB0xVMLffp1Cu3T8dVK11z4+qQBpup0AosTtFWT/TiCAKHFCFdiDmwkgStxcPfbeHAKuFyWJJFeWrZaamoi0b9c6JW9ESXPawDljfvg+IK+9EhL1GEuPbWPSp29UCguds7/6dvLg/SGZ9UCqKOl7WFTOPd/ZgidTVDMtSlrNfkTyp01Oph8rKJSSR56UeKtWmULCuhDQIoAo0cLFYAjUSwBRQmNAwBwBRIk5fsx2PgHPiJKGUCNKnN+Ebt/hzwsDcvbQ1EeGJtxUIzvsWOuwFbcnaeH+My1KAuXlkvv8PMn6/FOJFbeXyv0PlMi2a96axQUBNxBAlLihSuzR6QQQJU6vEPtzOgFEidMrxP7MEkCUaBDk0RsNWD4b+vabQfng/ZBUV8Vlp13icmCfqKi/QLjWJZBpUUJNIOB2AogSt1eQ/TuBAKLECVVgD24mgChxc/XYe3MIIEqaQ+m/MYgSDVgMhUADBBAltAYEzBFAlJjjx2wIKAKIEvoAAuYIIErM8WO28wkgSjRqhCjRgMVQCCBK6AEI2EIAUWILVoL6jACixGcFJ13LCSBKLEdKQIcRQJRoFARRogGLoZ4msGTxmueK1t8grp0nd5RoI7NkQnDVKgku+UOim2wq8XDq4cOWLECQtBFAlKQNNQt5mACixMPFJbW0EECUpAUzi2SQAKJEAz6iRAMWQz1JoLpa5KorsuWTj9aIkp7bx2T8dTWSnXqWbaO5I0rS3xq5zzwlhZMnikSjEmtXLKXjrpWabbZN/0ZY0RICiBJLMBLE5wQQJT5vANI3TQBRYhohARxOAFGiUSBEiQYshnqSwJuvB+X6a7JScjt3VET6Hhptdr6IkmajsmRgoKJCio88WAKRta+rrt5lN1l5/a2WxHdjEPXGo6wfvjNkUc3WPVyXAqLEdSVjww4kgChxYFHYkqsIIEpcVS422wICiBINaIgSDVgM9SSBB+8PyawHUh/b6Hd0VM48e+2H8KYSR5Q0Rcja74d/+kHaDhuSEjTWtp0se2KetQu5JFr+tMnSavYjyd2uOnOEVAwY5JLdr9kmosRV5WKzDiWAKHFoYdiWawggSlxTKjbaQgKIEg1wiBINWAz1JIGFPwVkxLDU52xumlgjPbaLNTtfREmzUVk2sO1JAyW8ZHEyXsWR/WXVyZQk+AAAIABJREFUOaMsi++aQNGotO/XR9RdNokr2qmzlMya45oUECWuKhWbdTABRImDi8PWXEEAUeKKMrFJEwQQJRrwECUasBjqWQJvvBaU998LGvntvEtceh/Y/Mdu1BxESfpbI7zwJ8l96XkJ/rFIIttsK5V9DxN1V4nvLkSJ70pOwhBoiACihN6AgDkCiBJz/JjtfAKIEo0aIUo0YDEUAg0QQJTQGpkkUHj1WMl949XkFsqPHiCrzz4vk1vSXptHb7SRMQEC6xBAlNAUEDBHAFFijh+znU8AUaJRI0SJBiyGQgBRQg84kECgulrCX3wmWb8slMhmW0j1tj1FQiEH7rThLSFKXFUuNutQAogShxaGbbmGAKLENaVioy0kgCjRAIco0YDFUAggSvzRA/G4hH79ReJFRRIrbu+PnDOcJaIkwwVgeU8QQJR4oowkkUECiJIMwmfptBBAlGhgRpRowGIoBOoQyPrmKwl//aXk77itlG6xnVRHmn8ALDCdSSC4coW0vnCkqDNQ1FXZ5xApu+gyZ27WQ7tClHiomKSSMQKIkoyhZ2GPEECUeKSQpNEgAUSJRnMgSjRgMRQCtQi0enCG5M+8x/hKOBSU1ScMltLBp8PI5QTy771LWs16ICWLFZOnS81W29iaWfjnhZI7d44ES0ulqveBUrV3L1vXc1pwRInTKsJ+3EgAUeLGqrFnJxFAlDipGuzFDgKIEg2qiBINWAyFQC0CxcccLsHlJUlREmmVL/8+/YKjGQUiEcmd97RkffS+RLt0lYrjTpBY6zaO3nO6N1c0dozkLHg7ZdmykRdI5RFH2baV4Irl0u7EASmv+F05/jqp3msf29Z0WmBEidMqwn7cSABR4saqsWcnEUCUOKka7MUOAogSDaqIEg1YDIWAy0VJ/j3TpNUjDyaziHTfTJZPn0ldaxHIfeVFKbxu/NqvhEKy7NGnJNau2DZOOQvekqKxl6TErzisn6w6/yLb1nRaYESJ0yrCftxIAFHixqqxZycRQJQ4qRrsxQ4CiBINqogSDVgMhUAtAgUTb5S8+XONr6hHbyoO6isrLrjU0YzaDh2cPHsjsdFlj8/lwNLaVYtEJO+5eZL16ccSKyqS6j32lurd97S1rlnffi1tRgxNWaN80Emy+vQzbV3XScERJU6qBntxKwFEiVsrx76dQgBR4pRKsA+7CCBKNMgiSjRgMRQCtQiox1iyvvpCQj9+L/k9tpCyrbaXKgk6mlHrMaMk+8P31+4xFJKlc1+UeF6eo/ft+c3F49LmvOFGP6lL3b2y4rY7Jbr+Bp5PPZEgosQ3pSZRGwkgSmyES2hfEECU+KLMvk4SUaJRfkSJBiyGQqABAsVF2VJWHnH8W2+y1SMe1403zsKIBwJS2f9YWXXWOdTVIQSCy5ZKoLRUol27iah/rfnoQpT4qNikahsBRIltaAnsEwKIEp8U2sdpIko0ip+bFZS83LAsL6vWmMVQCECgNgG3iBK1Z3UnTOjnnyS2/oYSKyigkBBwBAFEiSPKwCZcTgBR4vICsv2ME0CUZLwE/9/eecdHVWb//5NJJ5AAAQGRriI27AVdUFGxobJ214a6yNe197J2XbvYC7ZV17booqviouBasa2wFlSs9CItJCF1MvP7zbgGR0HyZO4zc+993vPPviTnnuec9zlskjdz71CAZQKIEgPAiBIDWIRCYA0EgiRKGCIE/EgAUeLHqVBT0AggSoI2Mer1GwFEid8mQj1eE0CUGBBFlBjAIhQCiBJ2AAJWCCBKrGAlqWMEECWODZx2PSeAKPEcKQl9RgBRYjAQRIkBLEIhgChhByBghQCixApWkjpGAFHi2MBp13MCiBLPkZLQZwQQJQYDQZQYwCIUAogSdgACVgggSqxgJaljBBAljg1cUk3jSt037Ta9M+8NlRd31sjNRmuH7ju7B8KjjhElHoEkjW8JIEoMRoMoMYBFKAQQJewABKwQQJRYwUpSxwggShwbuKTHPntQT0x/qLnxvEieHh3+D3UoKncPhgcdI0o8gEgKXxNAlBiMB1FiAItQCCBK2AEIWCGAKLGClaSOEUCUODZwSRe/caamLvwgpfGrBt+sbbrt4B4Mw44r6pdrac1i9Wm/viI5keTViBJDiIQHjgCixGBkiBIDWIRCAFHCDkDACgFEiRWsJHWMAKLEsYFLeuTTsXrq80eaG0/8wv/Y8PHqWNzJPRgGHT/66f168vO/Jq/o1ra7EnKpe7seiBIDhoQGkwCixGBuiBIDWIRCAFHCDkDACgFEiRWsJHWMAKLEsYFLWlyzSHdPHaNPF09TUW6xepb11oEbHKptu+2onMTbI3j9isDcytn648tHpPz5PusfqFO3PhdRwr6EngCixGDEiBIDWIRCAFHCDkDACoGgi5JI3Xy1+/5G5Vd9qmjJRqrufbqiJRtYYUVSCKyJAKLE3d2Y9P0E3fLhXxSPx5MQdu01TOftcKm7QH6j8ynz3tRVb1+YEtG/fBPduvtYRAkbE3oCiBKDESNKDGARCgFECTsAASsEgi5K2k8/RfmV05rZRNusr+UDV70d3go0kkLgFwQQJe6uxBmTRmnG0ukpAMaN+JfaFrRzF8oaOq9trNExL/5e1Q1VzREnbnGKDup/BKKEbQk9AUSJwYgL8iIqKshVZU2jwVWErolAzUpp3ryIevWOqaAATq4QKCvJV019kxqjMVdapk8IeEog6KKk04fDlBOtbmYSz4lo6bYTFc9t4yknkkHgtwi0a5OvaLRJtQ18L3JtUxAlZhOfvvhj/Xv2q1pau0Sbr7Ol9uozXMX5P/7/dXlpgZZWNpglJBoCASGAKDEYFO8oMYC1ltDXJuVqzI15ikaldqXShZc0asut+GHFO8L+zZT4plpVE1UDosS/Q6IyXxMIuihp/9n/Kb/qk2bG0TZ9tHzg33zNnOLCR4B3lIRvpi3t6O9fPKaHP7m3OXyzzlvqht3ubOnlxP2PAJ96wyqEnQCixGDCiBIDWL8R2tQkHXJgoWprVgX1HxDTrXfyTh1vCPs7C6LE3/OhOv8TCLooyav8WCVzxip/5Qwlbrup6X6MGjoM8j94KgwVAURJqMZp1EwsHtOXS6fri6WfqXvbHtqi6zYqyi0yykEwHw/MDoSfAKLEYMaIEgNYvxG6cGGORv4h9V6bkrbSM8/Xe3MAWXxNAFHi6/FQXAAIBF2UtARxm7kPq2jR88nQuq4Hqab70