{
"cells": [
{
"cell_type": "markdown",
"id": "dfe37963-1af6-44fc-a841-8e462443f5e6",
"metadata": {},
"source": [
"## Expert Knowledge Worker\n",
"\n",
"### A question answering agent that is an expert knowledge worker\n",
"### To be used by employees of Insurellm, an Insurance Tech company\n",
"### The agent needs to be accurate and the solution should be low cost.\n",
"\n",
"This project will use RAG (Retrieval Augmented Generation) to ensure our question/answering assistant has high accuracy.\n",
"\n",
"This first implementation will use a simple, brute-force type of RAG.."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ba2779af-84ef-4227-9e9e-6eaf0df87e77",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "802137aa-8a74-45e0-a487-d1974927d7ca",
"metadata": {},
"outputs": [],
"source": [
"# imports for langchain, plotly and Chroma\n",
"\n",
"from langchain.document_loaders import DirectoryLoader, TextLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.schema import Document\n",
"from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
"from langchain_chroma import Chroma\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.manifold import TSNE\n",
"import numpy as np\n",
"import plotly.graph_objects as go\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "58c85082-e417-4708-9efe-81a5d55d1424",
"metadata": {},
"outputs": [],
"source": [
"# price is a factor for our company, so we're going to use a low cost model\n",
"\n",
"MODEL = \"gpt-4o-mini\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ee78efcb-60fe-449e-a944-40bab26261af",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv()\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "730711a9-6ffe-4eee-8f48-d6cfb7314905",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Created a chunk of size 1088, which is longer than the specified 1000\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of chunks: 123\n",
"Document types found: {'contracts', 'company', 'employees', 'products'}\n"
]
}
],
"source": [
"# Read in documents using LangChain's loaders\n",
"# Take everything in all the sub-folders of our knowledgebase\n",
"\n",
"folders = glob.glob(\"knowledge-base/*\")\n",
"\n",
"def add_metadata(doc, doc_type):\n",
" doc.metadata[\"doc_type\"] = doc_type\n",
" return doc\n",
"\n",
"documents = []\n",
"for folder in folders:\n",
" doc_type = os.path.basename(folder)\n",
" loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader)\n",
" folder_docs = loader.load()\n",
" documents.extend([add_metadata(doc, doc_type) for doc in folder_docs])\n",
"\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"chunks = text_splitter.split_documents(documents)\n",
"\n",
"print(f\"Total number of chunks: {len(chunks)}\")\n",
"print(f\"Document types found: {set(doc.metadata['doc_type'] for doc in documents)}\")"
]
},
{
"cell_type": "markdown",
"id": "77f7d2a6-ccfa-425b-a1c3-5e55b23bd013",
"metadata": {},
"source": [
"## A sidenote on Embeddings, and \"Auto-Encoding LLMs\"\n",
"\n",
"We will be mapping each chunk of text into a Vector that represents the meaning of the text, known as an embedding.\n",
"\n",
"OpenAI offers a model to do this, which we will use by calling their API with some LangChain code.\n",
"\n",
"This model is an example of an \"Auto-Encoding LLM\" which generates an output given a complete input.\n",
"It's different to all the other LLMs we've discussed today, which are known as \"Auto-Regressive LLMs\", and generate future tokens based only on past context.\n",
"\n",
"Another example of an Auto-Encoding LLMs is BERT from Google. In addition to embedding, Auto-encoding LLMs are often used for classification.\n",
"\n",
"More details in the resources."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "78998399-ac17-4e28-b15f-0b5f51e6ee23",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vectorstore created with 123 documents\n"
]
}
],
"source": [
"# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
"# Chroma is a popular open source Vector Database based on SQLLite\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"# Delete if already exists\n",
"\n",
"if os.path.exists(db_name):\n",
" Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n",
"\n",
"# Create vectorstore\n",
"\n",
"vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
"print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ff2e7687-60d4-4920-a1d7-a34b9f70a250",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 123 vectors with 1,536 dimensions in the vector store\n"
]
}
],
"source": [
"# Let's investigate the vectors\n",
"\n",
"collection = vectorstore._collection\n",
"count = collection.count()\n",
"\n",
"sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n",
"dimensions = len(sample_embedding)\n",
"print(f\"There are {count:,} vectors with {dimensions:,} dimensions in the vector store\")"
]
},
{
"cell_type": "markdown",
"id": "b0d45462-a818-441c-b010-b85b32bcf618",
"metadata": {},
"source": [
"## Visualizing the Vector Store\n",
"\n",
"Let's take a minute to look at the documents and their embedding vectors to see what's going on."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b98adf5e-d464-4bd2-9bdf-bc5b6770263b",
"metadata": {},
"outputs": [],
"source": [
"# Prework\n",
"\n",
"result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n",
"vectors = np.array(result['embeddings'])\n",
"documents = result['documents']\n",
"metadatas = result['metadatas']\n",
"doc_types = [metadata['source'].split('/')[1] for metadata in metadatas]\n",
"colors = [['blue', 'green', 'red', 'orange'][['products', 'employees', 'contracts', 'company'].index(t)] for t in doc_types]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "427149d5-e5d8-4abd-bb6f-7ef0333cca21",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hoverinfo": "text",
"marker": {
"color": [
"red",
"orange",
"blue",
"blue",
"green",
"green",
"blue",
"blue",
"green",
"red",
"green",
"red",
"red",
"red",
"red",
"green",
"blue",
"green",
"green",
"green",
"green",
"green",
"red",
"red",
"green",
"green",
"red",
"green",
"red",
"green",
"red",
"red",
"red",
"green",
"green",
"blue",
"red",
"red",
"green",
"red",
"red",
"blue",
"green",
"red",
"red",
"green",
"red",
"red",
"green",
"red",
"red",
"green",
"red",
"blue",
"red",
"red",
"red",
"red",
"red",
"green",
"green",
"red",
"green",
"blue",
"green",
"red",
"green",
"blue",
"green",
"red",
"red",
"red",
"green",
"orange",
"green",
"red",
"blue",
"red",
"red",
"green",
"green",
"blue",
"red",
"red",
"red",
"red",
"green",
"green",
"green",
"blue",
"green",
"green",
"red",
"green",
"red",
"blue",
"red",
"green",
"blue",
"green",
"red",
"blue",
"green",
"green",
"green",
"blue",
"blue",
"red",
"red",
"blue",
"green",
"green",
"green",
"red",
"green",
"blue",
"red",
"red",
"red",
"blue",
"green",
"orange",
"red"
],
"opacity": 0.8,
"size": 5
},
"mode": "markers",
"text": [
"Type: contracts
Text: ---\n\n## Features\n\n1. **Access to Core Features**: Roadway Insurance Inc. will have access to all Pro...",
"Type: company
Text: # About Insurellm\n\nInsurellm was founded by Avery Lancaster in 2015 as an insurance tech startup des...",
"Type: products
Text: Experience the future of reinsurance with Rellm, where innovation meets reliability. Let Insurellm h...",
"Type: products
Text: - **User-Friendly Interface**: Designed with user experience in mind, Markellm features an intuitive...",
"Type: employees
Text: - **2010 - 2013**: Business Analyst at Edge Analytics \n Prior to joining Innovate, Avery worked as...",
"Type: employees
Text: ## Annual Performance History\n- **2019:** Exceeds Expectations - Continuously delivered high-quality...",
"Type: products
Text: - **Professional Tier**: $2,500/month\n - For medium-sized companies.\n - All Basic Tier features pl...",
"Type: products
Text: - **Instant Quoting**: With Carllm, insurance companies can offer near-instant quotes to customers, ...",
"Type: employees
Text: - **2022**: \n - **Base Salary**: $65,000 (Promotion to Senior SDR) \n - **Bonus**: $13,000 (20% o...",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This contract shall automatically renew for additional one-yea...",
"Type: employees
Text: # HR Record\n\n# Maxine Thompson\n\n## Summary\n- **Date of Birth:** January 15, 1991 \n- **Job Title:** ...",
"Type: contracts
Text: # Contract with TechDrive Insurance for Carllm\n\n**Contract Date:** October 1, 2024 \n**Contract Dura...",
"Type: contracts
Text: 4. **Payment Terms**: \n - The Customer shall pay an amount of $10,000 per month for the Standard T...",
"Type: contracts
Text: ## Support\n1. **Technical Support**: Insurellm shall provide 24/7 technical support via an email and...",
"Type: contracts
Text: # Contract with Apex Reinsurance for Rellm: AI-Powered Enterprise Reinsurance Solution\n\n## Terms\n\n1....",
"Type: employees
Text: - **2023:** Base Salary - $70,000 \n Recognized for substantial improvement in employee relations m...",
"Type: products
Text: # Product Summary\n\n# Carllm\n\n## Summary\n\nCarllm is an innovative auto insurance product developed by...",
"Type: employees
Text: ## Annual Performance History \n- **2022** - Rated as \"Exceeds Expectations.\" Alex Thomson achieved ...",
"Type: employees
Text: ## Compensation History\n- **March 2018**: Initial salary of $80,000.\n- **July 2019**: Salary increas...",
"Type: employees
Text: - **January 2017 - May 2018**: Marketing Intern \n - Supported the Marketing team by collaborating ...",
"Type: employees
Text: # HR Record\n\n# Emily Carter\n\n## Summary\n- **Date of Birth:** August 12, 1990 \n- **Job Title:** Acco...",
"Type: employees
Text: ## Other HR Notes\n- Jordan K. Bishop has been an integral part of club initiatives, including the In...",
"Type: contracts
Text: 1. **AI-Powered Risk Assessment:** Access to advanced AI algorithms for real-time risk evaluations.\n...",
"Type: contracts
Text: # Contract with Belvedere Insurance for Markellm\n\n## Terms\nThis Contract (\"Agreement\") is made and e...",
"Type: employees
Text: ## Annual Performance History\n- **2020:** Exceeds Expectations \n Samantha Greene demonstrated exce...",
"Type: employees
Text: ## Annual Performance History\n- **2021:** First year at Insurellm; achieved 90% of monthly targets. ...",
"Type: contracts
Text: 3. **Training and Onboarding:** \n Insurellm agrees to provide one free training session on how to...",
"Type: employees
Text: ## Compensation History\n- **June 2018:** Starting Salary - $85,000\n- **June 2019:** Salary Increase ...",
"Type: contracts
Text: ## Features\nStellar Insurance Co. will receive access to the following features of the Rellm product...",
"Type: employees
Text: ## Annual Performance History \n- **2021**: \n - **Performance Rating**: 4.5/5 \n - **Key Achievem...",
"Type: contracts
Text: # Contract with Stellar Insurance Co. for Rellm\n\n## Terms\nThis contract is made between **Insurellm*...",
"Type: contracts
Text: # Contract with Roadway Insurance Inc. for Carllm\n\n---\n\n## Terms\n\n1. **Agreement Effective Date**: T...",
"Type: contracts
Text: ---\n\n## Features\n\n- **AI-Powered Risk Assessment**: Customer will have access to enhanced risk evalu...",
"Type: employees
Text: - **Professional Development Goals**: \n - Emily Tran aims to become a Marketing Manager within the...",
"Type: employees
Text: ## Compensation History\n- **2020:** Base Salary: $80,000 \n- **2021:** Base Salary Increase to $90,0...",
"Type: products
Text: All tiers include a comprehensive training program and ongoing updates to ensure optimal performance...",
"Type: contracts
Text: ______________________________ \n[Name], [Title] \nDate: ______________________\n\n**For Greenstone In...",
"Type: contracts
Text: # Contract with EverGuard Insurance for Rellm: AI-Powered Enterprise Reinsurance Solution\n\n**Contrac...",
"Type: employees
Text: ## Compensation History\n- **2015**: $150,000 base salary + Significant equity stake \n- **2016**: $1...",
"Type: contracts
Text: 1. **Customer Support**: Insurellm will provide EverGuard Insurance with 24/7 customer support, incl...",
"Type: contracts
Text: ---\n\n## Support\n\n1. **Technical Support**: Roadway Insurance Inc. will receive priority technical su...",
"Type: products
Text: ### Regulatory Compliance Tools\nRellm includes built-in compliance tracking features to help organiz...",
"Type: employees
Text: Emily Carter exemplifies the kind of talent that drives Insurellm's success and is an invaluable ass...",
"Type: contracts
Text: ## Support\nInsurellm provides Stellar Insurance Co. with the following support services:\n\n- **24/7 T...",
"Type: contracts
Text: 3. **Regular Updates:** Insurellm will offer ongoing updates and enhancements to the Homellm platfor...",
"Type: employees
Text: # HR Record\n\n# Alex Chen\n\n## Summary\n- **Date of Birth:** March 15, 1990 \n- **Job Title:** Backend ...",
"Type: contracts
Text: 2. **Seamless Integrations**: The architecture of Rellm allows for easy integration with existing sy...",
"Type: contracts
Text: ### Termination\nEither party may terminate this agreement with a **30-day written notice**. In the e...",
"Type: employees
Text: Alex Chen continues to be a vital asset at Insurellm, contributing significantly to innovative backe...",
"Type: contracts
Text: **Belvedere Insurance** \nSignature: ______________________ \nName: [Authorized Signatory] \nTitle: ...",
"Type: contracts
Text: ## Support\n\n1. **Customer Support**: Insurellm will provide 24/7 customer support to TechDrive Insur...",
"Type: employees
Text: # HR Record\n\n# Jordan K. Bishop\n\n## Summary\n- **Date of Birth:** March 15, 1990\n- **Job Title:** Fro...",
"Type: contracts
Text: 3. **Service Level Agreement (SLA):** \n Insurellm commits to a 99.9% uptime for the platform with...",
"Type: products
Text: ### Q2 2025: Customer Experience Improvements\n- Launch of a new **mobile app** for end-users.\n- Intr...",
"Type: contracts
Text: ## Renewal\n1. **Renewal Terms**: At the end of the initial term, this Contract shall automatically r...",
"Type: contracts
Text: # Contract with BrightWay Solutions for Markellm\n\n**Contract Date:** October 5, 2023 \n**Contract ID...",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This Agreement will automatically renew for successive one-yea...",
"Type: contracts
Text: ## Support\n1. **Customer Support Access**: The Client will have access to dedicated support through ...",
"Type: contracts
Text: 1. **Core Functionality**: Rellm provides EverGuard Insurance with advanced AI-driven analytics, sea...",
"Type: employees
Text: ## Annual Performance History\n- **2018**: **3/5** - Adaptable team player but still learning to take...",
"Type: employees
Text: - **Engagement in Company Culture:** Regularly participates in team-building events and contributes ...",
"Type: contracts
Text: # Contract with GreenField Holdings for Markellm\n\n**Effective Date:** November 15, 2023 \n**Contract...",
"Type: employees
Text: - **2022**: **Satisfactory** \n Avery focused on rebuilding team dynamics and addressing employee c...",
"Type: products
Text: # Product Summary\n\n# Markellm\n\n## Summary\n\nMarkellm is an innovative two-sided marketplace designed ...",
"Type: employees
Text: ## Annual Performance History\n- **2023:** Rating: 4.5/5 \n *Samuel exceeded expectations, successfu...",
"Type: contracts
Text: # Contract with GreenValley Insurance for Homellm\n\n**Contract Date:** October 6, 2023 \n**Contract N...",
"Type: employees
Text: ## Compensation History\n- **2017**: $70,000 (Junior Data Engineer) \n- **2018**: $75,000 (Junior Dat...",
"Type: products
Text: - **Basic Tier:** Starting at $5,000/month for small insurers with basic integration features.\n- **S...",
"Type: employees
Text: # HR Record\n\n# Samuel Trenton\n\n## Summary\n- **Date of Birth:** April 12, 1989 \n- **Job Title:** Sen...",
"Type: contracts
Text: 2. **Real-Time Quote Availability:** \n Consumers sourced via BrightWay Solutions will receive rea...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Matching**: Access to advanced algorithms that connect GreenField Holdin...",
"Type: contracts
Text: ## Renewal\n1. **Automatic Renewal**: This contract will automatically renew for sequential one-year ...",
"Type: employees
Text: - **2018**: **Exceeds Expectations** \n Under Avery’s pivoted vision, Insurellm launched two new su...",
"Type: company
Text: # Careers at Insurellm\n\nInsurellm is hiring! We are looking for talented software engineers, data sc...",
"Type: employees
Text: # HR Record\n\n# Jordan Blake\n\n## Summary\n- **Date of Birth:** March 15, 1993 \n- **Job Title:** Sales...",
"Type: contracts
Text: # Contract with Pinnacle Insurance Co. for Homellm\n\n## Terms\nThis contract (\"Contract\") is entered i...",
"Type: products
Text: ### For Insurance Companies:\n- **Basic Listing Fee**: $199/month for a featured listing on the platf...",
"Type: contracts
Text: ## Renewal\n1. **Renewal Terms**: This Agreement may be renewed for additional one-year terms upon mu...",
"Type: contracts
Text: ## Renewal\n\n1. **Automatic Renewal**: This contract will automatically renew for successive 12-month...",
"Type: employees
Text: ## Annual Performance History\n- **2020:** \n - Completed onboarding successfully. \n - Met expecta...",
"Type: employees
Text: # HR Record\n\n# Alex Thomson\n\n## Summary\n- **Date of Birth:** March 15, 1995 \n- **Job Title:** Sales...",
"Type: products
Text: # Product Summary\n\n# Homellm\n\n## Summary\nHomellm is an innovative home insurance product developed b...",
"Type: contracts
Text: **Signatures:** \n_________________________ _________________________ \n**...",
"Type: contracts
Text: ## Support\n1. **Technical Support**: Technical support will be available from 9 AM to 7 PM EST, Mond...",
"Type: contracts
Text: - **Customer Portal**: A dedicated portal will be provided, allowing the Customer's clients to manag...",
"Type: contracts
Text: # Contract with Velocity Auto Solutions for Carllm\n\n**Contract Date:** October 1, 2023 \n**Contract ...",
"Type: employees
Text: ## Other HR Notes\n- **Professional Development**: Avery has actively participated in leadership trai...",
"Type: employees
Text: # HR Record\n\n# Oliver Spencer\n\n## Summary\n- **Date of Birth**: May 14, 1990 \n- **Job Title**: Backe...",
"Type: employees
Text: - **2021**: *Exceeds Expectations* \n Maxine spearheaded the transition to a new data warehousing s...",
"Type: products
Text: With Homellm, Insurellm is committed to transforming the landscape of home insurance, ensuring both ...",
"Type: employees
Text: ## Compensation History\n- **2020:** Base Salary - $55,000 \n The entry-level salary matched industr...",
"Type: employees
Text: # Avery Lancaster\n\n## Summary\n- **Date of Birth**: March 15, 1985 \n- **Job Title**: Co-Founder & Ch...",
"Type: contracts
Text: ---\n\n## Renewal\n\n1. **Automatic Renewal**: This agreement will automatically renew for an additional...",
"Type: employees
Text: ## Other HR Notes\n- Jordan has shown an interest in continuing education, actively participating in ...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Risk Assessment**: Utilized for tailored underwriting decisions specific...",
"Type: products
Text: ### Q3 2025\n- Initiate a comprehensive marketing campaign targeting both consumers and insurers to i...",
"Type: contracts
Text: ## Support\n\n1. **Customer Support**: Velocity Auto Solutions will have access to Insurellm’s custome...",
"Type: employees
Text: # HR Record\n\n# Alex Harper\n\n## Summary\n- **Date of Birth**: March 15, 1993 \n- **Job Title**: Sales ...",
"Type: products
Text: # Product Summary\n\n# Rellm: AI-Powered Enterprise Reinsurance Solution\n\n## Summary\n\nRellm is an inno...",
"Type: employees
Text: - **2021**: \n - Performance Rating: Meets Expectations \n - Key Achievements: Contributed to the ...",
"Type: contracts
Text: ## Features\n1. **AI-Powered Matching**: Belvedere Insurance will benefit from Markellm's AI-powered ...",
"Type: products
Text: ### Seamless Integrations\nRellm's architecture is designed for effortless integration with existing ...",
"Type: employees
Text: - **2017-2019:** Marketing Intern \n - Assisted with market research and campaign development for s...",
"Type: employees
Text: # HR Record\n\n# Emily Tran\n\n## Summary\n- **Date of Birth:** March 18, 1991 \n- **Job Title:** Digital...",
"Type: employees
Text: ## Insurellm Career Progression\n- **January 2017 - October 2018**: **Junior Data Engineer** \n * Ma...",
"Type: products
Text: ### 2. Dynamic Pricing Model\nWith Homellm's innovative dynamic pricing model, insurance providers ca...",
"Type: products
Text: - **Mobile Integration**: Carllm is designed to work seamlessly with mobile applications, providing ...",
"Type: contracts
Text: **Insurellm, Inc.** \n_____________________________ \nAuthorized Signature \nDate: ________________...",
"Type: contracts
Text: ---\n\n**Signatures** \n**For Insurellm**: __________________________ \n**Name**: John Smith \n**Title...",
"Type: products
Text: Join the growing number of organizations leveraging Rellm to enhance their reinsurance processes whi...",
"Type: employees
Text: ## Annual Performance History\n- **2017**: *Meets Expectations* \n Maxine showed potential in her ro...",
"Type: employees
Text: # Samantha Greene\n\n## Summary\n- **Date of Birth:** October 14, 1990\n- **Job Title:** HR Generalist\n-...",
"Type: employees
Text: ## Compensation History\n- **2023:** Base Salary: $115,000 + Bonus: $15,000 \n *Annual bonus based o...",
"Type: contracts
Text: # Contract with Greenstone Insurance for Homellm\n\n---\n\n## Terms\n\n1. **Parties**: This Contract (\"Agr...",
"Type: employees
Text: ## Other HR Notes\n- Alex Thomson is an active member of the Diversity and Inclusion committee at Ins...",
"Type: products
Text: - **Customer Support**: Our dedicated support team is always available to assist both consumers and ...",
"Type: contracts
Text: 4. **Confidentiality:** Both parties agree to maintain the confidentiality of proprietary informatio...",
"Type: contracts
Text: **TechDrive Insurance Representative:** \nName: Sarah Johnson \nTitle: Operations Director \nDate: _...",
"Type: contracts
Text: 4. **Usage Rights**: EverGuard Insurance is granted a non-exclusive, non-transferable license to acc...",
"Type: products
Text: ### 5. Multi-Channel Integration\nHomellm seamlessly integrates into existing insurance platforms, pr...",
"Type: employees
Text: ## Compensation History\n| Year | Base Salary | Bonus | Total Compensation |\n|------|--------...",
"Type: company
Text: # Overview of Insurellm\n\nInsurellm is an innovative insurance tech firm with 200 employees across th...",
"Type: contracts
Text: 1. **Technical Support**: Provider shall offer dedicated technical support to the Client via phone, ..."
