{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "d13be0fd-db15-4ab1-860a-b00257051339",
   "metadata": {},
   "source": [
    "## Gradio UI for Markdown-Based Q&A with Visualization"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bc63fbdb-66a9-4c10-8dbd-11476b5e2d21",
   "metadata": {},
   "source": [
    "This interface enables users to:\n",
    "- Upload Markdown files for processing\n",
    "- Visualize similarity between document chunks in 2D and 3D using embeddings\n",
    "- Ask questions and receive RAG enabled responses\n",
    "- Mantain conversation context for better question answering\n",
    "- Clear chat history when required for fresh sessions\n",
    "- Store and retrieve embeddings using ChromaDB\n",
    "\n",
    "Integrates LangChain, ChromaDB, and OpenAI to process, store, and retrieve information efficiently."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "91da28d8-8e29-44b7-a62a-a3a109753727",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e47f670a-e2cb-4700-95d0-e59e440677a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports for langchain, plotly and Chroma\n",
    "\n",
    "from langchain.document_loaders import DirectoryLoader, TextLoader\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.schema import Document\n",
    "from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
    "from langchain.embeddings import HuggingFaceEmbeddings\n",
    "from langchain_chroma import Chroma\n",
    "from langchain.memory import ConversationBufferMemory\n",
    "from langchain.chains import ConversationalRetrievalChain\n",
    "import numpy as np\n",
    "from sklearn.manifold import TSNE\n",
    "import plotly.graph_objects as go\n",
    "import plotly.express as px\n",
    "import matplotlib.pyplot as plt\n",
    "from random import randint\n",
    "import shutil"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "362d4976-2553-4ed8-8fbb-49806145cad1",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install --upgrade gradio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "968b6e96-557e-439f-b2f1-942c05168641",
   "metadata": {},
   "outputs": [],
   "source": [
    "MODEL = \"gpt-4o-mini\"\n",
    "db_name = \"vector_db\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "537f66de-6abf-4b34-8e05-6b9a9df8ae82",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "246c1c1b-fcfa-4f4c-b99c-024598751361",
   "metadata": {},
   "outputs": [],
   "source": [
    "folder = \"my-knowledge-base/\"\n",
    "db_name = \"vectorstore_db\"\n",
    "\n",
    "def process_files(files):\n",
    "    os.makedirs(folder, exist_ok=True)\n",
    "\n",
    "    processed_files = []\n",
    "    for file in files:\n",
    "        file_path = os.path.join(folder, os.path.basename(file))  # Get filename\n",
    "        shutil.copy(file, file_path)\n",
    "        processed_files.append(os.path.basename(file))\n",
    "\n",
    "    # Load documents using LangChain's DirectoryLoader\n",
    "    text_loader_kwargs = {'autodetect_encoding': True}\n",
    "    loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)\n",
    "    folder_docs = loader.load()\n",
    "\n",
    "    # Assign filenames as metadata\n",
    "    for doc in folder_docs:\n",
    "        filename_md = os.path.basename(doc.metadata[\"source\"])\n",
    "        filename, _ = os.path.splitext(filename_md)\n",
    "        doc.metadata[\"filename\"] = filename\n",
    "\n",
    "    documents = folder_docs \n",
    "\n",
    "    # Split documents into chunks\n",
    "    text_splitter = CharacterTextSplitter(chunk_size=400, chunk_overlap=200)\n",
    "    chunks = text_splitter.split_documents(documents)\n",
    "\n",
    "    # Initialize embeddings\n",
    "    embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n",
    "\n",
    "    # Delete previous vectorstore\n",
    "    if os.path.exists(db_name):\n",
    "        Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n",
    "\n",
    "    # Store in ChromaDB\n",
    "    vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
    "\n",
    "    # Retrieve results\n",
    "    collection = vectorstore._collection\n",
    "    result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n",
    "\n",
    "    llm = ChatOpenAI(temperature=0.7, model_name=MODEL)\n",
    "    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
    "    retriever = vectorstore.as_retriever(search_kwargs={\"k\": 35})\n",
    "    global conversation_chain\n",
    "    conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)\n",
    "\n",
    "    processed_text = \"**Processed Files:**\\n\\n\" + \"\\n\".join(f\"- {file}\" for file in processed_files)\n",
    "    return result, processed_text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "48678d3a-0ab2-4aa4-aa9e-4160c6a9cb24",
   "metadata": {},
   "outputs": [],
   "source": [
    "def random_color():\n",
    "        return f\"rgb({randint(0,255)},{randint(0,255)},{randint(0,255)})\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6caed889-9bb4-42ad-b1c2-da051aefc802",
   "metadata": {},
   "outputs": [],
   "source": [
    "def show_embeddings_2d(result):\n",
    "    vectors = np.array(result['embeddings'])  \n",
    "    documents = result['documents']\n",
    "    metadatas = result['metadatas']\n",
