{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "1b89f103-fc49-487e-930e-14abff8bfab1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "from typing import List\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import google.generativeai\n",
    "import anthropic"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "1a40e64b-14c6-4589-a671-6817f9cb09f0",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "c0990b15-313d-4cf8-bc5b-fc14d263ba27",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "load_dotenv()\n",
    "os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "66a38e1f-db7e-4697-aa9c-a303f9828531",
   "metadata": {},
   "outputs": [],
   "source": [
    "google.generativeai.configure()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "beb9606e-9be9-4f2e-adfe-4e41fb99566e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A generic system message - no more snarky adversarial AIs!\n",
    "\n",
    "system_message = \"You are a helpful assistant\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "19ab23bc-59cf-48a3-8651-f7b1c52874db",
   "metadata": {},
   "outputs": [],
   "source": [
    "def message_gemini(prompt):\n",
    "    messages = [\n",
    "        {\"role\": \"system\", \"content\": system_message},\n",
    "        {\"role\": \"user\", \"content\": prompt}\n",
    "      ]\n",
    "    gemini = google.generativeai.GenerativeModel(\n",
    "    model_name='gemini-1.5-flash',\n",
    "    system_instruction=system_message\n",
    ")\n",
    "    response = gemini.generate_content(prompt)\n",
    "    return response.text\n",
    "\n",
    "\n",
    "# gemini = google.generativeai.GenerativeModel(\n",
    "#     model_name='gemini-1.5-flash',\n",
    "#     system_instruction=system_message\n",
    "# )\n",
    "# response = gemini.generate_content(user_prompt)\n",
    "# print(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8fe3c66c-d25d-4627-a401-d84c7d6613e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "message_gemini(\"What is today's date?\")\n",
    "# message_gemini(\"tell me a funny machine learning joke\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b27027ed-4bff-493c-a41e-8318003e0387",
   "metadata": {},
   "outputs": [],
   "source": [
    "import google.generativeai as genai\n",
    "for model in genai.list_models():\n",
    "  print(model.name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "2f82d61b-a7cd-4bee-994d-2e83d0a01bfc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# here's a simple function\n",
    "\n",
    "def shout(text):\n",
    "    print(f\"Shout has been called with input {text}\")\n",
    "    return text.upper()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5941fe3f-aab9-47ba-b29f-d99aa3b40aed",
   "metadata": {},
   "outputs": [],
   "source": [
    "shout(\"hello\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6470847-1cce-4bf0-8364-199504a5335f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define this variable and then pass js=force_dark_mode when creating the Interface\n",
    "\n",
    "force_dark_mode = \"\"\"\n",
    "function refresh() {\n",
    "    const url = new URL(window.location);\n",
    "    if (url.searchParams.get('__theme') !== 'dark') {\n",
    "        url.searchParams.set('__theme', 'dark');\n",
    "        window.location.href = url.href;\n",
    "    }\n",
    "}\n",
    "\"\"\"\n",
    "gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\", flagging_mode=\"never\", js=force_dark_mode).launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "69715604-cc64-4563-967f-b5720462ac69",
   "metadata": {},
   "outputs": [],
   "source": [
    "gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\",  js=force_dark_mode).launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dede1d8c-fb7a-456a-923b-e221eaa30bd9",
   "metadata": {},
   "outputs": [],
   "source": [
    "gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\", flagging_mode=\"never\").launch(share=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55ae11b9-e7af-449f-b737-48dd7dc1a5b2",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "view = gr.Interface(\n",
    "    fn=shout,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\", lines=6)],\n",
    "    outputs=[gr.Textbox(label=\"Response:\", lines=8)],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cba667cf-d270-426e-b940-a01083352ecb",
   "metadata": {},
   "outputs": [],
   "source": [
    "view = gr.Interface(\n",
    "    fn=message_gemini,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\", lines=6)],\n",