],
"type": "scatter",
"x": [
-3.1607254,
-1.4308044,
-1.1085818,
-6.969219,
0.48703524,
2.175568,
-4.1178646,
-3.7208247,
6.762047,
0.08528425,
4.7871485,
-0.4213074,
-3.5126212,
-2.7635567,
1.8354499,
5.1780567,
-3.3693259,
4.464768,
7.1887536,
2.5698357,
3.9805,
6.1451826,
-6.4697313,
-6.4013214,
3.313028,
6.201129,
-7.070293,
7.6450047,
-1.2759379,
5.5241075,
-0.3848002,
0.65634567,
-5.918763,
2.523539,
6.705796,
-5.063482,
-5.6573243,
1.2221298,
7.118389,
-0.015344943,
-1.1000556,
0.02971432,
1.5785087,
-1.042042,
-3.884427,
4.947063,
-0.6405304,
0.351926,
1.0492592,
-5.7610264,
-1.4826074,
5.439971,
-8.043169,
-3.2341743,
2.9037015,
-7.1473227,
0.97349405,
-8.745356,
-0.19221792,
2.0126112,
2.4894593,
-5.8275576,
0.08701889,
-6.61231,
4.812531,
-4.493661,
4.779925,
-5.141953,
5.131699,
-7.818457,
-7.545307,
2.7424765,
0.24364968,
-0.7931868,
6.0760317,
-4.2518806,
-8.056226,
3.0942588,
0.11218604,
2.268039,
6.7461205,
-4.1430783,
-5.3450475,
-2.3154912,
-3.3768446,
-0.066813685,
0.12230213,
4.793949,
1.9896475,
-3.0949416,
5.659374,
0.06005563,
1.5920869,
6.6121154,
-6.715834,
-5.821373,
-1.6468159,
6.5187964,
-1.2227865,
5.659529,
-6.777003,
-0.8497433,
0.77016014,
3.2564833,
3.2851305,
-5.3794675,
-4.1021156,
-4.9523273,
1.9611729,
-2.203138,
2.1651542,
4.5296946,
5.960888,
-4.3336587,
7.3632245,
-7.455795,
-4.342169,
-1.4740607,
0.5362702,
-4.6598883,
6.3600597,
-1.6243327,
-1.8050114
],
"y": [
-2.1550088,
3.0643942,
1.5276649,
-1.120192,
9.096867,
11.685728,
-1.0502763,
0.19096021,
9.645359,
-5.6271205,
8.58046,
-7.09625,
-6.7556396,
-4.7456827,
-2.9980495,
13.475882,
0.5079896,
11.252887,
10.956067,
7.832474,
7.492853,
5.4227104,
1.4291283,
-4.5507016,
12.795857,
10.503973,
-5.637385,
11.801874,
-1.6297567,
10.955857,
-3.5296912,
-7.180572,
1.9675288,
7.429629,
11.303524,
0.901026,
-8.734111,
-2.2119637,
12.559837,
-1.9207084,
-5.445833,
0.009377258,
5.303404,
-2.7137322,
-3.9320812,
6.767529,
-0.6412369,
-3.986366,
5.0965276,
-7.6005898,
-6.5373793,
6.0456867,
-4.564145,
-0.56765825,
-6.1337295,
-5.065833,
-3.3495605,
-2.2934506,
-1.2250541,
12.195051,
14.05741,
-4.968565,
9.683414,
-1.0298567,
11.745912,
-4.737484,
10.138535,
0.19150285,
7.612739,
-3.6685145,
0.96112436,
-5.9198747,
9.636642,
3.6385217,
7.303717,
-5.774162,
-2.0032737,
-6.2333484,
-5.289164,
12.009621,
7.5476747,
2.1360438,
-8.622136,
-4.509546,
-5.0484943,
-6.7587156,
7.423352,
6.492227,
9.941514,
2.572907,
13.432404,
7.1845207,
-5.9217563,
5.7416673,
2.424909,
-1.1929586,
-6.0047565,
7.9045324,
0.56980604,
12.12074,
-2.23806,
-0.32520536,
11.615986,
7.505213,
9.576624,
2.1870441,
-0.84820145,
-8.307507,
-1.0744305,
-0.13908787,
10.820973,
13.802319,
11.501876,
-5.3514557,
7.271256,
-1.6708019,
-4.1823173,
-7.409654,
-2.2660165,
2.3604054,
12.11396,
2.7945552,
-3.8833227
]
}
],
"layout": {
"height": 600,
"margin": {
"b": 10,
"l": 10,
"r": 20,
"t": 40
},
"scene": {
"xaxis": {
"title": {
"text": "x"
}
},
"yaxis": {
"title": {
"text": "y"
}
}
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "2D Chroma Vector Store Visualization"
},
"width": 800,
"xaxis": {
"autorange": true,
"range": [
-9.741724878009347,
8.641373578009347
],
"type": "linear"
},
"yaxis": {
"autorange": true,
"range": [
-10.166823656233563,
15.490122656233563
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABEoAAAJYCAYAAAB1iANKAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQd4VcXWhlcqKfSWUEVRkCaCgIIoXEWxgIiCHRULYqVYELiICnYEpAgWwF4AKYogCkrxoihFQURAlA4KoUN68v+zcR9zQpIz58wua/b+zvP8z39Npqz1fZNh9ntmZkfl5+fnEz5QAApAASgABaAAFIACUAAKQAEoAAWgABSAAhQFUIJRAAWgABSAAlAACkABKAAFoAAUgAJQAApAgRMKAJRgJEABKAAFoAAUgAJQAApAASgABaAAFIACUOAfBQBKMBSgABSAAlAACkABKAAFoAAUgAJQAApAASgAUIIxAAWgABSAAlAACkABKAAFoAAUgAJQAApAgWAFsKMEIwIKQAEoAAWgABSAAlAACkABKAAFoAAUgAL/KOAbUJKekUV70w5QdnYOpVatRMlJCY4OguycXNr91z4qFR9PlSqWpdiYmKD+P/tyGR0+epxuvqaDo3GhM3cUOHL0OO3bf4iSkxKpQvkyFBcbPB7cicq+XnNycykjI4vi42IpPj7Ovo4kWp7z1Xd04NAR6tHtUqO0ePHXseMZFBMTQ4kJ8RItWFckMyvbmJMSEuJPmhOs6wUtQQEoAAWgABSAAlAACkABKBCOAp4HJavWbqRho96hjX/sCNLlkgtb0KCHbqGqlcsHfv7YsIn0+cLvA/+dlJhAZUon0lkN6tLVl7Wltuc2Cfth5svFK2jc5Bm0eeuuoP7btzmbul5+AV10fnOKjo6i6+95iv7Ytpt+nDcxHP+0LJuRmUXndOxFQt+ls8ZQQqmiH057PPgsCf8WTB1J1apWtCTX3Nw8Gv3GdDrtlGqG/k5/BBAbN2Um7di9N6jreqfVpMsvOpd63dLZ+Pm2nX/RtM8WU7vWTalF0/pOh1lif5H4t+Kn3+jxZ1+nu2/uRH3v7uZqPrc88Ayt/mUTrVv0lhGH8KLjjY9S4/qn0sevDbU8tpK8HPLiZJoxdwlNfOFhuuDcJpb3jQahABSAAlAACkABKAAFoAAUCF8Bz4OSD2YupGdeeZcEGDm70el09Fg6ffbVMuPhqFnjM+jdsYMoKirKUK7/k6/S/EU/UKdLWlPppEQ6cOgo/bltVwCyXHxBcxr15AMUExMtpbR4MBQPxuJz8zWXGA/ne9MO0s+/bqbvVqwzfi7AiAAGfgIlIu8Bz7xG4pv9sc/0oYvOb3aSnrv/SqMO1z9sePTeuMFSessUEt/en33JXSRA1fhn+8pUsazM0uVrqPeAkUZ7Yiydc1Z9Stt/iH77fRv978dfjJ+bD+8/rP6NevZ7nh67/0a6rXtHy2KwqqFw/ft+1a/09tT5dGm7Fq4AqoJ5FwYlYmePABZ1aqXSgPtvtEqiQDslefnu9C9p2Yp19EDPrtSofh3L+0aDUAAKQAEoAAWgABSAAlAACoSvgOdByZpfN1OpUvFUv26tgDri2MN5ne4z/nvBxy9TtZRKxv82Qcm891+k2jWqBsqv37SVBgx/zdgVcmv3jlIPU+ZDcUqVCjTp5cfo1NrVgtxZ/N3P9MjTE2jxjNG+BCUi//sGjqIrLz6PXhzS+6SR+860+fTC+A/piX630vVdLgp/ZBdTIxxQIo5kmBBNNYCsrGy67ObH6K+9B2je+y9Q7RopQU2KMSbyfWv048bPuYMSt/xT9UHULwxKrGizpDac9NLKMWu3LmgfCkABKAAFoAAUgAJQAApwVcDzoKQ44e99fBQt+f5nY7eC2LVQEigRv9uzdz91v3so7T94hKaMepxaNTuzRE+vuGUAbd3xF018oT9dcO5ZRZYVd5KUSU40HsbNHSUfTXyCxk+ZRQK0iM9l/2lFj913A5UpnWT8tzj20G/oeGre5Ay67qr/0IzPl9Da3/4wfv/UIz2NMuK4yqtvz6af122mhFJxxs6F/vd0D3o4nzlvKYljQff3vJpmzl1K3yxbTUeOphvf+A/uc4txX8rYSTMMjTIys41jAf/teytVLF8mkMtLr35EK37eQLv+2mfoUrNaFbqkXQvqef3lVKlC2RL1EeDg/C4P0vH0DPpx3muUlFgqqHy3u4eSgAeLZ7xClSuWM363aNlPJADK2t/+NP77vOYN6JF7b6BTagZDB7E744OZC0hAsri4WGpUrw51vvR8atuqMfV9Ypyxe0Ps4jGPtCQmlKKRT54AZ+Ium1ffmkULv11p+NfgjFOoS8fzjR1B4oiUrAeFkzd3yNQ9pTp9+vazJWoj4n7mlffolw1/Gpqedkp1o7zwXBxdEZ/df++nUa9Npe9WrjO0b3n2mcbvzm/ZOND2ug1bjGM+N3S5iGrVqEpzvlpGm/7YQa1bNKabul4clqaFAw7XP+HlmEkz6Lqr2tN/2pzYQSTa+HD21zR3wffGsTNxzE3ofdWlbahj+1ZGGbHTQ3yGPXZHUAhvfvA5rVyzkUY+eX/gXhHZ8VgYlAh49tCQsdS0YV3qfetVRj9inIj7Q4r6dO/c3tgFJXya8M6n9MfWXcYONTGmmpx5KvXofmkgx1Beih1nc79eToMeuplqVf8XzobzN/zgHV3ps6++o6+/XWXE0bpFIxr80C0nwdkSBx1+CQWgABSAAlAACkABKAAFoEBAAV+Ckry8fGp3zUPGA+YXH7wYeEApbkeJqdanX/6PBj77Bj1057V0T48Td0kU9REXRbbt8iDJPBSb9QUoEQ/G5kfclyAeHgVIuOaKCwMPiuLo0LlX3ktip4p4wBM5iI8AGEtnjaUFS1dSnyFjjZ91bN/SePAXsEN8Zk4eTuIuDPEZ9fo0Eg+b5kc8oP61d7/RXsG+xc8FMBBxiCMg4iiI+bng6gcNiNK0UV0qWzqZ1m3403hQE/Xff/W/Ie9zEXfHfDT7awNSmA/Gom1xp8PlNw8w4Iy4u0F8pnw0j0ZM/DiQ17adfxsgRXy+mT46cNdMwXIXnteUDh4+ajzQis/yzydQjwefCRylErmJT+nkRGMnh7hw95b7hxs+CJ3qn16bVq/dZOQk7qh55vG7jPKhPChqTIhv+i+76TGjrXfGDKJzzqpXzOghAz4Nfv5No6zwNaXKiftZ2rRoRP3vuY5E7tfe9YThiQAjZcskk9jhIf772YF3G2BHfMxdTSJPUyvx886XtqHnB/WS1rS4QMPxTxw1u+uRl4x7gcwLi4eOmELT5yw2xnKLs+rTrr/SjLtDxH9/PW3UCa9vfNT4//M/fCkoDLEba97Xy+m7Oa9S2X8goux4LAxKxN9Ii8t6Gcehxgx7yOjn9r7PU3p6ZlCf5t/n8AF3GseHBGz87wuTjLFySs1UQ3/zCNWrz/Uz7pcJ5eW4yTNpwjuzafobTxmQSHwi/RsWcRw6cszYtSQA2+fvPR/yb7DYQYhfQAEoAAWgABSAAlAACkABHyvgS1BiPrSJBxPxgGJ+QoGSTX/uoKt7/pfEA/iE5/sVO2zEHSQ33Tes2GMlRVU0QYn4RvuumzoZ35KnHThsPFyLB7A1Cycbd6OYD+miDfFgd2u3jsaOA3GcKLVqRbr8n+Mdc955LvCNsnlMoiB4MEGJuLtF7CCpUqm80U/XO4acuNyyfSvjW26xm0O8EaTzbQONS1fnvvdCIHzx8H3GaTUDD2MCQPUZMoa+/t9qmj3lGTr91Bol/mmJHQG3PvRs0AOqqCAAjojvhcH3GPfFmJdtCr/eHPEolS9X2mjXfFA1AY4JWMRDogAf5pGqXXv20ZjJMww4UNLRG/HQLh7exU6dIX1vNXaQiIfoex8fST/+9Bt98OoQY9dBSR4U3t1SUACxy2f8lJnGj8QOkFZnn0n169amJg1OC7pUWPy+pOMa5qXD4siSOLokPjv37DPGpvh8M32UAX8K3oly101XGruTqlauQFnZOZSbm2tAiFCalmSgrH+ijcKgRIy1lpf3NqDIF++/GHgTzt/7DpIAkiJe8QkHlMiORxlQUjhvsfuq39BxdG6zBvT6iEeMMS+AhNgNVvBCaLGL57p7njT+fsxdSiV5WRiUiF0s4f4Ni3lg4IO3GBcei7cL9XpkBC1fvT4wXn387xtShwJQAApAASgABaAAFIACESngO1AiHsSuvWuIsXNCPEyLB1bzEwqUiKMCzS69O7B7ozjFxYWwoq07b7zC2AEg8ynuMtf+T46n+Yt+pEWfjDZghvmQXhB6mO2Lb+PFQ6A4JiIgR8GP+XBofgNvgpJZU4bTGaee2GUiPuZbOAqCFvFzscNh1hffBuIwyws4Ii683bFbHL85bBzhWbh0lXFRqrgwtaSPeANN+2v7GF4U3Blw1W2DjPtgxA4QY7fH1C9IHKsQYOCyf45kiHaPHk+nNp3vp+ZN6hmX8k7+aC69PHEqPTfobrrq0hO7Kgp/SgIlvR4dYewIKHjcR9QXF5He2f/FgJ8leVBSvuLYlDjOJPIp/BG7hsQxqNR/do8U93AtHoSbXnxnkbuVxJGh8W/NInM3gwlKHul9PfW84fKgLmU1tcI/0UZxoETsmHl//JCgO4EK9hkOKBH1ZMZjuKDkz227qdOtA42/e7EryzwKZsYpdnFs3rLTuKhZjOXho981dpmIsuITDiix4m/4w1kLjRjEsSSxqwwfKAAFoAAUgAJQAApAASgABcJTwFeg5OCho8YOBvEQ/vgDN1GPbpcGqRUKlJg7FsQdAGJnQ3Ef85t284iDjCXFgZKnRr5NUz/9hr76aARVT60cACUFv7E22xf3HYg37Yj7HMSDd8HPs2Pep/dnfEWfvPk0nXl67cDRm8Kg5MXxH9Lb0+Yb92iIo0Pmx6wvdpSYuybEEYGnXn4rcPynYH/Fvc2msBYjX5tKkz6ca+z2EHr9/udO6tJzcNA38qYGxeloHtUwIU/h2AvWKwmUXNS9n7HjRBxhKvgRb0Vpd02fwM4XE5QU5YGM12KXytr1f5DYoSTulzHfjCQexBd98oqxc6i4h2uxc+TSGx4JHJ8p2N9XS1YYd2sM7tPDuIPEBCVFXYgrq2mofGT8E20UdfTGfHOO+P1ZDetSs0anG3mZR1DEz8MBJbLjMRxQIry6/p4njTlDwDgB5cyPACRPvfy28aaswp9IQYkVf8NzFy6nR4dNCOzICuUhfg8FoAAUgAJQAApAASgABaBAsAK+ASXiYffuR14y7qfoe3e3wKWYBeUIBUrETomHhoyhB+7oSvfe2qXYsSR2rfynW9+gb5VDDbziQIl5D4QMKJk2ZxE9OeKtAHQo2KfYkSF2EXz46hDjobS4HSXiHhBxz0dh2CDeyCIuUjVBifngKy6wFHqc1eA0qpFaxbgEVXybLQtKxHEJcXGreZzJPJ5SsL551OTBO6456dt8kaOI4YqLzzXeIiTurRD3WYjjN0V9SgIl4iiIuFDUvB+j4AOx2Lli7uJRBSWF4xIAT9zfIbR4d+xg49LW4kCJeGAXO24K3ltjtid28zww6BUyd5CUBEpkNQ01bmX8Kw6UiN0x4riT+L+Cd6iI3S8ih3BASTjjMRxQYu6kevS+G+j26y4LksNsR+yc6tapHdWpmUoVK5SlTj0eN8ZpJDtKrPgbNne0mUfXQnmI30MBKAAFoAAUgAJQAApAASjgQ1AivoW/o98Lxl0X4kiKOJpS1KckUCLuALn5/uHGN8uTRj5G5zVvWOxYEhd3Xtj1xGWxhY/3FKwkHhTFXQfiYwUoMR8WBVAw395h9mce4TEvPlUFJSY4EZetCoBgfsx7Q2RBiahnviFI7OS48d6nDd2+nT2WSsXHGc2aR0rEa5bPO6d43cX9HwK0iN0+YtdPUR8TlBR1dOnG+4YZF7+u+vKNQN+ijQ2bt9M1dw4xdmmI3RqRgBJxzEjcZ2G+OadwbBPf+ZTGTp5BQx++na7r3D4ASh7ufR3dccMVgeLmxaPiyJj5KmHzl/8euThxOW5JoERWU5kJM5R/oo2idpQUbFvcWSLiFZBN+L/ss/FUrkyysaPE+F2hXT6FL3MNZzzKghLzzhpxB8grTz8Y9Kpo88JmcXHxx68NDZJJXCpbFCgp7KWoVPiOEiv+hgFKZEYtykABKAAFoAAUgAJQAApAgeIV8PyOEvFNtbh7Qjx8mcc7ipOjOFAi3j4zfNQ7xgWJ5sNyqEFlviFHHFOZ8Hz/k15hK47nDHruDeNbZ/FqXCtAiXlERBxFmff+i4GHffFq44u79zcuzlw4daTxwKcKSswH1YLQSIAfcXTn/RkLpHeUCB1ff+8zeuXNT4xv5cXDafdO7enJR24PSCzuDREeitc4Txn9OMXFnoBL4iMeosVrkAUYEa8Pvn/QaAPcjH+2n3GExfyIC2bFK13Fp1H72w0/Cl5MK34u7jcR95yI1yyLWMzPs2PeM3Iyx08koEQctREQ4PEHbwq8jtpsX9x9c0f/F403vnw04Qnjctffft9mvNmmqPFmvjq54K4fob14fbXYMWW+yakkUCKraahxLuOfKFMYlIi/R3HxaUHIJsqJHVti55b5Fhjx9hlxka7Y5SPGr/iIHVv3PDbCyNW82yac8SgDSsydMmJn0rQ3ngq8WcfUQ9xJctXtJ14tLl4xbn7EG6IEOCp49KYkLwuDEiv+hgFKZEYtykABKAAFoAAUgAJQAApAgeIV8DwoEUcaxEOaeOBp2+rfnQ+mJDWqVQ58Y2+CEvEmkdKlk+jgoSO0c/e+wGt7xRtiRgy9V+qVm+JSSfHQbr6aV7xJ5fQ6NejvfQeM+ykEdBGfH+dNNI6OWAFKRHtjJn1Cr737mXG85oYuFxl3brz69izjDR0FX8OrCko+nv01PT3qHUPXzpe0oaioE681FQ+v4hPOjhLz7hfTk8mjBhhvFyn4eXDwK8bbdMS9KQJiJCcl0m+/b6UvvvmBmjU5w3itq9jJIy5dFdqK+pdffC6JnRyfL/ieVq3dSOsWvWU0aY4JcXylYb1TaNeeNBLf9ou3DImdQOJz/+1XU9061en7VeuNO2JEvzMmDzO8jxSU3HDv00bb4uFawBDxlpJ1G7fQsh9/MUBewTttBABqd01fAwSJo03iFbgxMTGGpybkEHea3N+zKyUnJhhvABJ5i98P6Xer0U9JoET8XkZTmclTxr/CoMQEDcKndm3OptQqFWj9pm30xvtzjHtA3n5loLH7Rrw6V8AEAR46XdKGtu/8m8TxFPNjgpJwxmMoUCL+Zjre9KjxNyPgWuMzTwuSoWG9OnRe8wYk7rQRvon5omH9OrTpjx3GhcfiUxCUlORlUa8HVv0bBiiRGbUoAwWgABSAAlAACkABKAAFilfAN6CkOAkEUBD3doiP+a20WVYADPEwe/qpNanr5W2NXQvmURmZQSVgyWdfLTOOjohjPwU/57dsTN07t6cOF5xj7PAoDpQ888q79MHMhbRg6kgjFvGq3lZX9A667LRgu2JnwevvzQm8hlb8TuQhLvQUD+LmZ/Qb042H0sKv8TUv5yz81hvzktd5779AtWukGK8hHfrSlMCDoWhXaCkuihVgYdyzfeg/bU7s4JD5mK9HFg//33wy+iSdxRtjpnw8jyZ/OM+AB+ZH7AwRx4zMt9yICzbHTZ5haFbQR+HfoIduMX4kHtLF22HE24RMfQSwEh8BegYMnxgAPuJnYtfD8AF3Be5HCeVBUfkKuCJ2y8xZ8F3QfRxm/wKGCMhhHjcSPxevdRYeiZ0m4iMeyMWbf8RHXNw66Lk3g7QQd3s8dMc1gVftmkBlaP/bjFceF/7IamqFf9+v/JXufPjFwEWz4l6Wp0eJi1BPeGB+xN+YiLdW9arGj4Ru4tiYyMX83HxNB9qyfY/xs+/nvEplSieFNR6LAyUChI5++gE6fPQ4te50X7Fpm2+VWrV2k/E6bAFLzI8AbFM+/oJqVqscuKOkJC/N42IzJg2j+nVrGc2o/g2boOSlIfcad/fgAwWgABSAAlAACkABKAAFoEB4CngelIQnh32lxd0SO3fvNY6DpFatRIkJ8fZ19v+v8xXfiotv+mNjY41dHwWPoVjZsTgGIV6LWqli2cCrba1sv3BbYteIOJ5w6PAx4yiGeEgu6iMeNsWOgKj/v+OkapUKRQIu8UB8+MgxSqlcgeLiYoOaEX2IvGpUq3LSsQvV/ASgEG0L4CJeB1y+XOkSmxQai7zF66EL3nEiQJwAcKI9AYwKQpZwYpTVNJw2ZcuaPgkthJ/iXpKiPN/z934SEKxOrVRKKFX8347T4zEzK5vEcRvxEXAn1N91cV4WpZdTf8OyXqEcFIACUAAKQAEoAAWgABTwiwIAJX5xGnlCASgABaAAFIACUAAKQAEoAAWgABSAAiEVACgJKREKQAEoAAWgABSAAlAACkABKAAFoAAUgAJ+UQCgxC9OI08oAAWgABSAAlAACkABKAAFoAAUgAJQIKQCACUhJUIBKAAFoAAUgAJQAApAASgABaAAFIACUMAvCgCU+MVp5AkFoAAUgAJQAApAASgABaAAFIACUAAKhFQAoCSkRCgABaAAFIACUAAKQAEoAAWgABSAAlAACvhFAYASvziNPKEAFIACUAAKQAEoAAWgABSAAlAACkCBkAoAlISUCAWgABSAAlAACkABKAAFoAAUgAJQAApAAb8oAFDiF6eRJxSAAlAACkABKAAFoAAUgAJQAApAASgQUgGAkpASoQAUgAJQAApAASgABaAAFIACUAAKQAEo4BcFAEr84jTyhAJQAApAASgABaAAFIACUAAKQAEoAAVCKgBQElIiFIACUAAKQAEoAAWgABSAAlAACkABKAAF/KIAQIlfnEaeUAAKQAEoAAWgABSAAlAACkABKAAFoEBIBQBKQkqEAlAACkABKAAFoAAUgAJQAApAASgABaCAXxQAKPGL08gTCkABKAAFoAAUgAJQAApAASgABaAAFAipAEBJSIlQAApAASgABaAAFIACUAAKQAEoAAWgABTwiwIAJX5xGnlCASgABaAAFIACUAAKQAEoAAWgABSAAiEVACgJKREKQAEoAAWgABSAAlAACkABKAAFoAAUgAJ+UQCgxC9OI08oAAWgABSAAlAACkABKAAFoAAUgAJQIKQC7EDJrrT0kEGjgL0KpFZIoL8OZlB+vr39oHX7FIiPjaayyXG071CmfZ2gZdsVKJccR9k5eXQ8M9f2vtCBfQqkVkykvw+kUx7mVPtEtrnlSmVLUam4aEo7nEmZ2Xk294bm7VJAzKk5ufl0LCPHri7QrgMKpJRPoL2HMygPf4oOqG1PF2KdWiYpltIOZ9nTAVp1RAFuc2r1SomW5g1QYqmc3mgMoER/HwFK9PdQZABQ4g0fAUr09xGgRH8PzTkVoER/LwFK9PcQoER/DznOqQAl3hhXrLMAKGFtj1RwACVSMrEvBFDC3iKpAAFKpGRiXQighLU90sFx+/ZTOnAUDFIAoET/AQFQor+HACUueIijNy6IXqhLgBL3PVCNAKBEVUEe9QFKePigGgVAiaqC7tcHKHHfAysiACixQkX32wAocd8D1QgASlQV5FGf25yq1Y6SnNxcio6KpujoKGk3AUqkpbKtIECJbdI61jBAiWNS29oRQImt8jrWOECJY1Lb1hFAiW3SOtowt0W9o8l7qDOAEv3NBCjR30ORAbc5VRtQkp6RRdff8yT1uqUzdbqkdWA0LFy6ih4aMuak0bHqyzeoVHwcAZS4/4cDUOK+B6oRAJSoKsijPkAJDx9UowAoUVXQ/foAJe57YEUE3Bb1VuTkxzYASvR3HaBEfw8BSiL0cMTEj2nKR/OM2i8MvicIlCxYupIGPvsGTX/jqaDWa9eoSlFRUQAlEWpuZTWAEivVdKctgBJ3dLe6V4ASqxV1pz2AEnd0t7JXgBIr1XSvLYAS97S3smeAEivVdKctgBJ3dLe6V25zqhY7Sg4eOkoZWVl0033DqH+v604CJU+9/BYtnTW2SK+wo8TqIRx+ewAl4WvGrQZACTdHIosHoCQy3bjVAijh5kj48QCUhK8ZxxrcFvUcNdIhJoASHVwqOUaAEv09FBlwm1O1ACWm9R1vfJQevOOak0BJnyFjqUvH86lUqXhq0bQ+dWzfkmJjYoxqACXu/+EAlLjvgWoEACWqCvKoD1DCwwfVKABKVBV0vz5AifseWBEBt0W9FTn5sQ2AEv1dByjR30OAEkUPiwIla3/7k+Yv+oHKlUmmXX+l0dRPv6Gbul5Mg/v0MHpLO5Kl2CuqqypQsXQ8HTiaRfmqDaG+awrERUdRUkIsHTqe7VoMlnScn08UJX8ZtCV9MmokuVQM5eblU0Z2HqOoEEq4ClQsE08Hj2QRXAxXOT7lyybFUVxMFB0+nk3ZufjXkY8z4UVyYk4lysjODa8iSrNSoEJyPB06nkV5ef5eI7AyJcxgxDo1MSGGDh/PCbMminNSgNucWqlMvKXyROXniycRez5FgZLCPc2Yu4SGvDiZfl44ydhVkpmFf7zscUO+1fi4aMrKySOQEnnNuJWMio6i2Jgoytb8AVs8j8T4l5NQbGy0sRA0FoP4aKtAfFwMZeXkYk7V1kGiuLhoio46Mafm2bds0lghPUIXc6pY9uYCdulhWDFRmutUAb38vEbQ2URjnRodRdnieQMfbRXgNqeWij9xQsWqj+ugZOnytdR7wMu0cv7rlFAqHkdvrHJWoR0cvVEQj0lVHL1hYoRiGDh6oyggk+o4esPECIUwcPRGQTxGVXH0hpEZCqHg6I2CeEyq4ugNEyMUw+A2p2pxR0lObi7l5+VTp1sHUu9br6JOHVpTXFysYcUHMxdS/bq1qGG9OnToyFF69OmJFBcbQ5NHDTB+jztKFEesBdUBSiwQ0eUmAEpcNsCi7gFKLBLS5WYASlw2wILuAUosEJFBE9wW9Qwk0TIEgBItbQsKGqBEfw9FBtzmVC1ASf8nXzXuISn4mfPOc3Rq7Wo08rWpNOnDuYFfndWwLr00pDfVrFYFoITJ3wxACRMjFMIAKFEQj1FVgBJGZiiEAlCiIB6TqgAlTIxQDIPbol4xHd9WByjR33qqDJmCAAAgAElEQVSAEv09BCixycOMzCzam3aQyiQnUflypYN6wY4Sm0QPo1mAkjDEYloUoISpMWGGBVASpmBMiwOUMDUmjLAASsIQi3FRgBLG5oQRGkBJGGIxLQpQwtSYMMPiNqdqsaMkTI0BSlQEs6EuQIkNojrcJECJw4Lb1B1AiU3COtwsQInDgtvQHUCJDaK60CS3Rb0LEniiS4AS/W0EKNHfQ5EBtzkVoMQb44p1FgAlrO2RCg6gREom9oUASthbJBUgQImUTKwLAZSwtkc6OG6LeunAUTBIAYAS/QcEQIn+HgKUuOAhjt64IHqhLgFK3PdANQKAElUFedQHKOHhg2oUACWqCrpfH6DEfQ+siACgxAoV3W8DoMR9D1QjAChRVZBHfW5zKnaU8BgXno4CoER/ewFK9PfQJPXZOXl0PDPXGwn5NAuAEv2NByjR30OO3356Q1XnswAocV5zq3sEKLFaUXfaAyhxWHfsKHFY8CK6Ayhx3wPVCABKVBXkUR87Snj4oBoFQImqgu7XByhx3wMrIuC2qLciJz+2AVCiv+sAJfp7yBE+Y0eJN8YV6ywASljbIxUcQImUTOwLAZSwt0gqQIASKZlYFwIoYW2PdHAAJdJSsS4IUMLaHqngAEqkZGJfiNucClDCfsjoHyBAif4eApTo76FJ6nH0Rn8vAUr09xCgRH8POX776Q1Vnc8CoMR5za3uEaDEakXdaQ+gxGHdcfTGYcGL6A6gxH0PVCMAKFFVkEd97Cjh4YNqFAAlqgq6Xx+gxH0PrIiA26Leipz82AZAif6uA5To7yFH+IwdJd4YV6yzAChhbY9UcAAlUjKxLwRQwt4iqQABSqRkYl0IoIS1PdLBAZRIS8W6IEAJa3ukggMokZKJfSFucypACfsho3+AACX6ewhQor+HJqnH0Rv9vQQo0d9DgBL9PeT47ac3VHU+C4AS5zW3ukeAEqsVdac9gBKHdcfRG4cFL6I7gBL3PVCNAKBEVUEe9bGjhIcPqlEAlKgq6H59gBL3PbAiAm6Leity8mMbACX6uw5Qor+HHOEzdpR4Y1yxzgKghLU9UsEBlEjJxL4QQAl7i6QCBCiRkol1IYAS1vZIBwdQIi0V64IAJaztkQoOoERKJvaFuM2pACXsh4z+AQKU6O8hQIn+HpqkHkdv9PcSoER/DwFK9PfQ6W8/dx3dQct3/Y8qJ1ah1jUupNjoWG+IyCALgBIGJiiGAFCiKCCT6gAlDhuBozcOC15EdwAl7nugGgFAiaqCPOpjRwkPH1SjAChRVdD9+gAl7ntgRQROLep/+mslDVnSn3Lycoywm1ZtTs+0G00x0TFWpOH7NgBK9B8CACX6e+g0fJZRDDtKZFRCGSUFAEqU5GNRGaCEhQ3KQQCUKEvIogGAEhY2KAUBUKIkH5vKToGS55Y9QUu2LwzKe9ylU6huhXpstNA5EIASnd07ETtAif4eApS44CF2lLggeqEuAUrc90A1AoASVQV51Aco4eGDahQAJaoKul8foMR9D6yIAKDEChXdbwOgxH0PVCMAKFFVkEd9p+ZU2Wyxo0RWKZSLWAGAkoilY1MRoISNFUqBAJQoycemMkAJGysiDgSgJGLpWFV0alG/aNtX9MJ3TwZyr1GmFk287D3cU2LRaAAosUhIF5sBKHFRfAu7dmpOlQ0ZoERWKZSLWAGAkoilY1MRoISNFUqBAJQoycemMkAJGysiDgSgJGLpWFV0clG/+cBGWrN3tXGZa/PUVpQcV5qVFjoH4wYoyc3LpS2HNlOVpBQqW6qczvKxiB2ghIUNykE4OafKBAtQIqMSyigpAFCiJB+LygAlLGxQDgKgRFlCFg0AlLCwQSkIgBIl+dhU5raoZyOMZoE4DUp2HtlOAxf3pb3H9hhK3dzoDrql8Z2aqcYrXIASXn5EGg23ORWgJFInUU9aAYASaanYFgQoYWtNWIEBlIQlF9vCACVsrZEODKBEWirWBbkt6lmLxTg4p0HJC98/RYu2fhlQJDoqmt67ahZVSKjEWCXeoQGU8PZHNjpucypAiaxzKBexAgAlEUvHpiJACRsrlAIBKFGSj01lgBI2VkQcCEBJxNKxqshtUc9KHI2CcRqU3Df/Nvrz4O9BCj3ffiw1TWmukWq8QgUo4eVHpNFwm1MBSiJ1EvWkFQAokZaKbUGAErbWhBUYQElYcrEtDFDC1hrpwABKpKViXZDbop61WIyDcxqUfPDrFHp37ZsBRSomVqYpV06j+Jh4xirxDg2ghLc/stFxm1MBSmSdQ7mIFQAoiVg6NhUBSthYoRQIQImSfGwqA5SwsSLiQABKIpaOVUVui3pW4mgUjNOgJD37OH2+eRat27eGUpJT6cJaF1PDyk00UoxfqAAl/DyJJCJucypASSQuok5YCgCUhCUXy8IAJSxtCTsogJKwJWNZAaCEpS1hBQVQEpZcbAtzW9SzFYp5YE6DEuZyaBkeQImWtp0UNLc5FaDEG+OKdRYAJaztkQoOoERKJvaFAErYWyQVIECJlEysCwGUsLZHOjhui3rpwFEwSAGAkhNybEj7lX7Z9zPVKVeXzkltpdUoASjRyq5ig+U2pwKUeGNcsc4CoIS1PVLBAZRIycS+EEAJe4ukAgQokZKJdSGAEtb2SAfHbVEvHTgKApQUGgOfbppOE1aNCvy08xnX0n3N+9s2Uvan76NlO5dSYmwitalxISXGJSn1BVCiJB+bytzmVIASNkPDu4EAlOjvLUCJ/h6KDABKvOEjQIn+PgKU6O+hOafm5ObTsYwcbyTk0yywo4To7rk30o4j2wIjQLyy+NNuiygmOsbyUbH98Fbqt6AXHcs+arSdklyNXu34NiXFJUfcF0BJxNKxqghQ4rAdu9LSHe4R3RVWAKBE/zEBUKK/hwAl3vBQZAFQor+XACX6ewhQ4g0PjQf18gm093AG5eV5J6dwM3ESlLz7yyT6YN3koBAHtH6S2te+JNywA+UBSiKWjlVFgBKH7QAocVjwIroDKHHfA9UIAEpUFeRRHztKePigGgVAiaqC7tcHKHHfAysi4LaotyInP7YBUEI0ec0Emrb+vYD959W4gIa2fd6W4QBQYousnmiU25yKozeeGFa8kwAo4e2PTHQAJTIq8S8DUMLfI5kIAUpkVOJdBqCEtz+y0XFb1MvGjXLBCgCUEOXm5dL6tLW0Yf96qlXmFDo7pQXFx8TbMlQ27l9Pfb66K9B2fEwpeu+qWVQmvmzE/WFHScTSsarIbU4FKGE1PLwZDECJ/r4ClOjvocgAoMQbPgKU6O8jQIn+HppzKu4o0d9LgBLnPdx1dAet2vOjcZnr2SnnUKXEKkpBAJQoycemMkCJw1bg6I3DghfRHUCJ+x6oRgBQoqogj/oAJTx8UI0CoERVQffrA5S474EVEXBb1FuRkx/bACjR33WAEv095AifsaPEG+OKdRYAJaztkQoOoERKJvaFAErYWyQVIECJlEysCwGUsLZHOjiAEmmpWBcEKGFtj1RwACVSMrEvxG1OBShhP2T0DxCgRH8PAUr099Ak9dk5eXQ8M9cbCfk0C4AS/Y0HKNHfQ47ffnpDVeezAChxXnOrewQosVpRd9oDKHFYdxy9cVjwIroDKHHfA9UIAEpUFeRRHztKePigGgVAiaqC7tcHKHHfAysi4LaotyInP7YBUKK/6wAl+nvIET5jR4k3xhXrLABKWNsjFRxAiZRM7AsBlLC3SCpAgBIpmVgXAihhbY90cAAl0lKxLghQwtoeqeAASqRkYl+I25wKUMJ+yOgfIECJ/h4ClOjvoUnqcfRGfy8BSvT3EKBEfw85fvvpDVWdzwKgxHnNre4RoMRqRd1pD6DEYd1x9MZhwYvoDqDEfQ9UIwAoUVWQR33sKOHhg2oUACWqCrpfH6DEfQ+siIDbot6KnPzYBkCJ/q4DlOjvIUf4jB0l3hhXrLMAKGFtj1RwACVSMrEvBFDC3iKpAAFKpGRiXQighLU90sEBlMhJlZWbRVsP/UE1ytSipLhkuUoOlgIocVBsm7oCKLFJWIeb5TanApQ4PAD82B1Aif6uA5To76FJ6nH0Rn8vAUr09xCgRH8POX77yVHV1X+toOe+e4KOZB6i2OhY6tdqEF10SkdWoQKUsLIjomAASiKSjV0lgBKHLcHRG4cFL6I7gBL3PVCNAKBEVUEe9bGjhIcPqlEAlKgq6H59gBL3PbAiAm6LeitysrqNvgt60Ya0dYFmk+NK0/Rr5lvdjVJ7ACVK8rGoDFDCwgblILjNqdhRomwpGgilAEBJKIX4/x6ghL9HMhEClMioxL8MQAl/j0JFCFASSiE9fs9tUc9RtW4zO9KxrKNBob1/1WyqmFiZTbgAJWysiDgQgJKIpWNVkducClDCanh4MxiAEv19BSjR30ORAUCJN3wEKNHfR4AS/T0059Sc3Hw6lpHjjYRsyOLF75+mb7b+u4PkjIpn0phLJtnQU+RNApRErh2XmgAlXJxQiwOgRE2/sGvj6E3YklleAaDEckkdbxCgxHHJbekQoMQWWR1vFKDEcckt7xCgxHJJXWmQ26LeFRFCdLrv+N/05ZbPacO+X6lWuTrU8dROVKvsKaxCBShhZUdEwfgZlPx9bA99t2splStVntrUaEfxMfERacihErc5FTtKOIwKj8cAUKK/wQAl+nsoMgAo8YaPACX6+whQor+H5pyKHSX6ewlQor+HfgUlG9J+pQHfPEiZuRmGiWLH1oiLJmgLSwBKHP5bxI4ShwUvojuAEvc9UI0AoERVQR71AUp4+KAaBUCJqoLu1wcocd8DKyLgtqi3Iic/tgFQor/rfgUlY1a8SPM2zw4y8Pn2Y6lpSnMtTeU2p2JHiZbDSK+gAUr08quoaAFK9PcQO0q84aHIAqBEfy8BSvT30JxTsaNEfy8BSvT3EKDkXw8BSqwbzwAl1mmJlopRAKBE/6EBUKK/hwAl3vAQoMQbPgKUeMNHbt9+ekNV57MAKHFec6t79CsoWbH7exqy5OGAnOJtUpOu+JgSYhOsltiR9rjNqQAljtju704ASvT3H6BEfw8BSrzhIUCJN3wEKPGGj9wW9d5Q1fksAEqc19zqHv0KSoSOWw79QT//vdK4zLV5SisqW6qc1fI61h63ORWgxDHr/dsRQIn+3gOU6O8hQIk3PAQo8YaPACXe8JHbot4bqjqfBUCJ85pb3aOfQYnVWrrZHrc5FaDEzdHgk74BSvQ3GqBEfw8BSrzhIUCJN3wEKPGGj9wW9d5Q1fksAEqc19zqHgFKrFbUnfa4zakAJe6MA1/1ClCiv90AJfp7CFDiDQ8BSrzhI0CJ/j7m5efR19tn0/KdP1BKUk26pt71JO4HwEc/BQBK9POscMQAJfp7aK5TOV2QDVDijXHFOguAEtb2SAUHUCIlE/tCeD0we4ukAsRbb6RkYl0IoIS1PVLBvbP2TZq64S3KzyfKy8un2mXr0ITL3qXoqGip+ijERwGAEne82H54q3HpaJWkFOUAAEqUJWTRAHaUOGzDrrR0h3tEd4UVACjRf0wAlOjvoUnqs3Py6HhmrjcS8mkWACX6Gw9Qor+H982/jbYd2RwAJSKjKZ2mU2pyNf2T81kGACXOGp6efZwGLu5LG9LWGR23qdmOBrUeRjHRMREHYiUoOZZ9lMatfJl+3L2Mqial0u1N7qFW1dtEHBsqyisAUCKvlSUlAUoskVGpEYASJflYVAYoYWGDchDYUaIsIYsGAEpY2KAUBECJknwsKv93cX/6ae8PAVAiHvKmdZ1PibGJLOJDEPIKAJTIa2VFyVkbp9Jrq18Jamp4u5F0Tuq5ETdvJSiZuGo0zd40LRBLQmwivdt5JpWOLxNxfKgopwBAiZxOlpUCKLFMyogbAiiJWDo2FQFK2FihFAhAiZJ8bCoDlLCxIuJAAEoilo5NxRW7v6cXlg+h49npBiy5ou7V9MA5j0jFt3jbAnrvl0l0MPMAta99Cd119gNUKqaUVF0Usl4BgBLrNS2pxTErXqR5m2cHFel5Vm+6rkGPiAOxEpQ89vUDtHbv6qBYnm8/lpqmNI84PlSUUwCgRE4ny0oBlFgmZcQNAZRELB2bigAlbKxQCgSgREk+NpUBSthYEXEgACURS8eqYnJiFG3ct4nKx6dSclxpqdh2Hd1Jd829nvIFXfnn06vZQ9S13vVS9VHIegUASqzXtKQWf9i1jIYufTSoyKQrp1L10jUiDsRKUDJ+5cs05/cZgVjEvUMfXf05lYkvG3F8qCinAECJnE6WlQIosUzKiBsCKIlYOjYVAUrYWKEUCECJknxsKgOUsLEi4kAASiKWjlXFSBb1i7Z9RS9892RQHhfWupgGtnmaVW5+CgagxFm3BSSc/+ccWr3nR0qMS6QW1VpT25rtlYKwEpTsObabJqwaSev2raEqiSnU8bROdHW965TiQ2U5BSKZU+VajqwU3noTmW6oFYYCACVhiMW0KEAJU2PCDAugJEzBmBYHKGFqTBhhAZSEIRbjopEs6nce2U53zb0hKKs7m95P3c68iXGm3g4NoER/f60EJfqroW8GkcypdmYLUGKnumjbUACgRP+BAFCiv4ciA4ASb/gIUKK/jwAl+ntozqk5ufl0LCMnrIQ++vVtWrjlC+OOkrNTWhh3m5QrVT6sNlDYOgUASqzT0q2WAEqcV14cI1y+61uqnFiFWte4kGKjY5WDAChRljC8BnD0Jjy97CgNUGKHqs62CVDirN529QZQYpeyzrYLUOKs3nb0BlBih6rOt8ltUe+8At7oUUdQIh5SxetrKyZUsuwhVWc3AUqcde+nv1bSkCUPU05ettFx06rN6Zl2o5Ve8awCn+3KHjtK7FIW7QYUACjRfzAAlOjvofkPUHZOHh3PzPVGQj7NAqBEf+MBSvT3MJxF/fbDWykhNoGqJKV4I3GPZaEbKFm392d6fFGfwENqvUoNaeRFE5UfUnW2FaDEWfeeW/YELdm+MKjTcZdOoboV6ikFwg0+A5Qo2YnKMgoAlMioxLsMQAlvf2Sjw44SWaV4lwMo4e2PTHQAJTIq8S8TalGfnn2cBi7uSxvS1hnJtKnZjga1HubrB1qOruoGSl7+4Rla8OfcIClHdniNGlRqzFFeR2ICKHFE5kAnACWR6R2VX/B9Z5G1YWktHL2xVM6IGgMoiUg2VpUASljZEXEwACURS8eqIkAJKzsiCkYnULI+7Reau3k2ZeVkUsfTOlPz1JYR5ezFSqFAybTf3qfJP78alPrwdiPpnNRzvSiHtjkBlGhrXSBwgBJnPSz89q4aZWrRxMveU76nJNSc6myWRNhR4rTiPuwPoER/0wFK9PdQZABQ4g0fAUr091EXUCKOjNw3/7bAFn+h/KgOr9OZlRrpb4IFGYRa1Bf1zX/Ps3rTdQ16WNA7mrBKAd1AybKdS2jYtwMD6VdMrExvd/pE+SHVKj3daAegxHnVNx/YSGv2rjYuc22e2oqS40orBxFqTlXuIMwGAErCFAzFw1cAoCR8zbjVACjh5khk8QCURKYbt1oAJdwcCT8eXUDJnN9n0viVI4ISvKnRHdSj8Z3hJ+3BGqEW9T/sWkZDlz4alPmkK6dS9dI1PKiGvinpBkqE0uIh9Zd9PxuXuTateg6VLVVOXwMUIt9zbDdl52ZR3YqnUpmkWEo7nKXQGqq6rUCoOdXp+ABKnFbch/0BlOhvOkCJ/h6KDABKvOEjQIn+PuoCShZvW0DPfzc0SPAHznmUrjz9av1NsCCDUIt6cRp9/p9zaPWeHykxLpFaVGtNbWu2t6BnNGGlAjqCEivz17Gt3LxcGrZsEC3f+a0RfuOqZ9HYy8dQRkacjukg5n8UCDWnOi0UQInTivuwP4AS/U0HKNHfQ4ASb3gosgAo0d9LXUBJRk4G9VvYi7Yc3GyIXiUplcZ3nEJl4svqb4IFGXBb1FuQki+bACjRz/ZlO5bQsP/9e/woKiqKHm/7OF1YvZN+ySDigALc5lSAEgxO2xUAKLFdYts7ACixXWJHOsCOEkdktr0TgBLbJba9A11AiSmEub29VtlTbNdGpw64Lep10o5TrAAlnNyQi2Xq+ndpypqJgcIClFzToCvd1eRhuQZQiqUC3OZUgBKWw8RbQQGU6O8nQIn+HooMAEq84SNAif4+6gZK9Ffcngy4LertydL7rQKU6OfxHwd/p/vn3xYESsZdMY5OK302y2SOZx+jnUe20ynlTqP4mHiWMXIIitucClDCYVR4PAaAEv0NBijR30OAEm94KLIAKNHfS4AS/T0059Sc3Hw6lpHjjYR8moVToGTX0R2GwtVL1/Sp0tamvXT71/TD7u+MV5efW+M86ta4C+0/km1tJxa0Ji7Ffm31aMrJy6Ey/3/p7pNtX6CGlZtY0LL3mgAocdjTXWnpDveI7gorAFCi/5gAKNHfQ4ASb3gIUOINHwFKvOEjt0W9N1R1PouUCgm092AG5eXb03dWbhY99e0AWrXnB6ODplWb09MXvoydBRbKzfX1wOLS2WtnXEqZuRmBbBtUbkIjL/732JCFMmjfFLc5FTtKtB9S/BMAKOHvUagIAUpCKaTH73H0Rg+fQkWJHSWhFOL/e4AS/h7JRMhtUS8TM8qcrIDdoKSot0c91GIAXV73KthhkQJcQcn2w1up17ybgrJMji9N07vOtyhzbzXDbU4FKPHW+GKZDUAJS1vCCgqgJCy52BYGKGFrTViBAZSEJRfLwgAlLG0JOyhui/qwE0AFQwG7Qcm7v0yiD9ZNDlK7yxndqXfzvnDAIgW4ghKRXu8vetDWQ38EMr3stM7Up+XjFmXurWa4zakAJd4aXyyzAShhaUtYQQGUhCUX28IAJWytCSswgJKw5GJZGKCEpS1hB8VtUR92AqjgCCjZfGAjPfBlzyC1X7poPDWuwvPiUR2HBWdQIi6e/XrrfNp+aAvVr9yQLj+tC1VIqKijzLbHzG1OBSix3XJ0AFCi/xgAKNHfQ5EBQIk3fAQo0d9HgBL9PTTnVFzmqr+Xdu8oEQot2vYVLd+1zBCrReq5dHGdy/QXjlEGnEEJI5nYhwJQ4rBFuMzVYcGL6A6gxH0PVCMAKFFVkEd9gBIePqhGAVCiqqD79QFK3PfAigi4LeqtyMmPbTgBSvyoq5M5A5Q4qbZ9fXGbU7GjxD6v0fI/CgCU6D8UAEr091BkAFDiDR8BSvT3EaBEfw/NORU7SvT3EqDEeg+/3/ktTVk7kdLS99L5NdrRPc36UFJcsvUd/dMiQMkJITJzM+nNn8YZO5jKl6pAtzS+k9rV7mCb7lY3DFBitaIh2sOOEocFL6I7gBL3PVCNAKBEVUEe9QFKePigGgVAiaqC7tcHKHHfAysi4LaotyInP7YBUGKt6wcy0ujWz66hnLycQMM3NbqDejS+09qOCrQGUHJCjJkbP6bXV48JKBMVFUVvXvExVS9dwzbtrWyY25yKHSVWuou2ilQAoET/gQFQor+HIgOAEm/4CFCiv48AJfp7aM6poXaUHMs+SruP7qQ65epSbHSsNxL3WBYAJdYaumL39zRkycNBjTZPbUXPtBtlbUcAJSfp+dyyJ2jJ9oVBPx/Q+klqX/sS27S3smGAEivVlGgLO0okRLK5CECJzQI70DxAiQMiO9AFQIkDIjvQBUCJAyLb3AVAic0CO9R8qEX9tN/ep7fXvka5eblUIaESDW83kk4rf7pD0aEbWQUASmSVkiu3P30f9fisK+Xl5wUq3NDwNrqtSS+5BiIohR0lJ0Sb/tsHNOnn8UEKvnnFR1SjTK0IVHW+Sqg51emIsKPEacV92B9Aif6mA5To76HIAKDEGz4ClOjvI0CJ/h6ac2pxO0rSc9Kp+8yOBiQxPy2rtaanLxzhjeQ9lAVAifVmzto4leZtnk1pGfuoSZVmdF/zflQlKcX6jv5pEaDkhBCHMg/SuJUj6Ke/Vhh3lIi3KwlIpcsHoMRhp7CjxGHBi+gOoMR9D1QjAChRVZBHfYASHj6oRgFQoqqg+/UBStz3wIoISlrUr0/7hfovuCeomypJqfRO50+s6BptWKgAQImFYrrUFECJS8Jb3C1AicWChmoOoCSUQvb/HqDEfo3t7gGgxG6FnWkfoMQZne3uBaDEboXtbx+gxH6NneihpEW9OHZw++fdae+xPYFQrql/I9199gNOhIY+wlAAoCQMsZgWBShhakyYYQGUhCmYanGAElUF1esDlKhr6HYLACVuO2BN/wAl1ujodisAJW47oN4/QIm6hhxaCLWo37h/PS3atoB2Hd1BDSo1oivqXk1l4styCB0xFFAAoET/4QBQor+HIoNQc6rTWeKOEqcV92F/ACX6mw5Qor+H5j9A2Tl5dDzz3zPz3sjMX1kAlOjvN0CJ/h5yXNR7Q1XnswAocV5zq3sEKLFaUXfaAyhxWHfsKHFY8CK6Ayhx3wPVCABKVBXkUR87Snj4oBoFQImqgu7XByhx3wMrIuC2qLciJz+2AVCiv+vhgJLth7fSj7u/o9TS1em86m0pOipafwE8