    "    filenames = [metadata['filename'] for metadata in metadatas]\n",
    "    filenames_unique = sorted(set(filenames))\n",
    "\n",
    "    # color assignment\n",
    "    color_map = {name: random_color() for name in filenames_unique}\n",
    "    colors = [color_map[name] for name in filenames]\n",
    "\n",
    "    tsne = TSNE(n_components=2, random_state=42,perplexity=4)\n",
    "    reduced_vectors = tsne.fit_transform(vectors)\n",
    "\n",
    "    # Create the 2D scatter plot\n",
    "    fig = go.Figure(data=[go.Scatter(\n",
    "        x=reduced_vectors[:, 0],\n",
    "        y=reduced_vectors[:, 1],\n",
    "        mode='markers',\n",
    "        marker=dict(size=5,color=colors, opacity=0.8),\n",
    "        text=[f\"Type: {t}<br>Text: {d[:100]}...\" for t, d in zip(filenames, documents)],\n",
    "        hoverinfo='text'\n",
    "    )])\n",
    "\n",
    "    fig.update_layout(\n",
    "        title='2D Chroma Vector Store Visualization',\n",
    "        scene=dict(xaxis_title='x',yaxis_title='y'),\n",
    "        width=800,\n",
    "        height=600,\n",
    "        margin=dict(r=20, b=10, l=10, t=40)\n",
    "    )\n",
    "\n",
    "    return fig"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "de993495-c8cd-4313-a6bb-7d27494ecc13",
   "metadata": {},
   "outputs": [],
   "source": [
    "def show_embeddings_3d(result):\n",
    "    vectors = np.array(result['embeddings'])  \n",
    "    documents = result['documents']\n",
    "    metadatas = result['metadatas']\n",
    "    filenames = [metadata['filename'] for metadata in metadatas]\n",
    "    filenames_unique = sorted(set(filenames))\n",
    "\n",
    "    # color assignment\n",
    "    color_map = {name: random_color() for name in filenames_unique}\n",
    "    colors = [color_map[name] for name in filenames]\n",
    "\n",
    "    tsne = TSNE(n_components=3, random_state=42)\n",
    "    reduced_vectors = tsne.fit_transform(vectors)\n",
    "\n",
    "    fig = go.Figure(data=[go.Scatter3d(\n",
    "        x=reduced_vectors[:, 0],\n",
    "        y=reduced_vectors[:, 1],\n",
    "        z=reduced_vectors[:, 2],\n",
    "        mode='markers',\n",
    "        marker=dict(size=5, color=colors, opacity=0.8),\n",
    "        text=[f\"Type: {t}<br>Text: {d[:100]}...\" for t, d in zip(filenames, documents)],\n",
    "        hoverinfo='text'\n",
    "    )])\n",
    "\n",
    "    fig.update_layout(\n",
    "        title='3D Chroma Vector Store Visualization',\n",
    "        scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),\n",
    "        width=900,\n",
    "        height=700,\n",
    "        margin=dict(r=20, b=10, l=10, t=40)\n",
    "    )\n",
    "\n",
    "    return fig"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7b7bf62b-c559-4e97-8135-48cd8d97a40e",
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(question, history):\n",
    "    result = conversation_chain.invoke({\"question\": question})\n",
    "    return result[\"answer\"]\n",
    "\n",
    "def visualise_data(result):\n",
    "    fig_2d = show_embeddings_2d(result)\n",
    "    fig_3d = show_embeddings_3d(result)\n",
    "    return fig_2d,fig_3d"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "99217109-fbee-4269-81c7-001e6f768a72",
   "metadata": {},
   "outputs": [],
   "source": [
    "css = \"\"\"\n",
    ".btn {background-color: #1d53d1;}\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e1429ea1-1d9f-4be6-b270-01997864c642",
   "metadata": {},
   "outputs": [],
   "source": [
    "with gr.Blocks(css=css) as ui:\n",
    "    gr.Markdown(\"# Markdown-Based Q&A with Visualization\")\n",
    "    with gr.Row():\n",
    "        file_input = gr.Files(file_types=[\".md\"], label=\"Upload Markdown Files\")\n",
    "        with gr.Column(scale=1):\n",
    "            processed_output = gr.Markdown(\"Progress\")\n",
    "    with gr.Row():\n",
    "        process_btn = gr.Button(\"Process Files\",elem_classes=[\"btn\"])\n",
    "    with gr.Row():\n",
    "        question = gr.Textbox(label=\"Chat \", lines=10)\n",
    "        answer = gr.Markdown(label= \"Response\")\n",
    "    with gr.Row():\n",
    "        question_btn = gr.Button(\"Ask a Question\",elem_classes=[\"btn\"])\n",
    "        clear_btn = gr.Button(\"Clear Output\",elem_classes=[\"btn\"])\n",
    "    with gr.Row():\n",
    "        plot_2d = gr.Plot(label=\"2D Visualization\")\n",
    "        plot_3d = gr.Plot(label=\"3D Visualization\")\n",
    "    with gr.Row():\n",
    "        visualise_btn = gr.Button(\"Visualise Data\",elem_classes=[\"btn\"])\n",
    "\n",
    "    result = gr.State([])\n",
    "    # Action: When button is clicked, process files and update visualization\n",
    "    clear_btn.click(fn=lambda:(\"\", \"\"), inputs=[],outputs=[question, answer])\n",
    "    process_btn.click(process_files, inputs=[file_input], outputs=[result,processed_output])\n",
    "    question_btn.click(chat, inputs=[question], outputs= [answer])\n",
    "    visualise_btn.click(visualise_data, inputs=[result], outputs=[plot_2d,plot_3d])\n",
    "\n",
    "# Launch Gradio app\n",
    "ui.launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d3686048-ac29-4df1-b816-e58996913ef1",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}