{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "56c86bae-1d3c-4c01-b5d6-c8879fec1954",
   "metadata": {},
   "source": [
    "# Wiki Summarizer\n",
    "\n",
    "This Project takes the name of a topic as input, and checks if the corresponding wiki-page exists. If it does, it parses the web page, and outputs a summary created using the GPT-4o-mini model. \n",
    "\n",
    "Concepts used: \n",
    "- Web Scraping via Beautiful Soup\n",
    "- User and System Prompts\n",
    "- Use of Open AI GPT-4o-mini via API key"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4820830e-b3b4-426e-b1a2-518e7c7f6c1a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "from dotenv import load_dotenv\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display\n",
    "from openai import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2cd7ad51-396c-45c5-9089-f7b21a19da50",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "load_dotenv(override=True)\n",
    "api_key = os.getenv('OPENAI_API_KEY')\n",
    "\n",
    "# Check the key\n",
    "\n",
    "if not api_key:\n",
    "    print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
    "elif not api_key.startswith(\"sk-proj-\"):\n",
    "    print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
    "elif api_key.strip() != api_key:\n",
    "    print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
    "else:\n",
    "    print(\"API key found and looks good so far!\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "689421a0-20a1-428b-a8b8-fa239fa6f633",
   "metadata": {},
   "outputs": [],
   "source": [
    "# creating an instance\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "401901ae-7639-4190-98fd-e69374084723",
   "metadata": {},
   "outputs": [],
   "source": [
    "def isWiki(url):\n",
    "    \"\"\"\n",
    "    Check whether a Wikipedia page exists for a given topic, and \n",
    "    returns a Boolean value.\n",
    "    \"\"\"\n",
    "    response = requests.get(url)\n",
    "\n",
    "    if response.status_code != 200:\n",
    "        return False\n",
    "        \n",
    "    return True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7cdb14d3-05ea-4de2-a475-d49a5731692e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "\n",
    "# Some websites need you to use proper headers when fetching them:\n",
    "headers = {\n",
    " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "}\n",
    "\n",
    "class Website:\n",
    "\n",
    "    def __init__(self, url):\n",
    "        \"\"\"\n",
    "        Create this Website object from the given url using the BeautifulSoup library\n",
    "        \"\"\"\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        soup = BeautifulSoup(response.content, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "        self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7f6ed50e-0fb5-479e-9845-f62cf25980f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = \"You are an educational assistant tasked with helping users understand topics\\\n",
    "by providing succinct and clear summaries of requested data. Ignore navigation-related text\\\n",
    "and provide answers in markdown format\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b2d77dd9-a94f-49c1-a1be-11d157bd37fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function that writes a User Prompt that asks for summaries of wiki pages:\n",
    "\n",
    "def user_prompt_for(wiki):\n",
    "    user_prompt = f\"You are looking at a Wikipedia page titled {wiki.title}\"\n",
    "    user_prompt += \"\\nThe contents of this page is as follows; \\\n",
    "please provide a short summary of this website in markdown.\\n\"\n",
    "    user_prompt += wiki.text\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0d23bcc4-1d89-4bd4-9809-d3a1819aa919",
   "metadata": {},
   "outputs": [],
   "source": [
    "def messages_for(wiki):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_prompt},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(wiki)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "971bd7fb-2ff8-4494-b386-de69a39c24ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "def summarize(url):\n",
    "    website = Website(url)\n",
    "    response = openai.chat.completions.create(\n",
    "        model = \"gpt-4o-mini\",\n",
    "        messages = messages_for(website)\n",
    "    )\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a8fdf9f2-f49e-4d06-ac9e-dfcb8da33d60",
   "metadata": {},
   "outputs": [],
   "source": [
    "def display_summary(topic):\n",
    "    url = f\"https://en.wikipedia.org/wiki/{topic}\"\n",
    "    if isWiki(url):\n",
    "        summary = summarize(url)\n",
    "        display(Markdown(summary))\n",
    "    else:\n",
    "        print('A Wikipedia page does not exist for this topic')\n",
    "        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4758ef0-9b7c-4d3e-9131-e3284dc76b6b",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "topic = input('Enter the name of Wikipedia page for which you would like a summary: ').strip()\n",
    "display_summary(topic)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}