{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "gpuType": "T4", "authorship_tag": "ABX9TyPxJzufoQPtui+nhl1J1xiR" }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "yqlQTsxNdKrN" }, "outputs": [], "source": [ "!pip install -q requests torch bitsandbytes transformers sentencepiece accelerate openai httpx==0.27.2 gradio" ] }, { "cell_type": "code", "source": [ "import os\n", "import requests\n", "from IPython.display import Markdown, display, update_display\n", "from openai import OpenAI\n", "from google.colab import drive\n", "from huggingface_hub import login\n", "from google.colab import userdata\n", "from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig\n", "import torch\n", "import gradio as gr\n", "import re" ], "metadata": { "id": "eyfvQrLxdkGT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# one can always add more models, of course\n", "\n", "LLAMA = \"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n", "OPENAI_MODEL = \"gpt-4o-mini\"" ], "metadata": { "id": "WW-cSZk7dnp6" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "hf_token = userdata.get('HF_TOKEN')\n", "login(hf_token, add_to_git_credential=True)\n", "openai_api_key = userdata.get('OPENAI_API_KEY')\n", "openai = OpenAI(api_key=openai_api_key)" ], "metadata": { "id": "XG7Iam6Rdw8F" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "force_dark_mode = \"\"\"\n", "function refresh() {\n", " const url = new URL(window.location);\n", " if (url.searchParams.get('__theme') !== 'dark') {\n", " url.searchParams.set('__theme', 'dark');\n", " window.location.href = url.href;\n", " }\n", "}\n", "\"\"\"" ], "metadata": { "id": "Ov7WSdx9dzSt" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "def dataset_generator(model, nature, shots, volume, language):\n", "\n", " examples = \"Instruction: 'Make a random sentence.'\\nAnswer: 'When I got home last night, I couldn't believe my eyes: All the pineapples had been removed from the pizza.'\"\n", " system_message = \"You are a random sentence generator. Generate 10 diverse English sentences.\"\n", " user_prompt = f\"Generate 10 random English sentences, like so:\\n{examples}\"\n", " sentences = \"\"\n", "\n", " if language == \"English\":\n", "\n", " for shot in list(shots.keys()):\n", " examples += f\"\\nExample instruction: '{shot}'\\nExample answer: '{shots[shot]}'\\n\"\n", "\n", " system_message = f\"You are a state-of-the art linguistic dataset compiler. You are given a 'Type' of sentence to create. \\\n", "Within the bounds of that type, create {volume} diverse sentences with differing structures and lengths. Make the sentences plausible, \\\n", "but be creative in filling them with random concrete information, names, and data. Here are some examples for how to go about that:\\n{examples}\\n\\\n", "Just output one sentence per line. Do not comment or format yor output in any way, shape, or form.\"\n", "\n", " user_prompt = f\"Generate {volume} English sentences of the following Type: {nature}. Just output one sentence per line. \\\n", "Do not comment or format yor output in any way, shape, or form.\"\n", "\n", " elif language == \"German\":\n", "\n", " for shot in list(shots.keys()):\n", " examples += f\"\\nAnweisung: '{shot}'\\nAntwort: '{shots[shot]}'\\n\"\n", "\n", " system_message = f\"Du bist ein weltklasse Datensatz-Sammler für Sprachdaten. Du erhältst einen 'Typ' von Sätzen, die du erstellen sollst. \\\n", "Im Rahmen dieses Typs, generiere {volume} untereinander verschiedene Sätze mit unterschiedlichen Satzlängen und -strukturen. Mache die Beispielsätze \\\n", "plausibel, aber fülle sie kreativ mit willkürlichen Informationen, Namen, und Daten aller Art. Hier sind ein paar Beispiel, wie du vorgehen sollst:\\n{examples}\\n\\\n", "Gib einfach einen Satz pro Zeile aus. Kommentiere oder formatiere deine Antwort in keinster Weise.\"\n", "\n", " user_prompt = f\"Generiere {volume} deutsche Sätze des folgenden Typs: {nature}. Gib einfach einen Satz pro Zeile aus. \\\n", "Kommentiere oder formatiere deine Antwort in keiner Weise.\"\n", "\n", " elif language == \"French\":\n", "\n", " for shot in list(shots.keys()):\n", " examples += f\"\\nConsigne: '{shot}'\\nRéponse: '{shots[shot]}'\\n\"\n", "\n", " system_message = f\"Tu es un outil linguistique de pointe, à savoir, un genérateur de données linguistiques. Tu seras assigné un 'Type' de phrases à créer. \\\n", "Dans le cadre de ce type-là, crée {volume} phrases diverses, avec des structures et longueurs qui varient. Génère des phrases qui soient plausibles, \\\n", "mais sois créatif, et sers-toi de données, noms, et informations aléatoires pour rendre les phrases plus naturelles. Voici quelques examples comment faire:\\n{examples}\\n\\\n", "Sors une seule phrase par ligne. Ne formatte ni commente ta réponse en aucune manière que ce soit.\"\n", "\n", " user_prompt = f\"S'il te plaît, crée {volume} phrases en français du Type suivant: {nature}. Sors une seule phrase par ligne. \\\n", "Ne formatte ni commente ta réponse en aucune manière que ce soit.\"\n", "\n", " messages = [\n", " {\"role\": \"system\", \"content\": system_message},\n", " {\"role\": \"user\", \"content\": user_prompt}\n", " ]\n", "\n", " if model == \"Llama\":\n", "\n", " quant_config = BitsAndBytesConfig(\n", " load_in_4bit=True,\n", " bnb_4bit_use_double_quant=True,\n", " bnb_4bit_compute_dtype=torch.bfloat16,\n", " bnb_4bit_quant_type=\"nf4\"\n", " )\n", "\n", " tokenizer = AutoTokenizer.from_pretrained(LLAMA)\n", " tokenizer.pad_token = tokenizer.eos_token\n", " inputs = tokenizer.apply_chat_template(messages, return_tensors=\"pt\").to(\"cuda\")\n", " streamer = TextStreamer(tokenizer)\n", " model = AutoModelForCausalLM.from_pretrained(LLAMA, device_map=\"auto\", quantization_config=quant_config)\n", " outputs = model.generate(inputs, max_new_tokens=10000)\n", "\n", " response = tokenizer.decode(outputs[0])\n", " sentences = list(re.finditer(\"(?:<\\|end_header_id\\|>)([^<]+)(?:<\\|eot_id\\|>)\", str(response), re.DOTALL))[-1].group(1)\n", "\n", " elif model == \"OpenAI\":\n", " response = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages)\n", " sentences = response.choices[0].message.content\n", "\n", " return sentences" ], "metadata": { "id": "bEF8w_Mdd2Nb" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "global data\n", "data = \"\"\n", "\n", "with gr.Blocks(\n", " css=\"\"\"\n", " .red-button {\n", " background-color: darkred !important;\n", " border-color: red !important;\n", " }\n", " .blue-button {\n", " background-color: darkblue !important;\n", " border-color: blue !important;\n", " }\n", " .green-button {\n", " background-color: green !important;\n", " border-color: green !important;\n", " }\n", " \"\"\"\n", ") as view:\n", " with gr.Row():\n", " title = gr.HTML(\"
Create Dataset