kgG3ORU7SjwysDinAVDC2R252ABK5HTiXgqghLtDcvEBlMjpxLkUQAlnd+Rj47aol48cJQsqAFCi/3iQBSXLdiyh574bQjl5OUbS59W4gIa2fV5/ATySAbc5FaDEIwOLcxoAJZzdkYsNoEROJ+6lAEq4OyQXH0CJnE6cSwGUcHZHPjZui3r5yFESoMRbY0AWlAxe3I9W7fkhKPkpnaZTanI1bwmiaTbc5lSAEk0Hkk5hA5To5FbRsQKU6O+hyACgxBs+ApTo7yNAif4emnNqTm4+Hcs48e00PnoqgB0levpWMGqAEv095DinApR4Y1yxzgKghLU9UsEBlEjJxL4QQAl7i6QCBCiRkol1IYAS1vZIB8ft20/pwFEwSAGAEv0HhCwomfP7TBq/ckQg4TMqnkmvdHiToqKi9BfBAxlwm1MBSjwwqMQ719MAACAASURBVLinAFDC3aHQ8QGUhNZIhxIAJTq4FDpGgJLQGnEvAVDC3SG5+Lgt6uWiRqnCCgCU6D8mZEFJfn4+bTrwG/2y92dKSa5GzVNaUmJckv4CeCQDbnMqQIlHBhbnNABKOLsjFxtAiZxO3EsBlHB3SC4+gBI5nTiXAijh7I58bNwW9fKRo2RBBQBK9B8PsqBE/0y9nQG3ORWgxNvjjUV2ACUsbFAKAqBEST42lQFK2FihFAhAiZJ8LCoDlLCwQTkIbot65YR82gBAif7GA5To76HIgNucqhUoycnNNd51HR198jmyI0ePk/h9hXJlgkbKrrR0b4wcjbMAKNHYvH9CByjR30PzH6DsnDw6npnrjYR8mgVAif7GA5To7yHHRb03VHU+C51AydtrX6cv/viM4qLjqWv966hrveudF4xhjwAlDE2JICSAkghEE1XSM7Lo+nuepF63dKZOl7QOtHI8PYMGDH+Nvv7fauNnZzWsS2OHP0SVK5Yz/hugJELBLawGUGKhmC41BVDikvAWd4sdJRYL6lJzACUuCW9htwAlForpYlPcFvUuSqF117qAkqXbv6Znlw0J0vrliydSw8pNtNbfiuABSqxQ0f02uM2pWuwoGTHxY5ry0TzDvRcG3xMESt784HOa9tkienfsYEpMiKd7Hx9Fp9auRsMeuwOgxP3xbkQAUMLECIUwAEoUxGNUFaCEkRkKoQCUKIjHpCpACRMjFMPgtqhXTMe31XUBJRNXjabZm6YF+dSr2UPYVUJEACXe+PPlNqdqAUoOHjpKGVlZdNN9w6h/r+uCQEm3u4dSx/Yt6e6bOxkjZP6iH6j/k6/SL99MMV71hB0l7v/hAJS474FqBAAlqgryqA9QwsMH1SgASlQVdL8+QIn7HlgRAbdFvRU5+bENXUDJwi1f0Ijlw4IseqbdaGqe2tKPtgXlDFDijSHAbU7VApSY1ne88VF68I5rgkBJy8t70/ABdxqwRHx+3biFuvd6kpZ9Np7KlUmm3ftxR4nbfzop5RPo70MZlJ/vdiToP1IF4mOiqUxyHKUdzoy0CRb1xBiMOvmKIxaxORFE2aQ4EneUpGfhjhIn9Larj5QKibT3YDrlYU61S2Lb261YphSVioum/UcyKTM7z/b+0IG1ChzKPEjT1r9Pe45voxbVzqMOp3Sm2OhYaztBa44pULV8Au07lEG5ebzXCBk5GTRu5QhasXs5xcfE07nVz6f7mvczvhj2+0esU0snxdL+I1l+l0Lr/MU6NSc3n45n5rDIo1rFREvjiMoXL6i26VMYlIiuGv+nJ736XD9q17qp0evmLTvpqtsH04KPX6ZqKZXwcG6TF+E0K+Zv+0ZFOJGgbMQKRBGJf4Z19zE7N4/iYqIjlkH3iuZaSncfdfdBNX7MqaoKul8ff4vuexBpBHn5edRj5i20MW1joInbzr6dHmj5QKRNop7LCphzqt/XCC7boNa9R9apaiLoX5vbv41WM0hHQYkYDmJHyTOP30WXtmthjI7CO0pw9Mb9PxocvXHfA9UIcPRGVUEe9XH0hocPqlHg6I2qgu7Xx9Eb9z2INII9x3ZTzzndjOoxMVHGFwinlK1Lr3Z8O9ImUc9lBXQ5euOyTKy7x9Eb1vZIB4ejN9JSnVywqKM34o6Sy/7Tiu666UqjAu4oURDYpqoAJTYJ62CzACUOim1jVwAlNorrYNMAJQ6KbVNXACU2CetAs+k56dR9ZkfKzcsNgJJmVVvR8HYjHegdXdihAECJHao62yZAibN629UbQEkEyubk5lJ+Xj51unUg9b71KurUoTXFxZ04C/rG+3No+pzFxltvkhJLUe8BI/HWmwg0trMKQImd6jrTNkCJMzrb3QtAid0KO9M+QIkzOtvZC0CJnera3/brP42lWRs/puhoooSYROrfcgi1qXmh/R2jB1sUACixRVZHGwUocVRu2zoDKIlAWvEWG7FTpOBnzjvPGUDk2PEMeuTpCbTk+5+NXzeufyqNfaYPVa1c3vhvHL2JQHCLqwCUWCyoC80BlLggug1dApTYIKoLTQKUuCC6xV0WBiU5eTn03c4ltC99L51bvS1VL13D4h7RnNUKHMs+Sodz91CdsqdTJu6PtFpeR9sDKHFUbls6AyixRVbHGwUosUnyQ0eOUXZ2DlWuWC6oB4ASmwQPo1mAkjDEYloUoISpMWGGBVASpmBMiwOUMDUmjLAKgpLjmdk0aHEfWvP3aqOF2Og4Gnbhy3R2yjlBLaZnH6dlO5fQ8exjxu6FSolVwugRRe1QgNui3o4c/dAmQIn+LusESjbt/43W7F1NdcrVpXNSW+kvvoUZcJtTtXo9cCQ+AJREopq1dQBKrNXTjdYAStxQ3fo+AUqs19SNFgFK3FDd2j4LgpJf//6NHviyZ1AHF9a6mAa2eTrwMwFJ+iy4i7Yf3mr8LCE2kV655E2qXbaOtYGhtbAU4LaoDyt4hwrvOrrD6Kl66ZoO9Rh+NwAl4WvGrYYuoOTTTdNpwqpRAfk6n3Et3de8Pzc5XYuH25wKUOLaUPBPxwAl+nsNUKK/hyIDgBJv+AhQor+P4YISsZNk2LcDgxLv3uAWuuOse/UXQ+MMuC3qOUmZlZtFTyx5mH7+e5URVvPUVjS07QsUHxPPKUwjFoASdpaEHZAuoOTuuTfSjiPbAvlFR0XTp90WUUx0TNg5e7ECtzkVoMSLo4xZTgAlzAyJIByAkghEY1gFoIShKRGEBFASgWjMqhQEJccys6j3F7fQziPbA1EOaP0kta99SeC/AUqYGfhPONwW9ZxUmrf5Uxqz4oWgkB5v/RS1q92BU5gAJezciCwggJLIdONWi9ucClDCbYR4MB6AEv1NBSjR30ORAUCJN3wEKNHfx8KXuYqLQVft+cG4zPWsKs2oboV6QUkeyTpMd3x+HR3NOhL4+cgOr1GDSo31F0PjDLgt6jlJOXHVaJq9aVpQSFx3QWFHCaeRE1ksuoCSyWsm0LT17wWSPK/GBTS07fORJe3BWtzmVIASDw4ybikBlHBzJPx4AErC14xjDYASjq6EHxNASfiacasRyeuB96fvo9V/rTAuc22W0pJqlq3NLS3fxcNtUc/JgHV7f6ZHvr4vKKQxl0yiMyqeySlMIxaAEnaWhB2QLqAkNy+X1qetpQ3711OtMqfQ2SktWB5HC9sAiypwm1MBSiwyFs0UrwBAif6jA6BEfw9FBgAl3vARoER/HyMBJfpn7b0MuC3quSm8cMsXtGLPciOsVtVa039OuZRbiAAlLB0JPyhdQEn4mfmrBrc5FaDEX+PPlWwBSlyR3dJOAUosldO1xgBKXJPe0o4BSiyV05XGAEpckd3yTrkt6i1P0CcNYkeJ/kYDlOjvofmFXk5uPh3LyGGREEAJCxu8HQRAif7+ApTo76H5D1B2Th4dz8z1RkI+zQKgRH/jAUr095Djot4bqjqfBUCJ85pb3SNAidWKutMeN/gMUOLOOPBVrwAl+tsNUKK/hwAl3vBQZAFQor+XACX6ewhQ4g0PRRYAJfp7CVCiv4cc51SAEm+MK9ZZAJSwtkcqOIASKZnYF8LRG/YWSQUIUCIlE+tCACWs7ZEOjtu3n9KBo2CQAgAl+g8IgBL9PQQoccHDXWnpLvSKLgsqAFCi/3gAKNHfQ/MfIBy90d9LgBL9PXQalGw/vJXiYuIpNbma/uIxygCghJEZCqEAlCiIx6QqQAkTIxTD4DanYkeJoqGoHloBgJLQGnEvAVDC3SG5+LCjRE4n7qUASrg7FDo+p0BJevZx+u+Sh+nXfWuMoM6t0ZaGtHmWYqJjQgeJEiEV4LaoDxkwChSpAECJ/gMDoER/D80v9HCZq4NeYkeJg2IX0xVAifseqEYAUKKqII/6ACU8fFCNAqBEVUH36zsFSj7/fRaNW/lSUMKD2gyjC2pd5L4IHogAoMQDJuKOEk+YCFDiCRuJ25yKHSXeGFesswAoYW2PVHAAJVIysS8EUMLeIqkAAUqkZGJdyClQMmbFizRv8+wgLW5qdAf1aHwna310CY7bol4X3bjFiR0l3BwJPx6AkvA141iD25wKUMJxlHgsJoAS/Q0FKNHfQ5EBQIk3fAQo0d9Hp0DJ6r9W0KBFfYIEG9/xbTqt/On6i8ggA26LegaSaBkCQImWtgUFDVCiv4fmOhVHbxz0EkdvHBS7mK4AStz3QDUCgBJVBXnUByjh4YNqFAAlqgq6X98pUJKfn09fbZlLK3cvp/jYUtSqWmscu7HQfoASC8V0sSmAEhfFt6hrgBKLhHS5GW5zKnaUuDwg/NA9QIn+LgOU6O+hSerx1hv9vQQo0d9Dp0CJ/krxzoDbop63WnyjAyjh641sZAAlskrxLsdtTgUo4T1ePBEdQIn+NgKU6O8hQIk3PBRZAJTo7yVAif4emnMqp23i3lDV+SwASpzX3OoeAUqsVtSd9gBKHNYdR28cFryI7gBK3PdANQKAElUFedTH0RsePqhGAVCiqqD79QFK3PfAigi4LeqtyMmPbQCU6O86QIn+HnKEz9hR4o1xxToLgBLW9kgFB1AiJRP7QgAl7C2SChCgREom1oUASljbIx0cQIm0VKwLApSwtkcqOIASKZnYF+I2pwKUsB8y+gcIUKK/hwAl+ntoknrcUaK/lwAl+nsIUKK/hxy//fSGqs5nAVDivOZW9whQYrWi7rQHUOKw7jh647DgRXQHUOK+B6oRAJSoKsijPnaU8PBBNQqAElUF3a8PUOK+B1ZEwG1Rb0VOfmxDJ1Ai3mT14+7vaPuRrdQ8tRWdWq6uHy07KWeAEm8MA25zKnaUeGNcsc4CoIS1PVLBAZRIycS+EEAJe4ukAgQokZKJdSGAEtb2SAfHbVEvHTgKBimgEyh58fun6Zut8434o6KiqH/LQdTh1Ct87yhAiTeGALc5FaDEG+OKdRYAJaztkQoOoERKJvaFAErYWyQVIECJlEysCwGUsLZHOjhui3rpwFFQS1ByNOsIdZ95WVDs9Ss1otEdXve9owAl3hgC3OZUgBJvjCvWWQCUsLZHKjiAEimZ2BcCKGFvkVSAACVSMrEuBFDC2h7p4Lgt6qUDR0GAEo+NAYASbxjKbU4FKPHGuGKdBUAJa3ukggMokZKJfSGAEvYWSQUIUCIlE+tCACWs7ZEOjtuiXjpwFNQSlIigH/v6AVq7d3Ug/p5n9abrGvTwvaMAJd4YAtzmVIASb4wr1lkAlLC2Ryo4gBIpmdgXAihhb5FUgAAlUjKxLgRQwtoe6eC4LeqlA0dBbUFJRm4G/bRnBe08up0aVGpMZ1ZqRNFR0b53FKDEG0OA25wKUOKNccU6C4AS1vZIBQdQIiUT+0IAJewtkgoQoERKJtaFAEpY2yMdHLdFvXTgKKgtKIF1RSsAUOKNkcFtTgUo8ca4Yp0FQAlre6SCAyiRkol9IYAS9hZJBQhQIiUT60IAJaztkQ6O26JeOnAUBCjx2BgAKPGGodzmVIASb4wr1lkAlLC2Ryo4gBIpmdgXAihhb5FUgAAlUjKxLgRQwtoe6eC4LeqlA0dBgBKPjQGAEm8Yym1OBSjxxrhinQVACWt7pIIDKJGSiX0hgBL2FkkFCFAiJRPrQgAlrO2RDo7bol46cBQEKPHYGAAo8Yah3OZUgBJvjCvWWQCUsLZHKjiAEimZ2BcCKGFvkVSAACVSMrEuBFDC2h7p4Lgt6qUDR0GAEo+NAYASbxjKbU4FKPHGuGKdBUAJa3ukggMokZKJfSGAEvYWSQUIUCIlE+tCACWs7ZEOjtuiXjpwFAQo8dgYACjxhqHc5lSAEm+MK9ZZAJSwtkcqOIASKZnYFwIoYW+RVIAAJVIysS4EUMLaHunguC3qpQNHQYASj40BgBJvGMptTgUo8ca4Yp0FQAlre6SCAyiRkol9IYAS9hZJBQhQIiUT60IAJaztkQ6O26JeOnAUBCjx2BgAKPGGodzmVIASb4wr1lkAlLC2Ryo4gBIpmdgXAihhb5FUgAAlUjKxLgRQwtoe6eC4LeqlA0dBgBKPjQE3QElefh79efB3qpRUhcqXquAxRd1Jh9ucClDizjjwVa8AJfrbDVCiv4ciA4ASb/gIUKK/jwAl+ntozqk5ufl0LCPHGwn5NIuUCgm092AG5eX7VAAPpO00KNl5ZDsNWfIw7T6601Dvxoa3061N7vaAku6mAFDisP670tId7hHdFVYAoET/MQFQor+HACXe8FBkAVCiv5cAJfp76DYo2Z++j2Zs/Jh2HNlGzVNaUqfTr6HoqGhvCOtwFgAlDgtuQ3dOg5KxK1+iub/PCsrkjcs/pJpla9uQnX+aBChx2GuAEocFL6I7gBL3PVCNAKBEVUEe9bGjhIcPqlEAlKgq6H59gBL3PbAiArcW9WLL/71f9KBth7cE0ri50R10S+M7rUjLd20AlOhvudOgpO+CXrQhbV2QcEPaPkdtalyov5guZuDWnFpcyjh64+Jg8EvXACX6Ow1Qor+HIgOAEm/4CFCiv48AJfp7aM6pbhy92XNsN/Wc0y1IxPqVGtHoDq97Q1iHswAocVhwG7pzGpR8suFDevOncYFMSseXoXc6zaDEuCQbsvNPkwAlDnuNHSUOC15EdwAl7nugGgFAiaqCPOoDlPDwQTUKgBJVBd2vD1DivgdWRODWoj49J526z+xIuXm5gTTOST2XhrcbaUVavmsDoER/y50GJenZx+mLPz+jNX+vpkqJlek/tS+hRlWa6i+kyxm4NacWlzZ2lLg8IPzQPUCJ/i4DlOjvocgAoMQbPgKU6O8jQIn+Hppzqhs7SkTf41aOoLmbZ1F+fj4lxCbS4DbDqUW187whrMNZ+B2UbD+8lRJiE6hKUorDylvXndOgxLrI0VJBBQBKHB4P2FHisOBFdAdQ4r4HqhEAlKgqyKM+QAkPH1SjAChRVdD9+gAl7ntgRQRuL+qPZR813rpRp1xdio2OtSIlX7bhV1AidkUMXNw3cNdGm5rtaFDrYRQTHaPdOAAo0c6yIgN2e04tHBR2lHhjXLHOAqCEtT1SwQGUSMnEvhBACXuLpAIEKJGSiXUhgBLW9kgHx21RLx04CgYp4FdQMmvjVHpt9StBWojjW+IYl24fHUDJ4cxDNGH1aPph1/8oJbka3dOsDzWt2lw3qW2Nl9ucClBiq91oXCgAUKL/OAAo0d9DkQFAiTd8BCjR30eAEv09NOdUt47ecFZw3b419PrqMcZbecRD933N+1HFxMqsQhb3vHy6aRqt3/cLNa/ZmDrW7k6lYhJZxWh3MGNWvEjzNs8O6qbnWb3pugY97O7a8vZ1ACXjV75Mc36fEci9TKly9PaV03EBbIHRAFBi+Z9GyQ3i6I3DghfRHUCJ+x6oRgBQoqogj/oAJTx8UI0CoERVQffrlwRKDmYeoLTje+nU8qdTdFS0+8EigmIVcGNRL+DDit3fU2rp6nRe9bbsxkhOXg7d9OlVdCTzUEC3DqdeQQ+3GsxqJD3/3VBavG2BEVNcbDS1rtaeBrYZxipGu4P5YdcyGrr00aBuJl05laqXrmF315a3rwMouW/+bfTnwd+Dch936RSqW6Ge5Xro2qAbc2pJWmFHia4jSaO4AUo0MquYUAFK9PdQZABQ4g0fAUr097E4UPLO2jfow1/fMhKsVroGPdNuNFUrXV3/hD2agdOL+mU7ltDwZYOMC1zF57waF9DQts+zUldcDNpr3k1BMdUsU5veuOJDVnF2m9mRjmUdDYCS+Ogkmt51PqsY7Q5GjKP5f86h1Xt+pMS4RGpRrTW1rdne7m5taV8HUDL6x+do/h9zAvnHxcTTR13mUFJcsi2a6Nio03NqKI0ASkIphN8rKwBQoiyh6w0AlLhugSUBAJRYIqPrjQCUuG6BcgBFgZIdh7fR3fNuDGr7ytO70gPnPKLcHxqwRwGnF/WDF/ejVXt+CEpmSqfplJpczZ4EI2hV7Ci5YfaVAQghmmh/yqU04LyhEbRmX5W75t5AO49sD4CSCqWq0tudPrGvQ7RsqwI6gBKxG2zSz+Ppl70/U9WkVOpSrztddlpnW3XRrXGn59RQ+gCUhFIIv1dWAKBEWULXGwAocd0CSwIAKLFERtcbAShx3QLlAIoCJct2LqFh3w4MartJlWb04kXjlPtDA/Yo4PSiXgdQIpT+ZuuXNGPDR7TjyDZqWLkJ3dn0fjqt/On2mBBhqzM3fkyTf55AOXnZlBgfT7c26k1X17s+wtZQzW0FCoISAetmb5pGa/5aRXXK16Vr6t9A5UqVdztE9C+hgNNzaqiQAEpCKYTfKysAUKIsoesNAJS4boElAQCUWCKj640AlLhugXIARYEScQzg9s+70dGsI4H2ezfra3zriA9PBZxe1M/5fSaNXzkiIMYZFc+kVzq8SVFRUTwFYh5VZm4mbRcXztauT0eOEuWdONGEj4YKFAQlE1ePptkbpwWyqF+pEY3u8LqGWdkX8vHsY8Ybj/63czFVSqxCPZv0pvNqtLWvQ8mWnZ5TQ4UFUBJKIfxeWQGAEmUJXW8AoMR1CywJAKDEEhldbwSgxHULlAMoCEqOZWbRlkObjTtJthzcTN9s+4rS0vfRWVWb0eV1u1BCTIJyf2jAHgWcXtSLOyU2HfjN2LovXi/aPKUl3phhgbV+fT2wBdKxaaIgKLn1s2tp7/E9QbFN6/oFlY4vwyZetwN5e+3r9NGvbwfCiI2OpXc6z6AKCZVcDc3pOTVUsgAloRTC75UVAChRltD1BgBKXLfAkgAASiyR0fVGAEpct0A5ABOU/LB1HT22sC8dyEijmOgYuq3JPdT9zJuV20cDzijAbVHvTNbe6wWgRH9PC4KSvgt60Ya0dYGkSsUk0CfXfGnMsficUOCxrx+gtXtXB8nxfPux1DSluasScZtTAUpcHQ7+6BygRH+fAUr091BkAFDiDR8BSvT30QQl98/pR99uWxxISCzkp3WdT4mxifon6YMMuC3qfSC5LSkClNgiq6ONFgQlS7d/TS//8Axl5mQYr8/udubN1POs3o7Gw72zN34aRzM2/PsmKqHTu51nUsXEyq6Gzm1OBShxdTj4o3OAEv19BijR30OAEm94KLIAKNHfSxOUdH6/K207tDUooZEdXqMGlRrrn6QPMuC2qPeB5LakCFBii6yONlr4rTdZuVm09dAfVKNMLbx+twgn9hzbbdxRInaVVEqobBzzvLredY56VlRn3OZUgBLXh4T3AwAo0d9jgBL9PQQo8YaHACXe8NEEJc8sGkFTf/0gkFSV5FR668ppxreg+PBXgNuinr9iPCMEKOHpSzhR6fB64HDy8WtZbnMqQIlfR6KDeQOUOCi2TV0BlNgkrMPN4uiNw4Lb1B12lNgkrIPNmqBky969NHPDDFqfto6ql65J7Wt3oHoVGzgYCbpSUYDbol4lFz/XBSjR332AEv09NL/Qy8nNp2MZOSwSAihhYYO3gwAo0d9fgBL9PTT/AcrOyaPjmbneSMinWQCU6G98Ua8H1j8r/2UAUOINzwFK9PcRoER/DwFKXPBwV1q6C72iy4IKAJToPx4ASvT3EKDEGx6KLABK9PcSoER/Dzku6r2hqvNZAJQ4r7nVPQKUWK2oO+1xg8/YUeLOOPBVrwAl+tsNUKK/hwAl3vAQoMQbPgKUeMNHbot6b6jqfBYAJc5rbnWPACVWK+pOe9zmVIASd8aBr3oFKNHfboAS/T0EKPGGhwAl3vARoMQbPnJb1HtDVeez8CIoWfP3Ktp0YAM1rNzEF2/RAihx/u/Gjh65zakAJXa4jDaDFAAo0X9AAJTo7yFAiTc8BCjxho8AJd7wkdui3huqOp+F10DJ6z+NpZkbPgoIeW/zfnTVGd2cF9bBHgFKHBTbxq64zakAJTaajaZPKABQov9IACjR30OAEm94CFDiDR8BSrzhI7dFvTdUdT4LL4GS3Lxc6jazI2Xk/HtHY5WkVHqn8yfOC+tgjwAlDoptY1fc5lSAEhvNRtMAJV4ZAwAl3nASrwf2ho+4zFV/HwFK9PfQhM+cXmXpDVWdzwKgxHnNre4RoMRqRd1pD6DEYd3x1huHBS+iO+wocd8D1QgASlQV5FEfoISHD6pRAJSoKuh+fYAS9z2wIgJui3orcvJjG14CJcK/55Y9QUu2LwxY2eWM7tS7eV9PWwtQ4g17uc2p2FHijXHFOguAEtb2SAUHUCIlE/tCACXsLZIKEKBESibWhQBKWNsjHRy3Rb104CgYpIDXQElWbhat3fsTbTm0mU6vUJ8aV25KMdExnnYdoMQb9nKbUwFKvDGuWGcBUMLaHqngAEqkZGJfCKCEvUVSAQKUSMnEuhBACWt7pIPjtqiXDhwFtQUlx7KP0riVL9OPu5dR1aRUur3JPdSqehvfOwpQ4o0hwG1OBSjxxrhinQVACWt7pIIDKJGSiX0hgBL2FkkFCFAiJRPrQgAlrO2RDo7bol46cBTUFpRMXDWaZm+aFog/ITaRPrjqU0qMS/K1qwAl3rCf25wKUOKNccU6C4AS1vZIBQdQIiUT+0IAJewtkgoQoERKJtaFAEpY2yMdHLdFvXTgKKgtKOm7oBdtSFsXFP/IDq9Rg0qNfe0qQIk37Oc2pwKUeGNcsc4CoIS1PVLBAZRIycS+EEAJe4ukAgQokZKJdSGAEtb2SAfHbVEvHTgKagtKxq98meb8PiMQf1xMPH3UZQ4lxSX72lWAEm/Yz21OBSjxxrhinQVACWt7pIIDKJGSiX0hgBL2FkkFCFAiJRPrQgAlrO2RDo7bol46cBTUFpTsObabJqwaSev2raEqiSl0Rd0u1PmMa33vKECJN4YAtzkVoMQb44p1FgAlrO2RCg6gREom9oUASthbJBUgQImUTKwLAZSwtkc6OG6LeunAUVBbUALrilYAoMQbI4PbnApQ4o1xxToLgBLW9kgFB1AiJRP7QgAl7C2SChCgREom1oUASljbIx0cSWzP0AAAIABJREFUt0W9dOAoCFDisTEAUOINQ7nNqQAl3hhXrLMAKGFtj1RwACVSMrEvBFDC3iKpAAFKpGRiXQighLU90sFxW9RLB46CACUeGwMAJd4wlNucClDijXHFOguAEtb2SAUHUCIlE/tCACXsLZIKEKBESibWhQBKWNsjHRy3Rb104CgIUOKxMQBQ4g1Duc2pACXeGFesswAoYW2PVHAAJVIysS8EUMLeIqkAAUqkZGJdCKCEtT3SwXFb1EsHjoIAJRaPgTV/r6JNBzZQw8pNXHlVMUCJxYa61By3ORWgxKWB4KduAUr0dxugRH8PRQYAJd7wEaBEfx8BSvT30JxTc3Lz6VhGjjcS8mkWKRUSaO/BDMrL96kAimm//tNYmrnho0Ard539AF1b/0bFVsOrDlASnl5cSwOUOOzMrrR0h3tEd4UVACjRf0wAlOjvIUCJNzwUWQCU6O8lQIn+HgKUeMNDkQVASeRe5ublUreZHSkj59/nrSpJqfRO508ibzSCmgAlEYjGsApAicOmAJQ4LHgR3QGUuO+BagQAJaoK8qiPHSU8fFCNAqBEVUH36wOUuO+BFRFwW9RbkZMf2wAoidx1gJLItUPNkxXgNqfi6A1Gqe0KAJTYLrHtHQCU2C6xIx0AlDgis+2dAJTYLrHtHQCU2C6xIx1wW9Q7krQHOwEoUTP1uWVP0JLtCwONdDmjO/Vu3let0TBrY0dJmIIxLc5tTgUoYTpQvBQWQIn+bgKU6O+hyACgxBs+ApTo7yNAif4emnMq7ijR30uAEjUPs3KzaO3en2jLoc10eoX61LhyU4qJjlFrNMzaACVhCsa0OECJw8bg6I3DghfRHUCJ+x6oRgBQoqogj/oAJTx8UI0CoERVQffrA5S474EVEXBb1FuRkx/bACjR33VOoGTv8b8oIyeDapU9RX9hHc6A25yKHSUODwA/dgdQor/rACX6e2h++5mdk0fHM3O9kZBPswAo0d94gBL9PTTnVOwo0d9LgBL9PeQASsR9Lc9+N4SW7VhsCFq/UiN6tt0oSopL1l9ghzIAKHFIaLMb7ChxWPAiugMocd8D1QgASlQV5FEfO0p4+KAaBUCJqoLu1wcocd8DKyLgtqi3Iic/tgFQor/rHEDJyj3L6b+L+weJeU+zPnR1vev0F9ihDLjNqdhR4pDxfu4GoER/9wFK9PfQ/PYTO0r09xKgRH8PAUr099CcU7GjRH8vAUr095ADKJm6/l2asmZikJiX1+1CD7V4TH+BHcoAoMQhoc1usKPEYcGL6A6gxH0PVCMAKFFVkEd97Cjh4YNqFAAlqgq6Xx+gxH0PrIiA26Leipz82AZAif6ucwAlu47upDs/D9498tQFL1Gr6m30F9ihDLjNqdhR4pDxfu4GoER/9wFK9PfQ/PYTO0r09xKgRH8PAUr099CcU7GjRH8vAUr095ADKBEqfrtjEa3Y/R2lZ6dTs9SW1PHUThQVFaW/wA5lAFDikNBmN9hR4rDgRXQHUOK+B6oRAJSoKsijPnaU8PBBNQqAElUF3a8PUOK+B1ZEwG1Rb0VOfmwDoER/17mAEv2VdDcDbnMqdpS4Ox580TtAif42A5To76H57Sd2lOjvJUCJ/h4ClOjvoTmnYkeJ/l4ClOjvYShQsj7tF/p131qqV/FMalKlmf4JezQDgBKHjcWOEocFx44S9wW3IQKAEhtEdaFJ7ChxQXQbugQosUFUh5sEKHFYcJu647aotylNzzcLUKK/xSWBkg/WTaF3f3kzkOSNDW+nW5vcrX/SHsyA25yKHSUeHGTcUsKOEm6OhB8PQEn4mnGsAVDC0ZXwYwIoCV8zbjUASrg5Elk83Bb1kWWBWgAl+o+BkkDJjbM708GM/YEkk+NL0/Su8/VP2oMZcJtTAUo8OMi4pQRQws2R8OMBKAlfM441AEo4uhJ+TAAl4WvGrQZAif2OfPDrFJr7+2yjo6vOuJaua9DD8k65LeotT9AnDQKU6G80QIn+HooMuM2pACXeGFesswAoYW2PVHAAJVIysS8EUMLeIqkAAUqkZGJdCKDEXnuW7VxCw74dGNTJ8+3HUtOU5pZ2zG1Rb2lyPmoMoER/s0sCJWNWvEjzNp+ApuLT4dQr6OFWg/VP2oMZcJtTAUo8OMi4pQRQws2R8OMBKAlfM441AEo4uhJ+TAAl4WvGrQZAib2OTF4zgaatfy+ok55n9bZ8Vwm3Rb29qnq3dYAS/b0tCZTk5OXQun1r6PcDG6hOubrUtGpzio2O1T9pD2bAbU4FKPHgIOOWEkAJN0fCjwegJHzNONYAKOHoSvgxAZSErxm3GgAl9jqydPvX9OyyIUGdPNNuNDVPbWlpx9wW9ZYm56PGAEr0NzvUW2/0z9AfGXCbU7UHJQuXrqKHhow5afSs+vINKhUfR3jrjft/WAAl7nugGgFAiaqCPOoDlPDwQTUKgBJVBd2v7ydQsnzX/2jBlnmUHJdMnU+/lupWqGe7AeIb5HErX6IVu5cbfbWsdh491GIARUVFWdo3t0W9pcn5qDGAEv3NBijR30ORAbc5VXtQsmDpShr47Bs0/Y2ngkZI7RpVjX8QAUrc/8MBKHHfA9UIAEpUFeRRH6CEhw+qUQCUqCrofn2/gJKVe5bTfxf3DwieGJtEEy57h1KSq7lvggURcFvUW5CSL5sAKNHfdoAS/T0EKLHBQwFKnnr5LVo6a2yRrQOU2CB6mE0ClIQpGMPiACUMTYkgJICSCERjWAWghKEpYYbkF1AycdVomr1pWpA6/VsNpktOvSJMxXgWByjh6Uu4UQGUhKsYv/IAJfw8iSQibnOqJ3aU9Bkylrp0PJ9KlYqnFk3rU8f2LSk2JsbwB6AkkmFqbR2AEmv1dKM1gBI3VLe+T4AS6zV1o0WAEjdUt7ZPv4CSqevfpSlrJgaJN7zdSDon9VxrBXWpNW6Lepdk0L5bgBLtLSSAEv09FBlwm1O1ByVrf/uT5i/6gcqVSaZdf6XR1E+/oZu6XkyD+/QwRkxWdq43Ro7GWcTFRlN2Tp7GGSB0cYwtJiaKcrTzMfg8em5evpGHXz8x0VGUn59Pefl+VcAbeYs5VfwtwkZ9/YyLiSZxXUZ2bh7le9jIPUf30N2f3UH7ju8zzGpctTFNuPJ1z7xxQsyp4g8x18sm6vtnJh25+HvMyc0z/h5jo6Ol66GgrAL2T3LGOjU6yvARH30ViImJPrFOZbJQjY87sfHCqk9UvsjOxc+MuUtoyIuT6eeFk4xdJXsPZboYDboWClQqE0/7j2Z5ejHodafjYqIoOSGWDh7L1izVk6ejKPIvKCmdGEs5ufmUkQWArNlADgpX7EbYfyQTc6rGJopvzQTwOnQs2xdfJPx58A/jMteqySkau3Zy6GJOFQA+PRNzqs7GViwbTweOZJ14OPPvEsFGC+0XVaxTkxJi6NCxHBvzQNN2K1A6IYYE60pnsk6tUq6UpSm7DkqWLl9LvQe8TCvnv04JpeJx9MZSeyNrDEdvItONUy0cveHkRuSx4OhN5NpxqomjN5zciCwWvxy9iUwdfWpx2yauj3K8IsXRG15+RBINjt5Eohq/OtzmVO2P3nwwcyHVr1uLGtarQ4eOHKVHn55IcbExNHnUAMN93FHi/h8BQIn7HqhGAFCiqiCP+gAlPHxQjQKgRFVB9+sDlLjvgRURcFvUW5GTH9sAKNHfdYAS/T0UGXCbU7UHJSNfm0qTPpwbGB1nNaxLLw3pTTWrVQEoYfI3A1DCxAiFMABKFMRjVBWghJEZCqEAlCiIx6QqQAkTIxTD4LaoV0zHt9UBSvS3HqBEfw8BSmzyMCMzi/amHaQyyUlUvlzpoF6wo8Qm0cNoFqAkDLGYFgUoYWpMmGEBlIQpGNPiACVMjQkjLICSMMRiXBSghLE5YYQGUBKGWEyLApQwNSbMsLjNqdrvKAmlP0BJKIXs/z1Aif0a290DQIndCjvTPkCJMzrb3QtAid0K298+QIn9GjvRA7dFvRM5e7EPgBL9XQUo0d9DkQG3ORWgxBvjinUWACWs7ZEKDqBESib2hQBK2FskFSBAiZRMrAsBlLC2Rzo4bot66cBRMEgBgBL9BwRAif4eApS44CF2lLggeqEuAUrc90A1AoASVQV51Aco4eGDahQAJaoKul8foMR9D6yIAKDEChXdbwOgxH0PVCMAKFFVkEd9bnMqdpTwGBeejgKgRH97AUr099Ak9dk5eXQ8M9cbCfk0C4AS/Y0HKNHfQ47ffnpDVeezAChxXnOrewQosVpRd9oDKHFYd+wocVjwIroDKHHfA9UIAEpUFeRRHztKePigGgVAiaqC7tcHKHHfAysi4LaotyInP7YBUKK/6wAl+nvIET5jR4k3xhXrLABKWNsjFRxAiZRM7AsBlLC3SCpAgBIpmVgXAihhbY90cAAl0lKxLghQwtoeqeAASqRkYl+I25wKUMJ+yOgfIECJ/h4ClOjvoUnqcfRGfy8BSvT3EKBEfw85fvvpDVWdzwKgxHnNre4RoMRqRd1pD6DEYd1x9MZhwYvoDqDEfQ9UIwAoUVWQR33sKOHhg2oUACWqCrpfH6DEfQ+siIDbot6KnPzYBkCJ/q4DlOjvIUf4jB0l3hhXrLMAKGFtj1RwACVSMrEvBFDC3iKpAAFKpGRiXQighLU90sEBlEhLxbogQAlre6SCAyiRkol9IW5zKkAJ+yGjf4AAJfp7CFCiv4cmqcfRG/29BCjR30OAEv095PjtpzdUdT4LgBLnNbe6R4ASqxV1pz2AEod1x9EbhwUvojuAEvc9UI0AoERVQR71saOEhw+qUQCUqCrofn2AEvc9sCICbot6K3LyYxsAJfq7DlCiv4cc4TN2lHhjXLHOAqCEtT1SwQGUSMnEvhBACXuLpAIEKJGSiXUhgBLW9kgHB1AiLRXrggAlrO2RCg6gREom9oW4zakAJeyHjP4BApTo7yFAif4emqQeR2/09xKgRH8PAUr095Djt5/eUNX5LABKnNfc6h4BSqxW1J32AEoc1h1HbxwWvIjuAErc90A1AoASVQV51MeOEh4+qEYBUKKqoPv1AUrc98CKCLgt6q3IyY9tAJTo7zpAif4ecoTP2FHijXHFOguAEtb2SAUHUCIlE/tCACXsLZIKEKBESibWhQBKWNsjHRxAibRUrAsClLC2Ryo