    "    outputs=[gr.Textbox(label=\"Response:\", lines=8)],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b8bb7885-740f-41f0-95e3-dabe864cea14",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's use Markdown\n",
    "# Are you wondering why it makes any difference to set system_message when it's not referred to in the code below it?\n",
    "# I'm taking advantage of system_message being a global variable, used back in the message_gpt function (go take a look)\n",
    "# Not a great software engineering practice, but quite sommon during Jupyter Lab R&D!\n",
    "\n",
    "system_message = \"You are a helpful assistant that responds in markdown\"\n",
    "\n",
    "view = gr.Interface(\n",
    "    fn=message_gemini,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\")],\n",
    "    outputs=[gr.Markdown(label=\"Response:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "43d17b00-f4bc-45ad-a679-3112a170f5fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "import google.generativeai as genai\n",
    "\n",
    "def stream_gemini(prompt):\n",
    "    gemini = genai.GenerativeModel(\n",
    "    model_name='gemini-1.5-flash',\n",
    "    safety_settings=None,\n",
    "    system_instruction=system_message\n",
    "    )\n",
    "\n",
    "    response = gemini.generate_content(prompt, safety_settings=[\n",
    "        {\"category\": \"HARM_CATEGORY_DANGEROUS_CONTENT\", \"threshold\": \"BLOCK_NONE\"},\n",
    "        {\"category\": \"HARM_CATEGORY_SEXUALLY_EXPLICIT\", \"threshold\": \"BLOCK_NONE\"},\n",
    "        {\"category\": \"HARM_CATEGORY_HATE_SPEECH\", \"threshold\": \"BLOCK_NONE\"},\n",
    "        {\"category\": \"HARM_CATEGORY_HARASSMENT\", \"threshold\": \"BLOCK_NONE\"}], stream=True)\n",
    "    \n",
    "    result = \"\"\n",
    "    for chunk in response:\n",
    "        result += chunk.text\n",
    "        yield result\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "840f3d11-e66b-4b6b-9b98-70e0f02be9e6",
   "metadata": {},
   "outputs": [],
   "source": [
    "view = gr.Interface(\n",
    "    fn=stream_gemini,\n",
    "    inputs=[gr.Textbox(label=\"Your message:\")],\n",
    "    outputs=[gr.Markdown(label=\"Response:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ea8a0081-8d2e-4960-b479-7c1ef346f524",
   "metadata": {},
   "source": [
    "# Building a company brochure generator\n",
    "\n",
    "Now you know how - it's simple!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "2d43360a-515e-4008-9eef-7a3c4e47cfba",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "\n",
    "class Website:\n",
    "    url: str\n",
    "    title: str\n",
    "    text: str\n",
    "\n",
    "    def __init__(self, url):\n",
    "        self.url = url\n",
    "        response = requests.get(url)\n",
    "        self.body = response.content\n",
    "        soup = BeautifulSoup(self.body, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "        self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
    "\n",
    "    def get_contents(self):\n",
    "        return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "08a07e55-b05d-4360-8e05-61dd39cc019b",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_brochure(company_name, url, model, response_tone):\n",
    "    prompt = f\"Please generate a {response_tone} company brochure for {company_name}. Here is their landing page:\\n\"\n",
    "    prompt += Website(url).get_contents()\n",
    "    if model==\"GPT\":\n",
    "        result = stream_gpt(prompt)\n",
    "    elif model==\"Claude\":\n",
    "        result = stream_claude(prompt)\n",
    "    elif model==\"Gemini\":\n",
    "        result = stream_gemini(prompt)\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n",
    "    yield from result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d9554211-c832-4558-90c8-fceab95fd23c",
   "metadata": {},
   "outputs": [],
   "source": [
    "view = gr.Interface(\n",
    "    fn=stream_brochure,\n",
    "    inputs=[\n",
    "        gr.Textbox(label=\"Company name:\"),\n",
    "        gr.Textbox(label=\"Landing page URL including http:// or https://\"),\n",
    "        gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\"], label=\"Select model\"),\n",
    "        gr.Dropdown([\"Informational\", \"Promotional\", \"Humorous\"], label=\"Select tone\")],\n",
    "    outputs=[gr.Markdown(label=\"Brochure:\")],\n",
    "    flagging_mode=\"never\"\n",
    ")\n",
    "view.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4d4e6efd-66e8-4388-bfc3-782bde4babfb",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}