S25jBgItJgAoqTFqAiEwGoJ8I4SFiPsBBAlBhNGlBjAWkvoaf+Xr6+/ijRH7bp7k867MOrdAWTyLQFEiW9HQ2EBIRB2UVK47E2Vzkj9lIWKje9QY9lWAZkQZQaBAKIkCFOiRj8TQJT4eTrU5gUBRIkBRUSJAay1hM6ZnaOJL+cq8b/9N4prz72a1Knzjx/TxivcBBAl4Z4v3dknEHZRUjL7HrWZl/rMkpU9R/OuEvur5dQJiBKnxk2zFgggSixAJaWvCCBKDMaBKDGARSgE1kAAUcJqQCA9AmEXJQVLX1PZV5ekQKoYcKsa22+bHjiuhsDPCCBKWAcIpEcAUZIeP672PwFEicGMECUGsAiFAKKEHYCAFQJhFyWKRdXu+xuVX/F+kl9D+x1U3e98STlWeJLUTQKIEjfnTtfeEUCUeMeSTP4kgCgxmAuixAAWoRBAlLADELBCIPSixAo1kkIglQCihI1wgUA8HteHC97VnKpZ2rLLNurbfgPP2kaUeIaSRD4lgCgxGAyixAAWoRBAlLADELBCAFFiBStJHSOAKHFs4I62e8N7V+rfsyY2d3/2dhdr9z77eEIDUeIJRpL4mACixGA4iBIDWIRCAFHCDkDACgFEiRWsq00aaViinGilmtr04dafzGHPyEmIkoxg5pAsEqhuqNIh4/dKqaB/+Sa6dfexnlSFKPEEI0l8TABRYjAcRIkBLEIhgChhByBghQCixArWXyVt983VKlr8cvLPo23W14pNblMsr31mDucU6wQQJdYRc0CWCSBKsjwAjg88AUSJwQgRJQawCIUAooQdgIAVAogSK1hTkuZXT1f7T0el/NnK9Y5XTY8T7B/OCRkhgCjJCGYOyTKB8147RZ8untZcxcjNR+vQAUd7UhXvKPEEI0l8TABRYjAcRIkBLEIhgChhByBghQCixArWlKRFC8er3fc3pfxZXflQVW14pf3DOSEjBBAlGcFs9ZCGpgZNmfeGVtRXaId1d1aXkm5Wzwti8rqmOv134X80r3qOBpRvqo3KN1EkJ+JJK4gSTzCSxMcEECUGw0GUGMAiFAKIEnYAAlYIIEqsYE1JGmlYqvKpI6R4U/OfV21wqeo6DbN/OCdkhACiJCOYrR2SkCRnTx6tb5bPSJ6RF8nXTbvdrf7lG1s7k8SpBBAlbETYCSBKDCaMKDGARSgEECXsAASsEECUWMH6q6QFy6eoYPnbikQr1Vi2tWo7D5cieZk5nFOsE0CUWEds9YCPF03VBa+fmnLG3v0O0GnbnGf1XJKvIoAoYRvCTgBRYjBhRIkBLEIhgChhByBghQCixApWkjpGAFES7IEjSrI/P0RJ9mdABXYJIEoM+CJKDGARCgFECTsAASsEECVWsJLUMQKIkmAPvC5apxMmHKZltUuaG7lq8M3aptsOwW4sQNUjSgI0LEptFYFQiJJoU5MWL12hju3bqbAgPwXE/KW1rQKzuosQJZ6hJJHDBMpLC1RVE1VDNOYwBVqHQOsJIEpaz44rIfATAURJ8Hehsn6Fpi76IPkw14HrbK3eZX2D31SAOkCUBGhYlNoqAoEXJfc//qJuvf+Z5uaH7bKtLjvrOJWVliT/DFHSqr3gIghYI4AosYaWxI4QQJQ4MmjatEoAUWIVL8kdIIAocWDIjrcYeFEy7sXX1WPddTRw4/U1Z/4POuGs63XCEfvquMP2QpQ4vty0708CiBJ/zoWqgkMAURKcWVGpfwkgSvw7GyoLBgFESTDmRJWtJxB4UfLL1i+54SHNW7BYD405H1HS+r3gSghYI4AosYaWxI4QQJQ4MmjatEoAUWIVL8kdIIAocWDIjrcYKlHSGG3SsCPO0b5Dd9TZow9FlDi+3LTvTwKIEn/OhaqCQwBREpxZUal/CSBK/DsbKgsGAURJMOZEla0n4FtRMn/hEr00+b01dnbUQXuquKgg5euX3fSwJkx+Xy89dp3W6dS+9VS4EgIQCCWBxANkC/IioeyNpiAAAQhAAAIQaD0BfkZoPTuuhAAE1k4gJx6Px9cetvaIWXMX6annX1tj4KnHj1Cb4qLmr9/91+d011+f01P3XqbNNurT/Oc8zHXtrImAQCYJ8I6STNLmrDAS4B0lYZwqPWWaAO8oyTRxzgsbAd5REraJ0s8vCfj2HSUtHVUsFtfN9z6tv7/wuh657QJtvGHvlEsRJS0lSRwEMkMAUZIZzpwSXgKIkvDOls4yR8AvomRe1Rw9O+NJVdQt16699tDveuyWOQicBIE0CCBK0oDHpYEgEHhR8ufrH9T4l9/Svdefrb69ujVD79K5g/Jyc/l4YB+u4crqHI1/NqKvv4po403iGnFwVAWpd1H5sGpK8ooAosQrkuRxlQCixNXJ07eXBPwgSirql2vUy39QVf2K5tYu2PEKDem5e0qrb8yepL999qAS8bv03EMnbnGKCnMLvcRBLggYE0CUGCPjgoARCLwoGXbEuZq7YPGvsE/42/XqtV4XRIkPF/LPF+Trow9XPSdi92FNOvu8qA8rpSQbBBAlNqiS0yUCiBKXpk2vtgj4QZRMmfemrnr7wpQWd++zj87e7uLmP5tfPU8nTjhMP7+zfdSWp2nEhofZQkNeCLSIAKKkRZgICjCBwIuStbHn1pu1Ecrs15uapP33KlQsturc9h3ievKZhswWwmlZI4AoyRp6Dg4JAURJSAZJG1kl4AdR8uXS6Tpz0qgUDocOOFojNx/d/Gevz35V1797eUrM4B5DdeGgK7PKj8MhgChhB8JOAFFiMOGi/IiKi/K0vIpf6g2w/Sr0yEMKtXzZqj/u0TOusQ/DNB2mQboWURKkaVGrHwkgSvw4FWoKGgE/iJLEu0QuefNsfbTw/SS+ssIOumG3O9WzdNXz9hLPMDlxwuEpeE8Y+CcdvNGRQUNOvSEj0BJRMrtypu766CZ9vWyGBnTaVKO3PEM9SnuFjATthJUAosRgsogSA1i/Efr3J/P02F9zFY1KefnSKac3atjeP3uLiTfHkMWnBBAlPh0MZQWGAKIkMKOiUB8T8IMo+QnPstolqqivUJ+yfspJ/Pb5i9dTnz+iyTP/lXxGyRZdttEpW5+jssL2PqZLaS4QaIkoOXnisfq+4ptmHJt13jIpA3lBIAgEECUGU0KUGMBaS2hdXY7mzM5Rz14xFfI8Mu/ABiAToiQAQ6JEXxNAlPh6PBQXEAJ+EiUBQUaZEEghsDZRUttYo4PHD1MsvuofQ0sK2uqZERMhCYFAEECUGIwJUWIAi1AIrIEAooTVgEB6BBAl6fHjaggkCCBK2AMIpEdgbaIkkf2kfx2l2Su+bz5o406b6+ah96R3MFdDIEMEECUGoBElBrA8DG1okF54Pk+f/DdHvfvEdOjhMZW0jXt4AqkySQBRkknanBVGAoiSME6VnjJNAFGSaeKcFzYCLRElHy38QI9Pf0gzK75Vvw4b6qhNT9DAdbbyJYqaxpW6b9ptemfeGyov7qyRm43WDt139mWtFJUZAogSA86IEgNYHobecWueJryQ25xx84ExXX9Lo4cnkCqTBBAlmaTNWa0lEFm6RAXvvKV4cbEadhqseJs2rU3l+XWIEs+RktBBAogSB4dOy54SaIko8fRAy8ke++xBPTH9oeZT8iJ5enT4P9ShqNzyyaT3KwFEicFkECUGsDwMPeLgAlUsX/Vws0hEeub5ehX75/cWD7sNfypESfhnHPQOc2fPUvtTRylSXZ1spalrNy0f+4jiJSW+aA1R4osxUETACSBKAj5Ays86gbCJkovfOFNTF36QwvWqwTdrm247ZJ01BWSHAKLEgDuixACWh6Gn/6lAX325SpS0KZGe/We9hyeQKpMEECWZpM1ZrSHQ5pEHVfLoqn9VSuSovPhy1e+2R2vSeX4NosRzpCR0kACixMGh07KnBMImSh75dKwSnzD10yuSE9Fjw8erY3EnT7mRLDgEECUGs0KUGMDyMHTiyxHdc2e+6uukxLtJjjy6SX84JurhCaTKJAFESSZpc1ZrCCBKWkONayAQLAKIkmDNi2r9RyBsomRxzSLdPXWMPl08TeVFnbR3vwN04IaH+g88FWWMAKLEADWixACWx6GJB7rOmhlR9+4xJd5Rwiu4BBAlwZ2dK5XnzfhC7U8+UT+9jy1eWKilTz+neLtSXyDgHSW+GANFBJwAoiTgA6T8rBMImyjJOlAK8B0BRInBSBAlBrAIhcAaCCBKWI0gEMidN1f5H32YfJhr45ZbK9aps2/KRpT4ZhQUEmACiJIAD4/SfUEAUeKLMVCERQKIEgO4iBIDWIRCAFHCDkDACgFEiRWsJHWMAKLEsYHTrucEECWeIyWhzwggSgwGgigxgEUoBBAl7AAErBBAlFjBSlLHCCBKHBs47XpOAFHiOVIS+owAosRgIIgSA1iEQgBRwg5AwAoBRIkVrCR1jACixLGB067nBBAlniMloc8IIEoMBoIoMYAVgtAFC3J05635+nx6jjbcMKaTTo6q7/rxjHX2ztsRvT45V+1K4xp+QEx9+sYydrbNg1x7RknBf6eqzdi7lTd3thq22lbVZ56rWFl7m4jJHXICiJKQD5j2MkIAUZIRzBwSYgKIkhAPl9aSBBAlBouAKDGAFYLQ887K16cfR5o76dk7rvsebMhIZ1PeieiqS/ObzypuIz30WIPat8+cqLHVqFOiJBpV+SH7K1K5ohln3bB9VHXexbbwktcBAogSB4ZMi9YJIEqsI+aAkBNAlIR8wLSHKDHZAUSJCa3gxx58QKFWVqf2Me75BrVta19W3D4mTy+/mJty+CVXRjVop6bAg3VJlOTNnqUOI49MmVlTj55a9tcnAz9HGsgeAURJ9thzcngIIErCM0s6yQ4BREl2uHNq5gjwjhID1ogSA1ghCD379AJ9/llOcyfd1o0n39WRidfDD+Tp70+mipIxdzZqowHBv/3GJVGiaFSdDtpXOdWrjFvd0D1VddFlmVgjzggpAURJSAdLWxklgCjJKG4OCyEBREkIh0pLKQQQJQYLgSgxgBWC0Omf5uivD+Xpm68jyeeDHHxYkwbtlBlRMX9+js45vUDLl/0IcuNN47rp1gYlvikF/eWUKJFUNHGCisc/o9z5c9U4YBNVn3y6mnr1DvoYqT+LBBAlWYTP0aEhgCgJzShpJEsEECVZAs+xGSOAKDFAjSgxgEVo2gTicWnWzByVlsbVsTztdC1KEKmuVmT+XDX1XV/xvLwWXWMa5JooMeVDPATWRgBRsjZCfB0CayeAKFk7IyIg8FsEXBAlK+orNO7LxzVnxUxt3W177dPvQOVF7Px8zLb5jwCixGAmiBIDWIQGjkDRP8er3Z1jpKYmxTqWq/Lya9S4yWae94Eo8RwpCR0jgChxbOC0a4UAosQKVpI6RCDsoiQWj+nUV47XdxVfN0/10AFHa+Tmox2astutIkoM5o8oMYBFaKAI5CQ+nWXfoUr870+vhm2314rrbvG8D0SJ50hJ6BgBRIljA6ddKwQQJVawktQhAmEXJQtXLtDIFw9unmhjrFHd2/bQI8OfdWjKbreKKDGYP6LEABahgSKwuk9niXXoqKXPvOB5H4gSz5GS0DECiBLHBk67VgggSqxgJalDBMIuSmqjtTpk/DA1xZq0sHq+qhor1Sa/rYb0GKqrh9yissL2Dk3bzVYRJQZzR5QYwCI0cAQ6HH2o8ubPa6679sCDVH3qWZ73gSjxHCkJHSOAKHFs4LRrhQCixApWkjpEIOyiJDHKsf+9Q49Pf0jzqmYrJyeiriXrqm1+2+TtN4nbcHiFmwCixGC+iBIDWIQGjkDet9+o6JWXFZk7W9FNNlPd3vsp8a4Sr1+IEq+Jks81AogS1yYe3H4r61foh5qF6lO2vnIjqR95n+2uECXZngDnB52AC6IkMaOnPn9EY/97uwpyi/TTh08O7jFUFw66MugjpP61EECUGKwIosQAFqEQWAMBRAmrAYH0CCBK0uPH1ZkhkPikiIc+vjt5WOeSrrp85+vVt/36mTm8BacgSloAiRAI/AYBV0TJgur5+uPLhydvwfnpdfGgq7Vzj13Zj5ATQJQYDBhRYgCLUAggStgBCFghgCixgpWkHhKoaqjU4c/tq8SnRvz0GtJzd12w4xUenpJeKkRJevy4GgKuiJLEpN+f/47enfemVjau1JZdttWeffblY4Id+CuAKDEYMqLEABahEECUsAMQsEIAUWIFK0k9JPDF0s901qSTUjKu166n7t/nSQ9PSS8VoiQ9flwNAZdECdN2kwCixGDuiBIDWIRCAFHCDkDACgFEiRWsJPWQQDQW1bEvHqRltUuasx6x8XE6ZrM/enhKeqkQJenx42oIIErYgbATQJQYTBhRYgCLUAgEXJREfliknJUr1dSnL7OEgK8IIEp8NQ6KWQOBr5Z9oddmTdTClQu0aaeBGtZ3P7UrKPUNL0SJb0ZBIQElgCgJ6OAou8UEECUtRiUhSgxgEQqBAIuSdn+5QkWTX0l20LhBf1Vef4tiZe2ZKQR8QQBR4osxUETACSBKAj5Ays86AURJ1kdAAZYJIEoMACNKDGARCoGAipL8/3yg9uefmVJ99YmjVXvE0cwUAr4ggCjxxRgoIuAEECUBHyDlZ50AoiTrI6AAywQQJQaAESUGsAiFQEBFSfGzT6vt3benVF83bB9VnXcxM4WALwggSnwxBooIOAFEScAHSPlZJ+CVKFnZWK0F1fPUu6wfnyST9alSwM8JIEoM9gFRYgAri6GR+fNU+N4UNZWXq3GnwYrn5WWxGo7+JYHy0gJV1UTVEF31sZF+opQ7f546HneE1NTUXNaKq65Xw6Cd/VQmtThMAFHi8PBp3TMCiBLPUJLIUQJeiJJxXz6uRz69T02xJnUoKtfVQ25R3/brO0qUtv1GAFFiMBFEiQGsLIXmffqx2p97unIaG5MVNG60sSpuv1fKzc1SRRwbNFGSqLfg3XdU+M6byYe5Nmy9rer2GS5FIgwTAr4ggCjxxRgoIuAEECUBHyDlZ51AuqKkNlqrQ8YPS0qSn17bdttRVw6+Keu9UQAEEgQQJQZ7gCgxgJWl0HY3XKOiiRNSTq+44z41brxpliri2CCKEqYGAT8TQJT4eTrUFhQCiJKgTIo6/UogXVHy7fKvdMorI1Pa69ymqx4d/qxfW6YuxwggSgwGjigxgJWlUERJlsAbHOv3W28MWiEUAlkhgCjJCnYODRkBREnIBko7GSeQriiJxWM6ccLhyeeT/PQa0f9wjdri1Iz3woEQWB0BRInBXiBKDGBlKTRxu0TppRc2n95U3knLnnhW4jklWZrIr49FlPhmFBQSUAKIkoAOzvGyG5oaNGvFd+rerofa5JdknQaiJOsjoICAE0hXlCTa/2b5DL026xXNr56rAeWbaJ9+B6pdQWnAyVB+WAggSgwmiSgxgJXF0LxvvlL+Jx8rVl6uhi23Vry0LIvVcPQvCSBK2AkIpEcAUZIeP67OPIFpi/6ja9+9VFX1K5KfanHmdhdpt17DMl/Iz05ElGQVP4eHgIAXoiQEGGghxAQQJQbDRZQYwCIUAmsggChhNSCQHgFESXr8uDrzBM6YNEozlk5vPrgkv62e+f3EzBeCKMkqcw4PFwFESbjmSTe/JoAoMdgKRIkBLEIhgChhByBghQCixApWklokcPD4YVrZUJ1ywuP7P6+OxZ0snvrbqXlHSdbQc3BICCBKQjJI2lgjAUSJwXIgSgxgEQoXE0MGAAAgAElEQVQBRAk7AAErBBAlVrCS1CKBG967Uv+eteodJBt03Ei37/GgxRPXnhpRsnZGREDgtwggStiPsBNAlBhMGFFiAItQCCBK2AEIWCGAKLGClaQWCSyp+UGvzHxJM5Z8rh5lvTWsz37qUdrL4olrT40oWTsjIiCAKGEHXCaAKDGYPqLEABahEECUsAMQsEIAUWIFK0kdI4AocWzgtOs5Ad5R4jlSEvqMAKLEYCCIEgNYhEIAUcIOQMAKAUSJFawkdYwAosSxgdOu5wQQJZ4jJaHPCCBKDAaCKDGARSgEECXsAASsEECUWMFKUscIIEocGzjtek4AUeI5UhL6jACixGAgiBIDWIRCAFHCDjhKoM2Tj6nouWeT3dftd4Bqjh7pKQlEiac4SeYoAUSJo4Onbc8IIEo8Q0kinxJAlBgMBlFiAItQCCBK2AEHCeR/9KHan3dGSucrrr1ZDdvt4BkNRIlnKEnkMAFEicPDp3VPCCBKPMFIEh8TQJQYDAdRYgCLUAggStgBBwm0eeRBlTz6UErnK485XjXHnuAZDUSJZyhJ5DABRInDw6d1TwggSjzBSBIfEwiVKBkzdpweeOIlvfvi3Spt2yaJff7SWs/wI0o8Q0kihwmUlxaoqiaqhmjMYQq0HlYCBe++o7I/n5fS3opLr1LDkN08axlR4hlKEjlMAFHi8PAD1HpttFbPfvmEvlk+QwM6bar9NzhExXnFvugAUeKLMVCERQKhESXjX35Lf77+wSQqRInFjSE1BNIkgChJEyCX+5tANKq2t92kgg/eS9bZuO32qjrjXCkvz7O6ESWeoSSRwwQQJQ4PP0CtX/nOhXp37pvNFQ/pubsu2PEKX3SAKPHFGCjCIoFQiJIP//ulTr7wVl157kidc+U9iBKLC0NqCKRLAFGSLkGud50AosT1DaB/LwggSrygSA6bBJpiTTp4/DDVRVe9O76koK2eGTHR5rEtzo0oaTGq0AXWNK7UfdNu0zvz3lB5cWeN3Gy0dui+c+j6DLwomTV3kQ7+42W69cpT1KVTBx0w8mJESejWlIbCRABREqZp0ks2CCBKskGdM8NGAFEStomGs58jn99fy+uWNjfXo7SXxu79hC+aRZT4YgxZKeKxzx7UE9NXPY8tL5KnR4f/Qx2KyrNSj61DfStK5i9copcm//jW5dW9jjpoTzU0NOrQky7XsYfupSNHDNU338/7lSipqG70jF1+Xo4K8iNaWdvkWU4SQcA1Am2Lc1XXEFO0KZ7x1uOKK0c5GT+XAyHgJYGSojwlvh+trIuqMZr5v0de9kIuCGSLQJui3OT3oYZGnpeVrRn47Vw//oww7ounNHbanYrGosqP5OvkrU/Xgf0P9gW6hCgpK8mXl79r+aIxilgrgXMnn67/LHg/Je663cZo+3V3XOu1QQpo3zbf03Jz4vG4Jz+1Jd4p8tTzr62xuFOPH6G33v9EZ11+t445ZFjyV59lK6r0witTdNgBu+mQ/YZowAa9VFMf9azB3Jwc5eZG1BBFlHgGlUTOESjMz1VjNKaYN/9XYcQvFpMiEaNLCPYpgbyHH1Tu+PHJ6poOOUTRo4/1aaXel5X4O5QbyVF9Y5OaYp58y/W+SDJCwOcECvJyFYvFFOXvkM8nlbny/PozQl20TrNWzFTvsj4qzCvMHJAWnFRckKfaBu9+12rBkYT4gMDYqffq0U8ebq4kkhPRPw55QZ3adPJBdd6V0KbQu+fLJaryTJS0pMVvZ87T5LenNocuWbZCj/9jkk46erj2HbqD+vXuzqfetAQkMRDIIAFuvckg7JAeVfjOmyq99MKU7ipuvkONW2wV0o5T2+LWGyfGTJOWCXDrjWXApA89AW69Cf2I19jg4ppFunvqGH26eJrKizpp734H6MANDw0dEN/eetMa0qu79YaPB24NSa6BgD0CiBJ7bF3JXHL/PWrz1N9S2l154mjVHHG0EwgQJU6MmSYtE0CUWAZM+tATQJSEfsTON4goMViBwvyIEveGL6tqMLiKUAhA4OcEfC9K4nEVvvovFb79hmKdOqv20CPV1LUbQ/QRgYI3XlPZlZekVFRxw61q3HpbH1VprxREiT22ZHaHAKLEnVnTqR0CiBI7XMnqHwKhEiWrw+rlO0oQJf5ZXCoJLgG/i5KiF55Tu1tvbAbctE4XLfvrk1Khv+4LDu4GeFB5NJqcUf6HPz5IrGG7HVR91vlS4qc2B16IEgeGTIvWCSBKrCPmgJATQJSEfMC0J0SJwRIgSgxgEQqBNRDwuygpO/9MFfzng5TqK+64T40bb8pMIZAegfp65c2eqaYevRQvKmp1LkRJq9FxIQSaCSBKWAYIpEcAUZIeP672PwFEicGMECUGsAiFQEBFSdtbrlfxS/9MqX7p38Yp1m1dZgqBVhMoSDyA9vqrlbNyZVKSVF50mRp2GtyqfIiSVmHjIgikEECUsBAQSI8AoiQ9flztfwKIEoMZIUoMYBEKgYCKkrxPP1bZJRcoUlWZ7KB+yG6qvPQq5gmBtAh0HHmkcmfPas7R1G1dLfvbuFblRJS0ChsXQQBRwg5AwEMCiBIPYZLKlwQQJQZjQZQYwCIUAgEVJcmyYzHlffdN8mGusfYdmCUE0ibQaa9dlNPY2Jwnnp+vJf96vVV5ESWtwsZFEECUsAMQ8JAAosRDmKTyJQFEicFYECUGsAiFQJBFicXpFY97UsXjn1FOQ4Pq9hmulcePsngaqf1CoPTic1X43pTmchq22kYrbrytVeUhSlqFjYsggChhByDgIQFEiYcwSeVLAogSg7EgSgxgEeo7AnnffK2Caf9RtEcvNWy/Y9Y+IcTvD3O1Obj8/05V+7NPTTmi8sprVd/KZ1XYrJXc3hKILJivookTlPfNV2rq00+1+wxv9XNvECXezoZsbhLgGSVuzp2uvSOAKPGOJZn8SQBRYjAXRIkBLEJ9RaBw4gS1u+Ea/fThqXW7D1PVhZdmpUaXRUmbJx9TyQP3pnCvOfworfzj/2VlFhwaTAKIkmDOjar9RQBR4q95ZLOa71d8q2kLP9R67Xpqm247KJITyWY5gTkbURKYUVFoKwkgSgzAIUoMYBHqKwIdThmlvC+mp9S05Pl/Kd62XcbrdFmU5H/0odqfd0YK8xWXXqWGIbtlfA4cGFwCiJLgzo7K/UMAUeKfWWSzkrfmvKZr371U8Xg8Wcag9Ybokp3+ks2SAnM2oiQwo6LQVhJAlBiAQ5QYwCLUVwQQJT4ZRzyutneOUcG77ySfUdKw7faqOvsCKS/PJwVSRhAIIEqCMCVq9DsBRInfJ9Ty+r5Y+pk+X/KpNujQX5uvs1XLL5R03mun6NPF01KueXz/59WxuJNRHheDESUuTt2tnhElBvNGlBjAItRXBH55y0fjwC1VccudWanR5XeUZAU4h4aOAKIkdCOloSwQQJRkAbqFI5+d8aQe+O+qn2dG9D9co7ZIfRbYbx2LKGn9UBAlrWfHlcEggCgxmBOixAAWof4iEIsp/4vpyv/8M0W791DjVtsoXlSUlRoRJVnBzqEhIoAoCdEwaSVrBBAlWUPv6cHHvHCQFtcsbM5ZlFesZ0ZMVG4kt0XnjP/qaY2ddntzbP/yTXTr7mNbdK3rQYgS1zcg/P0jSgxmjCgxgEUoBNZAAFHCakAgPQKIkvT4cTUEEgQQJeHYg3RFSeLZJIlbd75cOl3rtl1PA9fZSsX5bcIBx3IXiBLLgEmfdQKIEoMRIEoMYBEKAUQJO+A4gcjSJSp45y3Fi4vVsNNgxdt488M3osTxxaJ9TwggSjzBmPUk9069Vc9/Pa65jsE9hurCQVdmvS4XCkCUuDBlt3tElBjMH1FiAItQCCBK2AGHCeTOnqX2p45SpLo6SaGpazctH/uI4iUlaVNBlKSNkAQQ4B0lIdmBpliTPlvysb5ZPkO9y/pps85bqCC3ICTd+bsNRIm/50N16RNAlBgwRJQYwCIUAogSdsBhAm0eeVAljz6UQqDy4stVv9seaVNBlKSNkAQQQJSwAxBIkwCiJE2AXO57AogSgxEhSgxgEQoBRAk74DABRInDw6f1QBDg1ptAjIkifUwAUeLj4VCaJwQQJQYYESUGsAiFAKKEHXCYQN6ML9T+5BOV8z8G8cJCLX36OcXblaZNhXeUpI2QBBDgHSXsAATSJIAoSRMgl/ueAKLEYESIEgNYhEIAUcIOOE4gd95c5X/0YfJhro1bbq1Yp86eEEGUeIKRJI4T4B0lji8A7adNwO+ipKGpQbNWfKfu7XqoTX76zwdLGxgJAkcAUWIwMkSJASxCIYAoYQcgYIUAosQKVpI6RgBR4tjAaddzAn4WJZ8v+VSXv32+qupXKC+Sp5O2PEP7rT/CcwYkDDcBRInBfBElBrAIhcAvCOQ0Nqpk7F1q+8YkRUtKVX3YH1S3175wggAEDAkgSgyBEQ6B1RBAlLAWEEiPgJ9Fyfn/PkWf/DCtucHC3CI9+/tXlBvJTa9prnaKAKLEYNyIEgNYhELgFwSKn31abe++XXm5ETXF4opJWv7Q42rq2QtWEICAAQFEiQEsQiGwBgKIElYDAukR8LMoOeL54aqoW5bS4Ni9n1CPUn7mTG/qbl2NKDGYN6LEABahEPgFgXY3XKOiiROaRUk8HlfVeRerbtg+sIIABAwIIEoMYBEKAUQJOwABKwT8LEpu+/A6/eu7F5r77lXWV/fu9ZgVDiQNLwFEicFsESUGsAiFwC8ItPn7Eyq5764UUbLs/kfV1LcfrCAAAQMCiBIDWIRCAFHCDkDACgE/i5Lldcv08nfPa8aSz9WjrLd26zVMfduvb4UDScNLAFFiMFtEiQEsQiHwCwI51VVqe8sNKvlsWvIZJTU7DVbNiaPhBAEIGBJAlBgCIxwCqyHArTesBQTSI+BnUZJeZ1wNgR8JIEoMNgFRYgCLUAisgUB5aYGqaqJqiCaeUsILAhAwJYAoMSVGPAR+TQBRwlZAID0CiJL0+HG1/wkgSgxmhCgxgEUoBBAl7AAErBBAlFjBSlLHCCBKHBs47XpOAFHiOVIS+owAosRgIIgSA1iEQgBRwg5AwAoBRIkVrCR1jACixLGB067nBBAlniMloc8IIEoMBoIoMYBFKAQQJewABKwQQJRYwUpSxwggShwbOO16TgBR4jlSEvqMAKLEYCCIEgNYhEIAUcIOQMAKAUSJFawkdYwAosSxgdOu5wQQJa1DurR2sabMfVNt8ks0qPtgFee3aV0irrJOAFFigBhRYgCLUAggStgBCFghgCixgpWkjhFAlDg2cNr1nACixBzp7MqZOv3VE1UXrU1e3KO0l27d/f6kNOHlPwKIEoOZIEoMYBEKAUQJOwABKwQQJVawktQxAoiScA08Ho9rVuX3Ki0oVcfiTuFqzqfdIErMB/PQJ/do3Bd/S7nwkp2vTb6zhJf/CCBKDGaCKDGARSgEECXsAASsEECUWMFKUscIIErCM/AV9RW68PXT9X3FN8mmdu+zj87e7uLwNOjTThAl5oNBlJgzy+YViBID+ogSA1iEQgBRwg5AwAoBRIkVrCR1jACiJDwD/9tnD+rx6Q+lNDRm97HaqHyT8DTpw04QJeZD+WLpZzpr0knNF7YtaKeH9v272hWUmifjCusEECUGiBElBrAIhQCihB2AgBUCiBIrWEnqGAFESXgGfu2US/XmnMkpDf1p63O03/ojwtOkDztBlLRuKHMrZ2vaog+TzyXZsss23CrWOowZuQpRYoAZUWIAi1AIIErYAQhYIYAosYKVpI4RQJSEZ+CvzZqoG9+7srmh3EiuHhs+Xh2KysPTpA87QZT4cCiU5CkBRIkBTkSJASxCIYAoYQcgYIUAosQKVpI6RiDbouT7Fd/qha+fVVVDpXbpuYd2Wm+IYxPwrt1oLKp/ffeCPv7ho+QtDDusu7O2W3eQdweQabUEECUsRtgJIEoMJowoMYBFKAQQJewABKwQQJRYwUpSxwhkU5RU1C/XyBcPaf6I0AT6P+/0F2SJYzsY9HYRJUGfIPWvjQCiZG2EfvZ1RIkBLEIhgChhByBghQCixApWkjpGIJuiZMq8N3XV2xemEOeTWhxbwBC0iygJwRBp4TcJIEoMFgRRYgCLUAggStgBCFghgCixgpWkjhHIpij5cul0nTlpVArxQwccrZGbj3ZsCrQbZAKIkiBPj9pbQgBR0hJK/4tBlBjAIhQCiBJ2AAJWCCBKrGAlqWMEsilK4vG4znntZH2+5JMk9cRDR28aeo/WbdvdsSnQbpAJIEqCPD1qbwkBRElLKCFKDCgRCoHfJlBeWqCqmqgaojFQQQACrSCAKGkFNC6BwC8IZFOU/FTKstolqmyoVK/SPspJ/NbJCwIBIoAoCdCwKLVVBBAlBth4R4kBLEIhsAYCiBJWAwLpEUCUpMePqyGQIOAHUcIkIBBkAkEVJfVN9ZpTOVPrlfZSUW5RkEdA7ZYJIEoMACNKDGARCgFECTsAASsEECVWsJLUMQKIEscGTrueE0iIki7ti/TXj8bp/fnvqEubrhrR/zB1Kenm+VleJZwy903d/MHVqmlcqcK8Ip23/WUatN5gr9KTJ2QEECUGA0WUGMAiFAKIEnYAAlYIIEqsYCWpYwQQJY4NnHY9J5AQJf+e95yuf+vG5tyd23TRg/s+rfxIvufneZFw1MtHak7lrOZUHYs76fH9n/ciNTlCSABRYjBURIkBLEIhgChhByBghQCixApWkjpGAFHi2MBp13MCCVFyzbvn6q1ZU1Jy37nnw+rXYUPPz/Mi4fBxuygaa0xJNW7Ev9S2oJ0X6ckRMgKIEoOBIkoMYBEKAUQJOwABKwQQJVawktQxAogSxwZOu54TSIiSO6ZepZe++ldK7sQ7NBLv1PDj67I3z9UHC1aJnS26bKNrd7nNj6VSkw8IIEoMhoAoMYBFKAQQJewABKwQQJRYwUpSxwggShwbOO16TiAhShbWz9CfXjpNKxuqk/l36bWnzt/hMs/P8irhgur5evX7Cfqu4iv1LuunYX2Hq1vbdb1KT56QEUCUGAwUUWIAi1AIIErYAQhYIYAosYKVpI4RQJQ4NnDa9ZzAT596M3dJtWau+FaJ55OUFpZ5fg4JIZAtAogSA/KIEgNYhEIAUcIOQMAKAUSJFawkdYwAosSxgdOu5wSC+vHAnoMgYWgJhEqUNDZG9cPSCnXuWKaCgh+ftjx/aa1nw0OUeIaSRA4TKC8tUFVNVA3RmMMUaB0CrSeAKGk9O66EwE8EECXsAgTSI4AoSY8fV/ufQChEyfezF+jSGx/W1E+/ShK/5MxjdPgBuyFK/L9/VOggAUSJg0OnZU8JIEo8xUkyRwkgShwdPG17RgBR4hlKEvmUQOBFyaLFy7XbIWdq792215EjhmrABr1VV1+vDmU/fswT7yjx6eZRlrMEECXOjp7GPSKAKPEIJGmcJoAocXr8NO8BAUSJBxBJ4WsCgRclN9z1pF54dYr+/eytysvN/RVsRImv94/iHCSAKHFw6LTsKQFEiac4SeYoAUSJo4Onbc8IIEo8Q0kinxIIvCjZ/9iLVFxUqG5dyrVg0VIN2KCXRh+7v7p27phEjijx6eZRlrMEECXOjp7GPSKAKPEIJGmcJoAocXr8NO8BAUSJBxBJ4WsCvhUl8xcu0UuT31sjvKMO2lPFRQXaZJfjtP2WAzRi79+poCBP9z/+kmpq6/T8w9coPz9P9Y1Nng0gkpOjSCRH0SYeQukZVBI5RyA/N6JoLK54PJ7x3hN/dXMjORk/lwMh4CWB/LyIEmvcGI0plvm/Rl62Qi4IZI1AXm5O8vsQP9JlbQS+Ozjx831iL3i1nEBBXq4aot79rtXyk4mEgH0Chfm/vlslnVNz4h799jNr7iI99fxra6zl1ONHqE1xUVKU3H7VaRr6u62SsYkHu+53zIX6x4NXqX+/Hlqyoj6dflKuzc/LUXFBriprop7lJBEEXCNQWpKn2romNTZl5ze8nMQ/gfCCQIAJtGuTp4K8CJ8eFeAZUnr2CbQtzkvKxvrG8Pzj14r6Cj01/W+aXfm9tum2g4ZvMEJ5kbzsww5IBTHFlZOdH00CQii1zMSPUx3bFWpppXe/awUSBEWHlkCnskJPe/NMlLS0qoP/eJn2HbqDRh6+d/KSb2fO0/7HXayn7r1Mm23Uh1tvWgqSOAhkiAC33mQINMeElgC33oR2tDSWQQJhvPXmTxOP03cVXzdTPHTA0Rq5+egMUuUolwhw641L03azV9/eetPScTz01AQ9/NTLSTHStqRYY+4bp8lvf6RXnro5eWsOzyhpKUniIJAZAoiSzHDmlPASQJSEd7Z0ljkCYRMly2qX6A//PCAF4Hrteur+fZ7MHFROcooAosSpcTvZbOBFSUNDoy667gG9/Nr7yQF26dxBt15xijbfuF/yvxElTu41TfuYAKLEx8OhtEAQQJQEYkwU6XMCYRMl0VhUBz67m5piq54XsVXX7XTNkDE+n4R5eV8s/UyfL/lUG3Tor83X+fHWe16ZJ4AoyTxzTswsgcCLkp9wVVbXaOXKWnVdp6N+/gwCRElmF4rTILA2AoiStRHi6xD4bQKIEjYEAukTCJsoSRAZ+9879NxXTycfUluUV6yztrtIv+uxW/qwfJTh2RlP6oH/3tlc0Yj+h2vUFqf6qEJ3SkGUuDNrVzsNjShZ0wARJa6uNn37lQCixK+Toa6gEECUBGVS1OlnAmEUJQneKxurNb9qrvq0Xz+UD3I95oWDtLhmYfNqJYTQMyMmKjfi7adT+Hl3/VIbosQvk6AOWwQQJQZkC/MjKinK07KqBoOrCIUABH5OAFHCPkAgPQKIkvT4cXV4CdQ31SffbfD67FfVvrCDjtr0BA3puftqGw6rKAnvdH/sDFHinwlnU5TMqZyl/yx8T11Kumm7boMCJwVro7X659fj9MWSz7R+h/46aKMjVZxXnPHhJp5tVNlQqV6lfVLuyMh4IT49EFFiMBhEiQEsQiGwBgKIElYDAukRQJSkx4+rw0tg/FdPa+y025sbTNyK/cA+T2vdtt1/1TSiJJh7cO/UW/X81+Oaix/cY6guHHRlMJsJeNXZEiX/WfCernj7fCWey5N4DVxnK1236x2Bonndu5fpjdmTmmtO3CJ30aCrMtrDTe9frckzX06emXgH2rW73KaywvYZrcHvhyFKDCaEKDGARSgEECXsAASsEECUWMFK0hAQuHbKpXpzzuSUTs7f8XLt0nMPREkI5ptoIfGw2s+WfKxvls9Q77J+2qzzFirILQhJd8FqI1ui5Iq3L9B7895KgTV27yfUo7RXYAAePH6YVjZUN9dbUtA2eQtZpl5fLp2uMyeNSjnusAHH6LjNT8pUCYE4B1FiMCZEiQEsQiGAKGEHIGCFAKLEClaShoDAM18+oQc/viulkwf2eUrd2/VAlKxlvotWLtD4GU9rUc1Cbb/uThrWZz/eih+CvxMmt6OZtosoMSW2Kv7ECYdrXtWc5j/oXNJVj+73bOsTGl754jfjdddHN6VctUP33+myna8zzBTucESJwXwRJQawCIUAooQdgIAVAogSK1hJGgICK+ordOdHN+m/i/6TfEbJ0N576fCNj11tZ9x6swpLY6xRx790qJbU/ND8h3/a+hztt/6IEGyF2y2Y3I5mSipbouTV7yfolg+uaS43IULv3/vJQIm9xFwe+vgeRWONyeerHD/wZI3Y8DDTEbQ6fnndUh39woiUjxM/d4dLtVuvYa3OGcYLESUGU0WUGMAiFAKIEnYAAlYIIEqsYCWpYwQQJasG/sXSz3TWpNS33G/VdTtdM2SMY1sRvnZNbkcz7T5boiRR51fLvtD0JZ9onTZdtUWXrVWS39a0/KzHJ97tM6dyptYr7aWi3KKM1/PB/Cl6b/7bqmqo1MB1ttZefYcH7qG4tqEhSgwII0oMYBEKAUQJOwABKwQQJVawktQxAoiSVQNPfPLFH/55QMoGDO29t87Z/s+ObUX42jW5Hc20+2yKEtNaiYdAawggSgyoIUoMYBEKAUQJOwABKwQQJVawktQxAoiS1IH/ZcolemvOa8k/TDxY8oqdb9AmnQc6thXha9fkdjTT7hElpsSIDxoBRInBxBAlBrAIhQCihB2AgBUCiBIrWEnqGAFEya8HXlm/QotrFiU/TSY3kuvYRtCuKQFEiSkx4oNGAFFiMDFEiQEsQiGAKGEHIGCFAKLEClaSOkYAUeLYwGnXcwKIEs+RktBnBBAlBgNBlBjAIhQCiBJ2AAJWCCBKrGAlqWMEECWODZx2PSeAKPEcKQl9RgBRYjAQRIkBLEIhgChhByBghQCixApWkjpGAFHi2MBp13MCiBLPkZLQZwQQJQYDQZQYwCIUAogSdgACVgggSqxgJaljBBAljg2cdj0ngCjxHCkJfUYAUWIwEESJASxCIYAoYQcgYIUAosQKVpI6RgBR4tjAaddzAogSz5GS0GcEECUGA0GUGMAiFAKIEnYAAlYIIEqsYCWpYwQQJY4NnHY9J4Ao8RwpCX1GAFFiMBBEiQEsQiGAKGEHIGCFAKLEClaSOkbARVHS0NSgKfPe0Ir6Cu247u+0TklXx6ZOu14SQJR4SZNcfiSAKDGYCqLEABahEECUsAMQsEIAUWIFK0kdI+CaKElIkrMnj9Y3y2ckJ12YW6Trd71D/cs3dmzytOsVAUSJVyTJ41cCiBKDySBKDGARCgFECTsAASsEECVWsJLUMQKuiZKPF03VBa+fmjLlvfsdoNO2Oc+xydOuVwQQJV6RJI9fCSBKDCaDKDGARSgEECXsAASsEECUWMFK0gARaIw16sGP79K/Z72q0oJSHTLgKO3ZZ1+jDhAlEqLEaGUI/gUBRAkrEXYCiBKDCSNKDGARCgFECTsAASsEECVWsJI0QATGf/W0xk67vbninJwcPbDP01q3bfcWd+GaKKmL1umECYdpWSAL+QQAACAASURBVO2SZkZXDb5Z23TbocXMCITAzwkgStiHsBNAlBhMGFFiAItQCCBK2AEIWCGAKLGClaQBInDtlEv15pzJKRWfv+Pl2qXnHi3uwjVRkgBTWb9CUxd9kHyY68B1tlbvsr4t5kUgBH5JAFHCToSdAKLEYMKIEgNYhEIAUcIOQMAKAUSJFawkDRCBZ758Innrzc9fD+zzlLq369HiLlwUJS2GQyAEWkCgtaIkGovq3XlvalndUm3bbZDRO8FaUJZRyBdLP9OEb59XQ7Rew/oO11ZdtzW6nuBwE0CUGMwXUWIAi1AIIErYAQhYIYAosYKVpAEiUN1Qpdv/c4M+/mFq8hklv+s5VMdseqJRB4gSI1wEQ+BXBFojSppiTTpr8kn6atkXyXx5kXxdt8tt2qTzwIwTnlM5SydPPFbRWGPz2WN2H6uNyjfJeC0c6E8CiBKDuSBKDGARCgFECTsAASsEECVWsJLUMQKIEscGTrueE2iNKEm8g+OsSSel1LJ7n3109nYXe17f2hK++M143fXRTSlhR25yvI7e9IS1XcrXHSGAKDEYNKLEABahEECUsAMQsEIAUWIFK0kdI4AocWzgtOs5gaCLkjdmT9J1716WwuWUrc/Vvusf6DkrEgaTAKLEYG6IEgNYhEIAUcIOQMAKAUSJFawkdYwAosSxgdOu5wRaI0oSzyc59sWDUj596ZKdr9Wg7oM9r29tCROfBHXm5FGaWfFtMrRzm666a9jDaldQurZLA/n1xCdeVTZUqldpHyU+KYzX2gkgStbOqDkCUWIAi1AIIErYAQhYIYAosYKVpI4RQJQ4NnDa9ZxAa0RJoojEpy99/MNHyYe5btppoPp12NDz2kwSLly5QI1NDepR2svkskDF3vT+1Zo88+VkzX3ar69rd7lNZYXtA9VDNopFlBhQR5QYwCIUAogSdgACVgggSqxgJaljBBAljg2cdj0n0FpR4nkhJPxNAl8una4zJ41KifnDJsfrKJ7FstbNQZSsFdGqAESJASxCIYAoYQcgYIUAosQKVpI6RgBR4tjAaddzAogSz5FaSbi6h9YO7jFUFw660sp5YUqKKDGYJqLEABahEECUsAMQsEIAUWIFK0kdI4AocWzgtOs5AUSJ50itJFxet1RHvzBCiY9m/ul17g6Xardew6ycF6akiBKDaSJKDGARCgFECTsAASsEECVWsJLUMQKIEscGTrueE0CUeI7UWsIP5k/Re/PfVlVDpQaus7X26jtceZE8a+eFJTGixGCSiBIDWIRCAFHCDkDACgFEiRWsJHWMAKLEsYHTrucEECWeIyWhzwggSgwGgigxgEUoBBAl7AAErBBAlFjBSlLHCCBKHBs47XpOAFHiOVIS+owAosRgIIgSA1iEQgBRwg5AwAoBRIkVrCR1jACixLGB067nBMIkSr5a9oUmfPucahtrtUeffbRNtx0850XC4BFAlBjMDFFiAItQCCBK2AEIWCGAKLGClaSOEUCUODZw2vWcQFhEyQ81C3XCS4crGmtsZnT1kDHauut2njMjYbAIIEoM5oUoMYBFKAQQJewABKwQQJRYwUpSxwggShwbOO16TiAsouTV7yfolg+uSeFzwAaHaPRWZ3jOjITBIoAoMZgXosQAFqEQQJSwAxCwQgBRYgUrSR0jgChxbOC06zmBsIiSjxa+rz+/cVYKn5Gbj9ahA472nBkJg0UAUWIwL0SJASxCIYAoYQcgYIUAosQKVpI6RgBR4tjAaddzAmERJdFYVKe9eoK+r/gmyahzmy4as/t9Ki/u7DkzEgaLAKLEYF6IEgNYhEIAUcIOQMAKAUSJFawkdYwAosSxgdOu5wTCIkp+ArO4ZpHqonXqUdrLc1YkDCYBRInB3BAlBrAIhQCihB2AgBUCiBIrWEnqGAGvRUlTrEkzV3yb/Nfo0sIyx2i2rt05lbNUlFeUZMYreATCJkqCNwEqtk0AUWJAGFFiAItQCCBK2AEIWCGAKLGClaSOEfBSlMyrmqML3zhDi1cuTFI8YuPjdMxmf3SMaMvbrW2sSfKasXR68qJB6w3RJTv9peUJiPQFAURJZsYQi8f03vy3tbB6fvJji3uW9s7MwZwiRInBEiBKDGARCgFECTsAASsEECVWsJLUMQJeipLr37tCr896JYXgEwf8Ux2Kyh2j2rJ2x335uB76+O6UYD6OtWXs/BSFKMnMNK54+wK9N++t5GE5OTn686C/aNB6gzNzuOOnIEoMFgBRYgCLUAggStgBCFghgCixgpWkjhHwUpScPPHY5gdB/oTxqsE3J//1l9evCdz8wTWa9P2ElC+M2vI0jdjwMHAFiACixP6wFq5coJEvHpxy0FZdt9M1Q8bYP5wTeEeJyQ4gSkxoEQuB1RMoLy1QVU1UDdEYiCAAgVYQQJS0AhqXQOAXBLwUJU9+/lc9+un9zSe0LWinx/f/pwpyC+C+GgLvzXtbV7x9fvNXciO5Grv3k1q3bXd4BYgAosT+sBAl9hn/1gm8o8SAP6LEABahEFgDAUQJqwGB9AggStLjx9UQSBDwUpQknrnx0rfPafqST9SlpKt+t96u2qTzwKyDXla7RBX1FepT1i/5ln2/vOLxuCZ+/6KmLfxQxfnF2m7dnTSoO7cS+GU+La0DUdJSUq2PS/xdOX3Sifp62ZfNSf609Tnab/0RrU/KlS0mgChpMSoJUWIAi1AIIErYAQhYIYAosYKVpI4R8FKU+BHdvdNu1fNfjUuW1qusr64afBOfLuPHQQW4JkRJZoaXELFTF32oRSsXaNPOA7VBh418JT4zQyE7pyBKDLgjSgxgEQoBRAk7AAErBBAlVrCS1DECYRYl31V8rT9NPC5loocOOFojNx/t2JRp1yYBRIlNuuT2AwFEicEUECUGsAiFAKKEHYCAFQKIEitYSeoYgTCLktdnv6rr3708ZaI8ANKxBc9Au4iSDEDmiKwSCI0oqamtU2Njk8pKS1KAzl9a6xlgRIlnKEnkMAGeUeLw8GndEwKIEk8wksRxAmEWJRX1y3XsCwepoam+ecqnb3uB9uo73PGp076XBBAlXtIklx8JBF6ULFq8XFff+qjem/pFku9G6/fURaf9QQM26JX8b0SJH9eOmlwmgChxefr07gUBRIkXFMnhOoEwi5LEbP+76CO9OWeyKuqWa8su22jPvvupMLfQ9bHTv4cEECUewiSVLwkEXpScd9W9qqis1l1/OUM5kRxdcfMjWrx0ue69/mxEiS9XjqJcJ4AocX0D6D9dAoiSdAlyPQS8/dQbeELARQKIEhen7lbPgRclR51yjXqt10XXXHBicnLjX35Ldzz0D702bgyixK1dptuAEECUBGRQlOlbAogS346GwgJEIOzvKAnQKCg1oAQQJQEdHGW3mEDgRclrb0/VqX++XUN/t5VG7P073Xj3Uzr+8H108H5DkhAWLvfwGSV5ERUX5qliZUOLAYc3MCe8rWWpM1eItm+br5W1UTU2xbNEmmMhEGwCiV/wEs/MqqhuUH1jLNjNUD0EskSgtCRfjdGYauubslQBx0Ig2AQSoqRzWZF+qKgLdiMBrJ6foG0M7ddUu3Yo9vSgnHg87sns5i9copcmv7fG4o46aE8VFxVo3sIl+uM5N2rDvj30zoefqagwXw+PuUDr9+mevLbJy1/GcqRIjhTj51JJnozZ0+ULejJXiOZGchSLSx79X4XR2KNNceXnRYyuIRgCfiMQ+f+3mSbEaiwW5/+J/TYc6gkMgUhOTvL7kCvfewMzmCwWmhBnebmu/LOVN6BzIxE18YuRNzANsrClBrBaHPprqrke//+BZ6Jk1txFeur519bY2qnHj1Cb4iIddtIVGjJoC5187AGqqq7RZTf9VW+9/4neffEu5eXm8jDXFi8HgRDIDAFuvckMZ04JLwFuvQnvbOkscwTCduvNpJkva8rcN1Ve3EkHbniourfrkTmYnOQkAW69cXLsTjUd6FtvVtbUabt9RuuOq0/TbjtvlRzc9BkzdehJl+u5h6/WBn3WQ5Q4tc40GwQCiJIgTIka/UwAUeLn6VBbUAiESZRMmjlBN79/TTP60sL2enjfv6tNfklQxkGdWSZQG63V+/PfVlV9pbZfdyetU9J1rRUhStaKiICAEwi0KEmwH3bEuerTs6uu//NotSkq1K33P6N/T5mmfz7yF95REvDlpPxwEkCUhHOudJU5AoiSzLHmpPASCJMouXbKpcmPAv7567pd7tDALj/+IyIvCPwWgYamBp3yynGaUzkrGVaUV6ybh96jvu03+E1wiBL2KuwEAi9Kvvh6lu559HlNfmtq8lacbQb2T96Gs9mAvsnZzV/q4cNc8yMqKcrTsioe5hr2vxj0Z48AosQeWzK7QQBR4sac6dIugTCJkjs+ulETvnkuBdjYvZ9Qj9JediGSPRQE/rPgPV3y5tkpvRywwSEavdUZiJJQTJgmWksg8KLkp8YTt+FEo00qK019myGipLWrwXUQsEMAUWKHK1ndIYAocWfWdGqPQJhEyXcVX+uCf5+mqobKJLDtug3SFYNvtAePzKEigCgJ1ThpxkMCoREla2KCKPFwW0gFAQ8IIEo8gEgKpwkgSpweP817RCBMoiSBJBaPaeaK79SxuFztCzt4RIk0tggkPnHp+xXfqn1he3Us7mTrmBblrYvW6egXDlR1Q1VzfEtu3eLWmxbhJSjABBAlBsMr5NYbA1qEQmD1BBAlbAYE0iOAKEmPH1dDIEEgbKKEqQaHwOKaRbrkzXM0a8V3yaIP2PAQjd7yt29zsd3d8rpl+viHj5IPcx3YZWv1LO291iNbK0pqGldqXtUc9Srrq4LcgrWeQwAEskUAUWJAHlFiAItQCKyBAKKE1YBAegQQJenx42oIIErYgWwSePiTe/X3Lx5LKeHW3e9X//KNs1mW8dmtESWvzZqoMR/8RdFYVO0Ky/TnQVdr83V46LAxfC7ICAFEiQFmRIkBLEIhgChhByBghQCixApWkjpGgHeUODZwH7V7xdsX6L15b6VUdNZ2F2uPPvv4qMq1l2IqSppiTTpk/F6qjdY0Jx/QaTPdMvTetR9GBASyQABRYgAdUWIAi1AIIErYAQhYIYAosYKVpI4RQJQ4NnAftTtp5su6+f2rmysqyC3UX/cbpw5F5T6qcu2lmIqShSsXaOSLB6ckLiloq2dGTFz7YURAIAsEECUG0BElBrAIhQCihB2AgBUCiBIrWEnqGAFEiWMD91G7jbFG/evbf2raov+ofVEHDe4xVFt02dpHFbasFFNRksh66ivH65vlM5oP2LPPvjpzu4tadiBREMgwAUSJAXBEiQEsQiGAKGEHIGCFAKLEClaSOkYAUeLYwGnXcwKtESVzKmdp4vcvas6KmerfaWPt1Wd41j/1x3MwJAwNAUSJwSgRJQawCIUAooQdgIAVAogSK1hJ6hgBRIljA6ddzwm0RpR4XgQJIWCRAKLEAC6ixAAWoRBAlLADELBCAFFiBStJHSOAKHFs4LTrOQFEiedISegzAogSg4EgSgxgEQoBRAk7AAErBBAlVrCS1DECiBLHBk67nhNAlHiOlIQ+I4AoMRgIosQAFqEQQJSwAxCwQgBRYgUrSR0jgChxbOC06zkBRInnSEnoMwKIEoOBIEoMYBEKAUQJOwABKwQQJVawktQxAogSxwZOu54TQJR4jpSEPiOAKDEYCKLEABahEECUsAMQsEIAUWIFK0kdI4AocWzgtOs5AUSJ50hJ6DMCiBKDgSBKDGARCgFECTsAASsEECVWsJLUMQKIEscGTrueE0CUeI6UhD4jgCgxGAiixAAWoRBAlLADELBCAFFiBStJHSOAKHFs4LTrOQFEiedISegzAogSg4EgSgxgEQoBRAk7AAErBBAlVrCS1DECiBLHBk67nhNAlHiOlIQ+I4AoMRgIosQAFqEQQJSwAxCwQgBRYgUrSR0jgChxbOC06zkBRInnSEnoMwKIEoOBIEoMYBEKAUQJOwABKwQQJVawktQxAogSxwZOu54TQJR4jpSEPiOAKDEYCKLEABahEECUsAMQsEIAUWIFK0kdI4AocWzgtOs5AUSJ50hJ6DMCiBKDgSBKDGARCgFECTsAASsEECVWsJLUMQKIEscGTrueE0CUeI6UhD4jgCgxGAiixAAWoRBAlLADELBCAFFiBStJHSOAKHFs4LTrOQFEiedISegzAogSg4EgSgxgEQoBRAk7AAErBBAlVrCS1DECiBLHBk67nhNAlHiOlIQ+I4AoMRgIosQAFqEQQJSwAxCwQgBRYgUrSR0jgChxbOC06zkBRInnSEnoMwKIEoOBIEoMYBEKAUQJOwABKwQQJVawktQxAogSxwZOu54TQJR4jpSEPiOAKDEYCKLEABahEECUsAMQsEIAUWIFK0kdI4AocWzgtOs5AUSJ50hJ6DMCiBKDgSBKDGARCgFECTsAASsEECVWsJLUMQKIEscGTrueE0CUeI6UhD4jgCgxGAiixAAWoRBAlLADELBCAFFiBStJHSOAKHFs4LTrOQFEiedISegzAogSg4EgSgxgEQoBRAk7AAErBBAlVrCS1DECiBK7A69vqtecyplar7SXinKL7B5G9qwQQJRkBTuHZpAAosQANqLEABahEECUsAMQsEIAUWIFK0kdI4AosTfwKXPf1M0fXK2axpUqzCvSedtfpkHrDbZ3IJmzQgBRkhXsHJpBAogSA9iIEgNYhEIAUcIOQMAKAUSJFawkdYwAosTewEe9fKTmVM5qPqBjcSc9vv/z9g4kc1YIIEqygp1DM0gAUWIAG1FiAItQCCBK2AEIWCGAKLGClaSOEUCU2Bv48HG7KBprTDlg3Ih/qW1BO3uHkjnjBBAlGUfOgRkmgCgxAI4oMYBFKAQQJewABKwQQJRYwUpSxwggSuwN/LI3z9UHC6Y0H7BFl2107S632TuQzFkhgCjJCnYOzSABRIkBbESJASxCIYAoYQcgYIUAosQKVpI6RgBRYm/gC6rn69XvJ+i7iq/Uu6yfhvUdrm5t17V3IJmzQgBRkhXsHJpBAogSA9iIEgNYhEIAUcIOQMAKAUSJFawkdYwAosSxgdOu5wQQJZ4jJaHPCCBKDAaCKDGARSgEECXsAASsEECUWMFKUscIIEocGzjtek4AUeI5UhL6jACixGAgiBIDWIRCAFHCDkDACgFEiRWsJHWMAKLEsYHTrucEECWeIyWhzwggSgwGgigxgEUoBBAl7AAErBBAlFjBSlLHCCBKHBs47XpOAFHiOVIS+owAosRgIIgSA1iEQgBRwg5AwAoBRIkVrCR1jACixLGB067nBBAlniMloc8IIEoMBoIoMYBFKAQQJewABKwQQJRYwUpSxwggShwbOO16TgBR4jlSEvqMAKLEYCCIEgNYhEIAUcIOQMAKAUSJFawkdYwAosSxgdOu5wQQJZ4jJaHPCCBKDAaCKDGARSgEECXsAASsEECUWMFKUscIIEocGzjtek4AUeI5UhL6jACixGAgiBIDWIRCAFHCDkDACgFEiRWsJHWMAKLEsYHTrucEECWeIyWhzwggSgwGgigxgEUoBBAl7AAErBBAlFjBSlLHCCBKHBs47XpOAFHiOVIS+owAosRgIIgSA1iEQgBRwg5AwAoBRIkVrCR1jACixLGB067nBBAlniMloc8IIEoMBoIoMYBFKAQQJewABKwQQJRYwUpSxwggShwbOO16TgBR4jlSEvqMAKLEYCCIEgNYhEIAUcIOQMAKAUSJFawkdYwAosSxgdOu5wQQJZ4jJaHPCCBKDAaCKDGARSgEECXsAASsEECUWMFKUscIIEocGzjtek4AUeI5UhL6jACixGAgiBIDWIRCAFHCDkDACgFEiRWsJHWMAKLEsYHTrucEECWeIyWhzwgESpREm5oUyYkoEsn5Fcaq6holvt6hrF3K1+YvrfUMOaLEM5QkcphAeWmBqmqiaojGHKZA6xBoPQFESevZcSUEfiKAKGEXIJAeAURJevy42v8EAiNKausadNhJl2vUUcO13x47NpOtqa3T+Vffp9femZb8s8037qc7rj5NnTqWJf8bUeL/JaRCtwggStyaN916TwBR4j1TMrpHAFHi3szp2FsCiBJveZLNfwQCIUpuuvdpPfzUy0l61198UoooeeCJlzTuhdf12B0Xq7ioQP93wRj16dlNV513PKLEf/tGRRAQooQlgEB6BBAl6fHjaggkCCBK2AMIpEcAUZIeP672P4FAiJKKFdWqa2jQkSdfpbNGHZoiSg7+42Uatsu2+uMf9kvSnvj6Bzrr8rv12b8fVk5ODu8o8f8OUqFjBBAljg2cdj0ngCjxHCkJHSSAKHFw6LTsKQFEiac4SeZDAoEQJT9xG3bEuTr1+N+niJJt9x6tq88/ISlLEq/Pv5qpQ0Zdrikv3KWydiWIEh8uHSW5TQBR4vb86T59AoiS9BmSAQKIEnYAAukRQJSkx4+r/U8gq6LkhVemaOHiZaultPGGvbXTtpumfO2XoiQej2vTXUfq7mvP1JAdByZjv505T/sfd7EmPX2zunUpV2VNo2dTyIvkKD8votqGJs9ykggCrhFoU5ir+saYmmLxjLcej2u1D4POeCEcCIE0CBQX5CovNyf5vSjalPm/R2mUzqUQ8A2BooJcNTXF1MjfId/MJNuFxGKx5LvRebWMQIJU2+J8VdV697tWy04mCgKZIVDaJt/Tg3LiCXvRwtfj/5ikuQsWrzZ6q8020B6Dt/lNUZL4YuIdJddccKL2HPJj7C/fUVLloSjJzc1RQUKU1CNKWjhiwiDwKwLFhblqyJIoSbiZ1XxoFlOCQKAIFBfm/ShK6qOIkkBNjmL9RCApSmJxNfIJbH4aS1Zr4WcEQ/w5UtuifFUjSgzBER4UAu2yKUpMIa3u1pvEM0r22nU7nXjkvsl0PKPElCrxEMgsAW69ySxvTgsfAW69Cd9M6SjzBLj1JvPMOTFcBLj1JlzzpJtfE8jqrTctHUi0qUnxWFz7HXOhRh+zv/bbfUfl5+clL7//8Rf1zItvJD/1pk1xoUaffwufetNSsMRBIAsEECVZgM6RoSKAKAnVOGkmSwQQJVkCz7GhIYAoCc0oaWQNBAIhShKfYpN4p8jPXy8+em1SiKysqdM5V96jN9/7OPnlTfv30R3XnK51OrVP/vf8pbWeDb8wP6KSojwtq2rwLCeJIOAaAUSJaxOnX68JIEq8Jko+FwkgSlycOj17SQBR4iVNcvmRQCBESUvArahaqcbGqDp1LEsJR5S0hB4xEMgcAURJ5lhzUjgJIErCOVe6yiwBRElmeXNa+AggSsI3UzpKJRAaUbKmwSJKWHkI+IsAosRf86Ca4BFAlARvZlTsPwKIEv/NhIqCRQBREqx5Ua05gdCLEnMkXAEBCEAAAhCAAAQgAAEIQAACEIAABLwhYPTxwN4cSRYIQAACEIAABCAAAQhAAAIQgAAEIOBPAogSf86FqiAAAQhAAAIQgAAEIAABCEAAAhDIAgEnREni44rzcnNXi7equkaJr3coa5cF/BwJAQhAAAJhJ9DQ0KjlK6qTn+6Wk7hJnBcEIAABCEAgAwQSv+NEciKKRH79vYfvTRkYAEcEmkDoRcnseT9o7z+cp1efuknrdu3UPKya2jqdf/V9eu2dack/23zjfrrj6tN+9Sk8gZ4uxUPAYwL7H3uRvp01PyXrn447UCcfd6DHJ5EOAsEnEI/Hdc+j/9RdD49PNtOxfTvd+ZczNHDjfsFvjg4gkCEC19/1pB4dNzHltC033UB/u/PiDFXAMRAIJoHaugYddtLlGnXUcO23x47NTfC9KZjzpOrMEwi1KDni5Kv0yeffJqn+UpQ88MRLGvfC63rsjotVXFSg/7tgjPr07Karzjs+81PgRAgEhEBClOy7+47aa9ftmisua1ei9mVtA9IBZUIgcwSmffa1jjrlGj12x0XabKO+uv3Bf+ilye9q0tO3rPZf9zJXGSdBIDgErrvzCc2Z/4POO/mI5qILC/PVtXPH4DRBpRDIMIGb7n1aDz/1cvLU6y8+KUWU8L0pw8PguMASCLUo+WFJhRb+sFQJYfJLUXLwHy/TsF221R//sF9yeBNf/0BnXX63Pvv3w7w1OrDrTOG2CSREyXGH7aXf7zPY9lHkh0DgCdx879/1xTez9MBN5yZ7SXxP2vXgM/TM/VdowAa9At8fDUAgEwQSoqSislrXXTQqE8dxBgRCQaBiRbXqGhp05MlX6axRh6aIEr43hWLENJEBAqEWJQl+ixYv126HnPkrUbLt3qN19fknJGVJ4vX5VzN1yKjLNeWFu5T4F3JeEIDArwkkRElJSbH69VpX63YpT37j7dm9C6ggAIHVEDjnynvUoaytLj796OavbrLLcbr72jM1ZMeBMIMABFpAICFKXnnjQ+2w1cbJ58nttvNW2nrzDVtwJSEQgMCwI87Vqcf/PkWU8L2JvYBAywgETpQ0NcX00FMT1tjd0N9trb49uzV/fXWiJHFv3qa7jkz5YfXbmfO0/3EXa9LTN6tbl/KW0SMKAiEh8MIrU7Rw8bLVdrPxhr2107abJr+WeNZCJDeieFx67e2pmjV3kZ594ApkSUj2gDa8JTDq3JvUv19PnT360ObECUl/+TnHad+hO3h7GNkgEFICie9PM+cuVGFBvj6b8b0mvzVVt1x+sobtsuoW0JC2TlsQSJvA6kQJ35vSxkoCRwgETpQknt6ceMvYml4H7rWz+vfr8ZuiJPHFxA+r11xwovYcsk0ylneUOLLxtLlaAo//Y5LmLli82q9ttdkG2mPwj39Pfv5qbIxq2JHn6uiD9tTIw/eGLAQg8AsCiX+1SzzA9aLTjmr+Cu8oYU0gkB6BC/4yVhUrqnTv9Wenl4irIeAAgTW9o4TvTQ4MnxbTJhA4UWLa8ZpuvUk8oyTxQMoTj9w3mZJnlJiSZ/bU+QAAAyJJREFUJR4C0mEnXaEhg7bQycceAA4IQOAXBBJSf8a3szX2xnOSX+EZJawIBNIncOv9z+ijT75KPiSZFwQg8NsEVidK+N7E1kCgZQRCLUoao03Jh7nudeR5mvC365MfD5yfl5skc//jL+qZF99IfupNm+JCjT7/Fj71pmU7Q5SjBGbPW5T8OO2EYCzvUKaJ//5A519znx69/SLuF3d0J2j7twms+mSBi7XZgL667YFnNGHye3zqDYsDAQMCY8aO0/57DlLP9bomxePIM65P/iPXSUcPN8hCKATcIpB4B348Ftd+x1yo0cfsr/1231H5+XlJCHxvcmsX6Lb1BEItShK319TU1jXTSbzN7K3n7kj+98qaOiXeFv3mex8n/3vT/n10xzWna51O7VtPkyshEGICCVFy3BnXJR+Q/NPr/D8doWMOGRbirmkNAq0nkHge1p0Pj9e9j/4zmaRNcZHG3ni2ttx0g9Yn5UoIOEYg8c7FxLNJfnolbrG+5MxjVFRY4BgJ2oVAywkkPskz8W75n79efPTa5D8K872p5RyJdJtAqEVJS0a7omqlEs9a6NSxrCXhxEDAaQKJb67LKqqSAjLx0OO83B/focULAhBYM4G6+gYtW16pruuUKxLJARUEIGBIoKq6RstXVKlzeQcVFyFIDPERDoHVEuB7E4sBgd8m4LwoYUEgAAEIQAACEIAABCAAAQhAAAIQgMBPBBAl7AIEIAABCEAAAhCAAAQgAAEIQAACEPgfAUQJqwABCEAAAhCAAAQgAAEIQAACEIAABBAl7AAEIAABCEAAAhCAAAQgAAEIQAACEEglwDtK2AgIQAACEIAABCAAAQhAAAIQgAAEIPA/AogSVgECEIAABCAAAQhAAAIQgAAEIAABCCBK2AEIQAACEIAABCAAAQhAAAIQgAAEIJBKgHeUsBEQgAAEIAABCEAAAhCAAAQgAAEIQOB/BBAlrAIEIAABCEAAAhCAAAQgAAEIQAACEECUsAMQgAAEIAABCEAAAhCAAAQgAAEIQCCVAO8oYSMgAAEIQAACEIAABCAAAQhAAAIQgMD/CPw/4DueAhqN0+8AAAAASUVORK5CYII=",
"text/html": [
"