4gBIpmdgX4janApSwHzL6BwhQor+HACX6e2iSehy90d9LgJL/Y++84+wqyjf+3LYlu+lBeugivSOIPxQUAggEhCBFkd470kR6U5AaDFU6CVUIURQUBARESiAKIkrohJZN3X7b73Nu2E3ussmee8+cmfed++w/fiQzb3meyTB8d845+j0kKNHvocTffvqhqv0uCErsa246I0GJaUXdxCMosaw7H72xLHg/6QhK3HsQtQKCkqgKypjPGyUyfIhaBUFJVAXdzycoce+BiQqkHepN9FSLMQhK9LtOUKLfQ4nwmTdK/FhXorsgKBFtT6jiCEpCySR+EEGJeItCFUhQEkom0YMISkTbE7o4gpLQUokeSFAi2p5QxRGUhJJJ/CBpeypBifglo79AghL9HhKU6Pewh9Tz0Rv9XhKU6PeQoES/hxJ/++mHqva7ICixr7npjAQlphV1E4+gxLLufPTGsuD9pCMoce9B1AoISqIqKGM+b5TI8CFqFQQlURV0P5+gxL0HJiqQdqg30VMtxiAo0e86QYl+DyXCZ94o8WNdie6CoES0PaGKIygJJZP4QQQl4i0KVSBBSblMyexsJLMtyDWuCiSSoTR0PYigxLUDZvITlJjR0XUUghLXDkTPT1ASXUMJEaTtqQQlElaF5zUQlOg3mKBEv4c9pJ6P3uj3kqBkoYfN712Fxk/uL/2DXMPymLv2eBTqlxZvMkGJeItCFSjtUB+qaA76igIEJfoXBUGJfg97zqm5fBFtnTkRDRGUiLDB7yIISvT7S1Ci30OCEj88DLogKFngZarjfYx4bd8yYzuW2xutKx0r3myCEvEWhSqQoCSUTOIHEZSIt2jAAglKBpRIxQBpeypBiYplo7tIghLd/gXVE5To95CgxA8PCUoW+lg/888Y8r9zy4ztHro55q59pXizCUrEWxSqQGmH+lBFc9BXFCAo0b8oCEr0e9hzTuWNEote8mWuFsVeTCqCEvceRK2AoCSqgjLm8x0lMnyIWgVvlCxQMJFrxchXdkWi0NUraesqJ6FjmT2iShz7fIKS2CW2koCgxIrMsSchKIld4tgTEJTELrGVBNL2VN4osWJ7bSchKNHvP0GJfg97SD3fUaLfS4KShR5m5r6C+pa/ll7mmh2yITqW3g1I1os3maBEvEWhCpR2qA9VNAd9RQGCEv2LgqBEv4c951TeKLHoJW+UWBR7MakIStx7ELUCgpKoCsqYzxslMnyIWgVBSVQF3c8nKHHvgYkKCEpMqOg+BkGJew+iVkBQElVBGfOl7am8USJjXXhdBUGJfnsJSvR72EPqeaNEv5cEJfo9JCjR76HE3376oar9LghK7GtuOiNBiWlF3cQjKLGsO2+UWBa8n3QEJe49iFoBQUlUBWXM540SGT5ErYKgJKqC7ucTlLj3wEQF0g71JnqqxRgEJfpdJyjR76FE+MwbJX6sK9FdEJSItidUcQQloWQSP4igRLxFoQokKAklk+hBBCWi7QldHEFJaKlEDyQoEW1PqOIISkLJJH6QtD2VoET8ktFfIEGJfg8JSvR72EPq+eiNfi8JSvR7SFCi30OJv/30Q1X7XRCU2NfcdEaCEtOKuolHUGJZdz56Y1nwftIRlLj3IGoFBCVRFZQxnzdKZPgQtQqCkqgKup9PUOLeAxMVSDvUm+ipFmMQlOh3naBEv4cS4TNvlPixrkR3QVAi2p5QxRGUhJJJ/CCCEvEWhSrQJShJZmehruVpIFWPruH/h2J6cKiaOahcAYISP1YEQYkfPhKU6PeRoES/hwQlDjzkjRIHovdJSVDi3oOoFRCURFVQxnyCEhk+RK3CFShJdn2G4dP2RzLfWmohX78M5qz/WxTSw6K2VHPzCUr8sJygxA8fCUr0+0hQot9DghIHHhKUOBCdoMS96IYrICgxLKijcAQljoQ3nNYVKBn08Z1o+uD6sm7mr34mOpfayXCH/ocjKPHDY4ISP3wkKNHvI0GJfg8JShx4SFDiQHSCEveiG66AoMSwoI7CEZQ4Et5wWoISw4I6CEdQ4kD0GFISlMQgqoOQBCUORDeckqDEsKCOwknbU/mOEkcLoZbS8tEb/W4TlOj3sIfU86s3+r10BUpSHR9g+Gv7IPGlhMVkPWZtdC8KdUvpF9VyBwQllgWPKZ20Q31MbXoflqBEv8UEJfo97Dmn5vJFtHXmRDREUCLCBr+LICjR7y9BiX4PCUr88DDowhUoCXInOz9G3ZwXSy9z7R6yCQr1S/sjrMVOCEosih1jKoKSGMW1GJqgxKLYMaUiKIlJWMthpe2pBCWWF0AtpiMo0e86QYl+DwlK/PAwDlCSmfMSGj6fUoIfnV8bi+zgdf0RS2gnBCVCjamwLGmH+grL5/AvFSAo0b8UCEr0e9hzTuWNEote8h0lFsVeTCqCEvceRK2AoCSqgjLm8x0lMnyIWoXJGyXp+W9g+OuH9ZZUTGQwZ4PbkWtcKWqZnL8EBQhK/FgeBCV++EhQot9HghL9HhKUOPCQoMSB6H1SEpS49yBqBQQlURWUMZ+gRIYPUaswCUoGffhbNH10S1lJ81f5GTqX2T1qmZxPUOL9GiAo8cNighL9PhKU6PeQoMSBhwQlDkQnKHEvuuEKCEoMC+ooHEGJI+ENpzUJSho+exiD37msrMJ5a5yHrlHfN1w1wy2qAG+U+LEeCEr88JGgRL+PBCX6PSQoceAhQYkD0QlK3ItuuAKCEsOCOgrnEyhpa01gxowEVlm1gHTakaCO0poEJYncPAz/54FIdX1a6iY3aDXMXvdGINXgqLvaSEtQ4ofPBCV++EhQot9HghL9HhKUOPCQoMSB6H1Sjhhch1nzu90XwgqqViCTTqKpPoU5bdmqY3CiewWaG9PI5wvo6C64LyZCBb9/JInrr80gnweGjwB+cW4Wa6+ju6dK5Aj21Dnzu2Gy43TH+ygm65CvX7aSUji2SgUISqoUTti00p5aKKKjKy+sMpZTiQLDm+swt9XsnlpJfo6NrkAmncCg+jTm8pwaXUyHEaTtqfzqjcPFUCup+Y4S/U7zRol+D3tIfTZXQLviQ30uB+z+g3oE/9vzs8lmBVz4y9qBeCZvlPixsvV1QVCiz7P+KuaNEj985I0S/T7yRol+D3vOqfzqjUUveaPEotiLSUVQ4t6DqBUQlERVUMZ8Hx69+fCDBA47sK5M0GHDi5j0QO3cWiMokfH3KUoVBCVR1JMzl6BEjhdRKiEoiaKejLkEJTJ8iFqFtD2VN0qiOsr5AypAULJ4iVKffoKm8VegbtqryK2yGlqPOwm5NdYcUFPbAwhKbCseTz4fQEmgzEE/qcMnMxK9Iu2yWx5HHbvIFZN45BMTlaBEjBVVF0JQUrV0oiZKO9SLEkdRMQQlisxaTKkEJfo9DDqQtqcSlPixrkR3QVCyeHuGnnkK6l54vndAfullMGvig+L8JCgJb0nwktH77knivXeTWH/DInYZm0Nd+QWI8MEMj/QFlLwzPYG/PJ7Cxx8lsPY6RWy/Yx7DhxcNqyU3HEGJXG/CVkZQElYp2eOkHeplqyW3OoISud6ErYygJKxSssdJ21MJSmSvFy+qIyhZvI2jxo5BorW1bMDMyX9CsXmwKO8JSsLbcdpJGfxzWrJ3wk675HHsCTJuO/gCSsK74edIghL9vhKU6PdQ4m8//VDVfhcEJfY1N52RoMS0om7iEZRY1p3vKLEseD/pCEoW78HQnx2Huldf6R2QH7UUZt37sHvT+lRAUBLOko52YM+x9Sgs8jmSpZYu4o6JMt6fQVASzkfpowhKpDs0cH0EJQNrpGGEtEO9Bs0k1khQItGVymoiKKlML6mjpe2pvFEidaV4VBdByeLNTP9rGppuuxmZt95EbvTKaN9vf3RvtbU49wlKwlkSfK52j13r0NW58P0Za65VwFXXyvgiC0FJOB+ljyIoke7QwPURlAyskYYR0g71GjSTWCNBiURXKquJoKQyvaSOlranEpRIXSke1UVQot9MKaAk+OLJ9b/J4M1/J7DGGgUcfXwOo1eS9W6Ku+9IY+KdqdKtkvoGlB67+d52eRGLgKBEhA2RiyAoiSyh8wAEJc4tMFKAtEO9kaZqMAhBiX7TCUr0exh0IG1PJSjxY12J7oKgRLQ9oYqTAkpOPSmDfy3y/o9VVitiwo0yHmtZVMj2NuDjj5NYaeWClRe5dnYmcN34FJ5/NokRo4Af75/H/33nq3CGoCTUchc/iKBEvEUDFkhQMqBEKgZIO9SrEE1gkQQlAk2psCSCkgoFEzpc2p5KUCJ0ofhUFkGJfjelgJLg/R9ti7z7NpkEHpjchcZB+jWO0sGdt6cw8Y50b4h0Grj1rm6MWqr8tg1BSRSV5cwlKJHjRbWVEJRUq5ysedIO9bLU0VMNQYkerxZXKUGJfg+DDqTtqQQlfqwr0V0QlIi2J1RxUkDJycfX4d+vL3z/x+iVi7jht/JulIQS1eCg887O4IXnFn5pJwh91vk5fGur8lslBCUGRXcYiqDEofiGUhOUGBLScRhph3rHcqhNT1Ci1rrewglK9HtIUOLAQ371xoHofVISlLj3IGoFfUFJcuYXqH/2GRSamkovny0OsnOlY9prSdx1ewrT305i5VUK2G//HDbZVNY7SqJqXc38229J4567U2VT75jUjaW+xhsl1egpfQ5BiXSHBq6PoGRgjTSMICjR4NLANRKUDKyR9BEEJdIdCleftD2VN0rC+cZRERQgKIkgnpCpi4KS1PvvYfjRhyDR0VGqLjd6Jcy59iYUm5qEVFt7ZcxqAcZfncHr0xIYMRLY5nt57L0f31Hi60ogKNHvLEGJfg+DDqQd6v1Q1X4XBCX2NTedkaDEtKJu4knbUwlK3KyDmspKUKLf7kVBSdNN12HQPXeVNTXv/EvQJfCzxvqVN9sBH70xq6eraAQlrpQ3l5egxJyWLiNJO9S71EJzboISze4tqJ2gRL+HEuEzQYkf60p0FwQlou0JVRxBSSiZxA8iKBFvUagCCUpCySR6EEGJaHtCF0dQEloq0QMJSkTbE6o4gpJQMokfJG1PJSgRv2T0F0hQot/DRUFJ5t+vY9ixh/c2VWgejFl33Yfi4CH6G/W8A4ISPwwmKNHvI0GJfg8l/vbTD1Xtd0FQYl9z0xkJSkwr6iYeQYll3fkyV8uC95OOoMS9B1Er6Psy19SHH6DulZdKL3PNbrwpCiNHRU3B+RYUICixILKFFAQlFkSOOQVBScwCWwov7VBvqW3v0hCU6LeUoES/hxLhM2+U+LGuRHdBUCLanlDFSfk8cKhiOWixChCU+LE4CEr0+0hQot9DiYd6P1S13wVBiX3NTWckKDGtqJt40uAzQYmbdVBTWQlK9NtNUKLfw55DfTZXQHvXV7+I40eHtdEFQYl+nwlK9HtIUOKHh0EXBCX6vSQo0e+hxD2VoMSPdSW6C4IS0faEKo6gJJRM4gfxRol4i0IVSFASSibRgwhKRNsTujhpv/0MXTgHlilAUKJ/QRCU6PeQoMSBh3xHiQPR+6QkKHHvQdQKCEqiKihjPkGJDB+iVuELKJk3D/ji8wRWXqWIVCqqKrrmE5To8mtx1RKU+OEjQYl+HwlK9HtIUOLAQ4ISB6ITlLgX3XAFBCWGBXUUjqDEkfCG0/oASu64NY1Jdy2gI0stDVxyaTeWX6FoWCm54QhK5HpTSWUEJZWoJXcsQYlcb8JWRlASVinZ46TtqXz0RvZ68aI63iiJycauLqTffxf50Suj2NAQU5IFYQlKYpXXWnCCEmtSx5qH34d4AAAgAElEQVRIOyiZPQvYd1x9mUbf/V4Bp/08G6tukoITlEhyo/papB3qq++ktmcSlOj3n6BEv4dBB9L2VIISP9aV6C4ISszbk5n6Moae+3Mk2tpKkKT1xFPR+f0x5hN9GZGgJDZprQYmKLEqd2zJtIOSl19M4qwzMmX6rLJaERNu7I5NM2mBCUqkOVJdPdIO9dV1wVkEJfrXAEGJfg8JShx4yEdvHIjeJyVBiXkPhh92ANLT/9cbuDBiJFruf8R8IoKS2DR1EZigxIXq5nNqByXd3cB+4+rQ2proFWf/A3PY58e18zUmghLzfy9cRCQocaG6+ZwEJeY1tR2RoMS24vHkk7an8kZJPD4z6iIKEJSYXw6jxo5BorW1LHDLfZNRGDnKfDI+ehOLpi6CEpS4UN18Tu2gJFDkjX8l8LdnUvjsswTWWbeAH+ycR+Mg81pJjUhQItWZyuqSdqivrHqO7lGAoET/WiAo0e9h0IG0PZWgxI91JboLghLz9gw57xeof+avvYGz622AOVdNMJ/oy4h89CY2aa0GJiixKndsyXwAJbGJoyQwQYkSowYoU9qh3g9V7XdBUGJfc9MZCUpMK+omnrQ9laDEzTqoqawEJebtTn7xORr+8AjS/3sL+VVXR+d2OyA/eiXziQhKYtPURWCCEheqm89JUGJeU9sRCUpsKx5PPmmH+ni69D8qQYl+jwlK9HsYdCBtTyUo8WNdie6CoES0PaGK442SUDKJH0RQIt6iUAUSlISSSfQgghLR9oQuTtqhPnThHFimAEGJ/gVBUKLfQ4ISBx7yZa4ORO+TkqDEvQdRKyAoiaqgjPkEJTJ8iFoFQUlUBd3PJyhx74GJCghKTKjoPgZBiXsPolZAUBJVQRnzpe2pvFEiY114XQVBiX57CUr0e9hD6rO5Atq7aufrIn44V94FQYl+VwlK9Hso8beffqhqvwuCEvuam85IUGJaUTfxCEos684bJZYF7ycdQYl7D6JWQFASVUEZ83mjRIYPUasgKImqoPv5BCXuPTBRgbRDvYmeajEGQYl+1wlK9HsoET7zRokf60p0FzZASd3LLyL97nR0r7cBct9YW7QeGosjKNHo2ldrJijxw0eCEv0+EpTo91Diod4PVe13QVBiX3PTGQlKTCvqJp40+ExQ4mYd1FTWuEFJ8/gr0Pjwg72ath5zIjp237OmNI67WR9BSWdnAh99mMCKowuor49bQRnxCUpk+BC1CoKSqAq6n09Q4t4DExVIO9Sb6KkWYxCU6HedoES/hxLhM0GJH+tKdBexgpJ8HqN2+C4ShUKvBvkVR2PWbZNEa6KtON9AyfPPJXHpxRl0dQKDmoCTT8viW1stXEPa/AlbL0FJWKVkjyMoke1PmOoISsKoJH8MQYl8j8JUSFASRiXZYwhKZPsTtjppeypBSVjnOK5qBQhKqpZOzETfQMl+e9VhVkuiV98VRxdx463dYvSOqxCCkriUtRuXoMSu3nFkIyiJQ1X7MaUd6u0r4EdGghL9PhKU6Pcw6EDankpQ4se6Et1FrKAEwJCzT0f9c3/r1aB97x+j7dAjRWuirTifQElrawLjxtaVWZDOAFP+1KXNlorrJSipWDKREwhKRNpSUVEEJRXJJXawtEO9WKGEF0ZQItygEOURlIQQScEQaXsqQYmCRaO9xLhBSaK7G5mpLyP94fvIrrkWsuusB6RS2mUTVb9PoCQQ9oxTMnhtarJX4823KOC8i7KiNI+jGIKSOFS1H5OgxL7mpjMSlJhW1E08aYd6Nyroz0pQot9DghL9HgYdSNtTCUr8WFeiu4gblIhu3pPifAMln3ySwGOPJvHeu0msunoB240pYNlli564tfg2CEr8sJigRL+PBCX6PZR4qPdDVftdEJTY19x0RoIS04q6iUdQYln3GS0dljMyXV8FCEr0rwnfQIl+R6rrgKCkOt2kzSIokeZI5fUQlFSumcQZ0g71EjXSUBNBiQaXllwjQYl+DyXCZ94o8WNdie6CoES0PaGKIygJJZP4QQQl4i0KVaAmUDJjBvCPv6cwalQRW25VQDodqkXvBxGU+GExQYkfPhKU6PeRoES/hwQlDjzkjRIHovdJSVDi3oOoFRCURFVQxnyCEhk+RK1CCyh57dUkzjojg9yXr//ZYMMiLrq0m6+QAkBQEvVvgYz5BCUyfIhaBUFJVAXdzycoce+BiQqk7am8UWLCVcZYogIEJfoXCEGJfg97SH02V0B7V95pQ+1twA0T0nju2RRGjiriwINz2OJbBac1aUquBZRcckEazzxV/mLta2/oxmqr+/8+oIHWE0HJQArp+HNph3odqsmrkqBEnieVVkRQUqliMsdL21MJSmSuE6+qIijRbydBiX4PJYGSO29PYeIdC5/BCB7HuGNSF4aP8EPnuLsgKIlb4fjjE5TEr7GNDNIO9TZ69jEHQYl+VwlK9HvYc07N5Yto68yJaIigRIQNfhdBUKLfX4IS/R5KAiVnnpbB1JcXfp45qO2CS7LYdHPeKgmz0rSAkqeeTOJXF2V6W1p+hSKu/20331PCR2/CLHMVYwhKVNg0YJEEJQNKJH4AQYl4i0IVKG1PJSgJZRsHRVGAoCSKejLmEpTI8CFqFVLeUXL7LWncc/fCRzKSSeDOe7owYmTUDmtjvhZQErgx/e0E/jktiVGjgI03KaCpmY/dBLrwRokff1elHer9UNV+FwQl9jU3nZGgxLSibuJJ21MJStysg5rKSlCi326CEv0eBh1IASVffJ7AhGvT+Ne0JEaOLGLHH+Sx2x5u35uiyWFNoESTrjZrJSixqXZ8uaQd6uPr1O/IBCX6/SUo0e9hzzmVj95Y9JJfvbEo9mJSEZS49yBqBQQlURWUMV8KKJGhht4qCEr0etdTOUGJfg8lHur9UNV+FwQl9jU3nZGgxLSibuJJg8+8UeJmHdRUVoIS/XZrByWtrQk8+8yCd2JsuVUBQ4fW5vX/KKBkxgzgpRdSGDGyiG9uWUBdnf51rbUDghKtzi2sm6BEv4cEJX54GHRBUKLfS4IS/R5K3FO9ASXzW9uRy+cxfOjgspXCGyXu/+IQlLj3IGoFmkHJ3LnAUYfWY1bLAhWGDS/i6t9042tLR1VF3/xqQckb/0rg9FPqkMsu6HmNrxdw5bVZpMq//KpPEKUVE5QoNW6RsglK9Hso8VDvh6r2uyAosa+56YwEJaYVdROPN0oM697e0YnTLrwBTz73ainy+muvhvEXHodRI4aW/j9BiWHBqwhHUFKFaMKmaAYlv38kid9cvfDLG4G0hx2Vw+41+E6MakHJ5Zdm8JfHyr9Sc8X4LNZam1+pcfFXlaDEhepmcxKUmNXTVTRph3pXOmjPS1Ci3UGAoES/hxLhs/obJTdP/APun/IU7hx/Jhob6nDk6VdildHL4oJTDyIoEfJ3hqBEiBERyiAoiSCeoKkEJYLMiFAKQUkE8YRMJSgRYkTEMghKIgooZDpBiRAjIpRBUBJBPEFTpe2p6kHJnoeegzHf3QyH7rdzyebHnnoRJ507Aa//9VYkEgneKBGw+AlKBJgQsQTNoKRlZgI/3bcO+S8/qhI8LnL9b7uxwoq1956SakHJ88+lcMHZ6d5VFLyn5PaJ3Ugv/EcRVxinV6IAQUklaskcG4CS16YmMeneHFIZYKed87yhJdOqJVYl7VCvUEIRJROUiLAhUhEEJZHkEzNZ2p6qHpRstuMRuPC0g0uwJPj593/fw7jDzsXzU36DoYObCEoELH2CEgEmRCxBMygJWv/8swSmvrLg0ZENNy5gmWVqD5IEvVcLSoK5099O4PV/JjFiJLDBRnkMGRJxUXF61QoQlFQtnZiJn35Yj8MOSSL4DGKxWEQ6A0y4sRsrjq7NvUmMMRUWIu1QX2H5HP6lAgQl+pcCQYl+D3vOqfw8sCEvg8PFutsciAmXnIjvbLlBKer09z7Grgecib/cezmWXXqkoUwMQwWoABWgAlSAClABMwrccANw003lsU4/HdhzTzPxGYUKUAEqQAWoABWQpUCiGNALiz/BjZKLTj8E239n01LWvjdKLJbCVFSAClABKkAFKlJg/nzgqaeAri5g222BESMqms7BShV48EHgkkvKi7/4YmD77ZU2xLKpABWgAlSAClCBJSpgHZQE7yjZYZvNcci+PygVxneUyFuhfPRGnieVVqT90ZtK+/V1fJRHb3zVxGVfwaerjz2yDl98liiV0dRcLD1+MdCnq/nojUvXzOTOoB4H/jSJjz5e8OjNyqsWceX4bjQ0mInPKHYU4KM3dnSOOwsfvYlb4fjj89Gb+DW2kUHanqr+HSU33f17PPD7p0tfvRnUWI8jTruCX72xsZIryEFQUoFYQocSlAg1psKyCEoqFCzm4X9+LIUrLi1/I+6Bh+Sx1z65JWYmKInZGAvhe7568+q/ulFM1u57kyxIHWsKaYf6WJv1ODhBiX5zCUr0exh0IG1PVQ9K2to78bPzr8MzL0wrrZB111wF4y86Hl8bNaz0/2e0dPixchR3QVCi2LwvSyco0e9hz7+AsrkC2ru+/ASQH22p7YKgRK11kQvn54EjSygigLRDvQhRFBZBUKLQtD4lE5To95CgJEYP585vQzabw6gRQ8uyEJTEKHrI0AQlIYUSPIygRLA5FZTGGyUViGVhaPDp6oP2r0N318JkN9028Kera/1GybTXEvjTo6mSaDvvUsA66xUsuGU2BUGJWT1dRSMocaW82bwEJWb1dBGNoMSF6uZzSttT1d8oGcgigpKBFIr/zwlK4tc47gwEJXErbCc+QYkdnSvJ8sXnCbz2ahJdXUVsvGkByy038OxaBiX/eTOBk4+rQ+FLNpJMAhNu6sZKK1t9j/zAJg0wgqAksoQiAkg71IsQRWERBCUKTetTMkGJfg+DDqTtqQQlfqwr0V0QlIi2J1RxBCWhZBI/iKBEvEWhCqxlUHLn7SlMvKP8vS6HHZXD7nvoepyMoCTUUhc/SNqhXrxgQgskKBFqTAVlEZRUIJbgodL2VIISwYvFl9IISvQ7SVCi38MeUs93lOj3spZByR+mpHDtVeWg5PRfZPGdbXQ9fkNQov/vocTffvqhqv0uCErsa246I0GJaUXdxCMosaw7H72xLHg/6QhK3HsQtQKCkqgKypjPGyUyfIhaRS2DkvnzgeOPqsMnMxZ8Unn5FYq49gZ9n9UlKIn6t0DGfGmHehmq6KuCoESfZ30rJijR76FE+MwbJX6sK9FdEJSItidUcQQloWQSP0gLKGlrTeChB5P433+TWHudInbfM4e6OvHyWiuwlkFJj8gzPl4ASpZbXte7SXrqJyix9tcl1kQEJbHKay04QYk1qWNLRFASm7RWA0vbUwlKrNpfm8kISvT7TlCi38MeUq/h0ZtfnJ7BKy8le0X//pg8Tj4154cJBrogKKlQxGIRqffeRXHIEBRGjqpwcjzDCUri0dV2VGmHetv9+5KPoES/kwQl+j3sOafm8kW0dco48xGU+LGuRHdBUCLanlDFEZSEkkn8IA03SvJ5YNcd6nu/ahKIOmx4EZMe6Bavr60CCUrCK52cOwdDTzke6elvlyZ1jtkJ8089M3yAmEYSlMQkrOWwBCWWBY8pHUFJTMJaDEtQYlHsGFNJ21MJSmI0m6EXKEBQon8lEJTo97CH1Gu4UbLvuHrMnrVQ8xVHF3HjrQQlPYoQlIT/+9j02xswaOIdZRPmXHsjsmutEz5IDCMJSmIQ1UFIaYd6BxJ4kZKgRL+NBCX6Pew5p/JGiUUv+TJXi2IvJhVBiXsPolZAUBJVQRnzNdwoCZS6b1Iad96WQi4HpDPAMcdnMWZHXV81idNxgpLw6g45+3TUP/e3sgnzj/8ZOnfdPXyQGEYSlMQgqoOQBCUORI8hJUFJDKJaDklQYlnwmNJJ21N5oyQmoxl2oQIEJfpXA0GJfg97SL2GGyVBrZ2dCXz4QQKjVyqgvt4P/U11QVASXsmGvzyGwZecv3BCKoWWex5CYcTI8EFiGElQEoOoDkJKO9Q7kMCLlAQl+m0kKNHvYc85lTdKLHrJGyUWxV5MKoIS9x5ErYCgJKqC9uZPfzuBKQ+n0NaWwPe3z+ObWy68iaHlRok9tXRmIiipwLdcDo2PTkHm1VdQGDIE3Vt+G91bfKuCAPEMJSiJR1fbUQlKbCseTz6Cknh0tRmVoMSm2vHlkran8kZJfF4z8pcKEJToXwoEJTo8/OLzBA47qA6dHQvrvfCXWWyy2QJYQlCiw8eBqiQoGUgh+X9OUCLfozAVSjvUh6mZY76qAEGJ/lVBUKLfw55zKm+UWPSSN0osir2YVAQl7j2IWgFBSVQF7cx/6skkfnVRpizZjjvncdyJCz6zRlBix4e4sxCUxK1w/PEJSuLX2EYGghIbKsefg6Akfo3jzkBQErfCduJL21N5o8SO7zWdhaBEv/0EJTo8nPZaEqefXA5KDjg4jx/tS1Ciw8FwVRKUhNNJ8iiCEsnuhK9N2qE+fOUcuagCBCX61wNBiX4Pe36hxxslFr3kjRKLYi8mFUFJ5R6883YCN0xI47//TWLtdYo45oQsll22WHkgQzMISgwJGXOYzk7goJ/U4d13kmhqKmLpZYq47KoslltuwdrhjZKYDbAUnqDEktAxpiEoiVFci6EJSiyKHWMqgpIYxbUUmqDEktAxp5G2p/JGScyGMzxQK6BkVgswZ04Cq6xaRCIRzfmjDqvDu9MXBllvgwIuvSIbLWiE2QQlEcSzNDWfB35+Sgb/nJZENgskk8ClV2ax4UZ8maslC6ylISixJnVsiQhKYpM21sDJ1lY0XXM56v/xPPJLL4PE0Uej65vfQlvnglt7/NGpAEGJTt8WrZqgRL+HQQcEJZZ95I0Sy4L3k64WQMn1v0lj8u9Spe5XWqWICy7OYqmvVXcDpKMd2HNsPQoL//sWTc3AA5O7nJlJUOJM+tCJg6/dHHN4Xdn4rb+bxxlnLTzA80ZJaDlFDyQoEW1PqOIISkLJJG5Q02+uwqDf3d9bV7JpEFof/gPakuV7r7jCWdASFSAo0b9ACEr0e0hQ4sBDghIHovdJ6Tsoees/CZxwdPkhaa998jjwkOp/w3T4wXX44L2FN0rWXreIy6/udmZmWFDyystJvPduEutvUMAaX1+E9DirvHYSE5TUjtcEJfq9JijR6eHwYw5D+s03eotPpRJov+5mzFvtGzobYtUlBQhK9C8EghL9HhKUOPCQoMSB6DUGSv78WApXXJou63rjTQu46FfVPyrz4gtJ3DMxVXrXxOprFHDAQTmss151N1RMrIAwoGTC+DSmPLzgVk3wc+QxOey6e95EesYIoUAuBxxxcB0+/mghYDvtzCy+uy0fvQkhn6ohBCXy7Kp7bSoG3TgB6Y8+QPfGm6H1xFNQGDpssYUSlMjzMExFzddcjsbJv+sdmmyoR+sjf0Rbqj7MdI4RqgBBiVBjKiiLoKQCsQQP5aM3ls0hKLEseD/pfL9REryX5Kf71qF7kSdjjj85ix128udGxUCgJHg/xq47lD8utMKKRdx0m7tbMO5Xvv0K2loTmPpKEjNnonSrZ7XVy+EaH72x70kcGQlK4lA1QsxcDiPH7YrkvLm9QTrH7IT5p55JUBJBVolTU59+gubxVyDz+j+R/9rSSO7xQ3TutiffUSLRrApqIiipQCyhQwlKhBpTYVkEJRUKFnU4QUlUBaPP9x2UBAq99moSzzyVxJzZwEYbF7H9jnnUe/QLJoKS6H8PJEQgKJHgQvQaCEqia2gyQvqD9zH8wH3LQuZXHI1Zt00iKDEptMBY0g71AiVSURJBiQqbllgkQYl+D4MOpO2p/OqNH+tKdBe1AEpEG2CguIFASZDivLMzeOG5ZG+2cXvncdCh1b+nxUDZDNFHAYISP5YEQYkwH3M5jNrjB0i0tvYW1vm97TH/5+cQlAizynQ50g71pvurlXgEJfqdJijR7yFBiQMPeaPEgeh9UhKUuPcgagVhQEl3N/Da1CQ+/DCJNdcsYK11CkgtfGVJ1BI434ACBCUGRBQQgqBEgAl9Smh47FE0PvQAUjM+QnatddB61PHIr7QyQYk8q4xWRFBiVE5nwQhKnElvLDFBiTEpnQaStqfyRonT5VAbyQlK9PscBpTo79L/DghK/PCYoES/j3yZq34PJf720w9V7XdBUGJfc9MZCUpMK+omHkGJZd15o8Sy4P2kIyhx70HUCghKoiooYz5BiQwfolZBUBJVQffzCUrce2CiAmmHehM91WIMghL9rhOU6PdQInzmjRI/1pXoLghKRNsTqjiCklAyiR9EUCLeolAFEpSEkkn0IIIS0faELo6gJLRUogcSlIi2J1RxBCWhZBI/SNqeSlAifsnoL5CgRL+HBCX6Pewh9dlcAe1deT8aqtEupIOS1Mcfoe6F55AftRSyW22NYjpdo04tvm2CEj+WhLRDvR+q2u+CoMS+5qYzEpSYVtRNPGl7KkGJm3VQU1ldgJKODuCRh9J4898JrL5GAXvslUdjY03JbrRZghKjcjoLxhslzqQ3mlgyKMm8+gqGnX4SkFvwxavshhtjzuXjjfbvQzCCEh9clPcpSz9Utd8FQYl9zU1nJCgxraibeAQllnXnO0osC95POheg5JcXZvD0Xxd+qnbLrQo4+/ysezGUVkBQotS4PmUTlPjho2RQMviCs9Hw1BNlQs++4VbkVv+6H+Ib6oKgxJCQjsNIO9Q7lkNteoIStdb1Fk5Qot/DoANpeypvlPixrkR34QKU7Dm2Hm2tC2VpaAQemNzFz9VWuVIISqoUTtg0ghJhhlRZDkFJlcIJmkZQIsiMCKVIO9RHaKWmpxKU6LefoES/hwQlDjzkjRIHovdJ6QKUHHZgHT78INFbyfARwMT7u9yLobQCghKlxvUpm6DEDx8lg5L6J/+MIRed2yt0foUVMeu3dwF8T0nZ4iMo8ePvIkGJHz4SlOj3kaBEv4cEJQ48JChxILoAUDJlcgo3XpdGLrvgfH7QYTnsvgdfYFntaiAoqVY5WfMISmT5UW01kkFJ0FP67f8iM+1VFIKXuW6yOQrNzdW26u08ghI/rCUo8cNHghL9PhKU6PeQoMSBhwQlDkQXAEqCErq6gA8/SGKFFYtoaCi6F0JxBQQlis1bpHSCEj98lA5K/FA5vi7qXn4Rwz79AOnNN0XL8quiK1uILxkjx6oAQUms8loLTlBiTerYEhGUxCat1cDS9lS+o8Sq/bWZzMWjN7WpdHxdE5TEp63NyAQlNtWOLxdBSXzaxh158OW/RMOjU5BOJZFIAPNPOg3zx+wcd1rGj0kBaYf6mNr0PixBiX6LCUr0exh0IG1PJSjxY12J6WLu3AR+d38S772bxPobFjF29xxWWKoBn83pRJGXOsT4VGkhBCWVKiZzPEGJTF8qrYqgpFLFZIxPtLdj5NgxSBQKvaCka+XV0HLDbTIKZBUVKyDtUF9xA5xQUoCgRP9CICjR7yFBiQMP+eiNXdFPOCaDt95c+Fne3X6Yxzm/SBOU2LXBeDaCEuOSOglIUOJEduNJCUqMS2olIEGJFZmtJiEosSp3bMkISmKT1lpgghJrUseaSNqeyhslsdpdW8FbWxMYN7aurOng/SBTJicJSpQvBYIS5QZ+WT5BiR8+EpTo9XHoaScieEdJz6M3rT85EPN+fJDehmq8cmmH+hq3o+r2CUqqlk7MRIISMVZEKkTankpQEslOTl5UgXwe2GPXOnR1Lvws75prFXDP3SmCEuVLhaBEuYEegJL02/9D3asvI7fiSuj+5pYoveChRn8ISvQan+jsROa1qRg2cwbS66+LllW+gS5+kE2todIO9WqFdFw4QYljAwykJygxIKKAENL2VIISAYvCpxJuvTmNB+5NoVAA6huAk0/NYdxuGYIS5SYTlCg3UDkoqX/sUQy+9CL0oJHO74/B/DPO9sOUKrogKKlCNGFT+HngrxqS+uB91L30AgrLLIuuLb8NJBc+xivMvt5ypB3qpeokvS6CEukODVwfQcnAGmkYIW1PJSjRsGqU1djeBnz8cRIrrVxAXR3Ar96UG5h++79ofPhBJNra0Ln9jujecivxDhOUiLcoVIFaH70ZfsxhSL/5RlmPMyf/CcXmwaH69m0QQYl+R52BkuBFsu+8jcKopVAYNlyMkHUvvoChZ50G5HKlmro32gRzf32NmPoWV4i0Q714wYQWSFAi1JgKyiIoqUAswUOl7akEJYIXy+JKS336CRrvm4jkzC/Q9e3voGu7HURfQycoWehk6rNPMfzgHyPR0dH7D+f+8gp0b/ZN0SuRoES0PaGLIygJLZXogQQlou0JVZwLUJL66EMMOeNkpGd8XKqx/ccHoO3AQ0PVG/egIWefjvrn/laWZvatE5EbvVLcqSPFl3aoj9RMDU8mKNFvPkGJfg+DDqTtqQQlytZVcAsh+A/t1Bef91Y+/4RT0LnLbmI7IShZaE3Dl48QLGpW+w/Hoe3oE8T6FxRGUCLantDFaQUlgybdiaabr+/tM7vBRphzxbWh+/ZtIEGJfkddgJLmqy5D45SHy8RrmfggCksv41xQghLnFtR0AQQl+u0nKNHvIUGJAw99+zxw6SVwJx9bpmTXVv+Heef/0oG64VISlCzUqe6lf2Do6SeVCdd6yBHo2Ocn4cR0NIqgxJHwhtNqBSXBS48yb76BzL9fR275FZHdeFMUGxoMq6MnHEGJHq8WV6kLUNLfI2xzL7kc3Ztv4VzQvr9EyK+wImbdNkn0bVmJh3rnRiotgKBEqXGLlE1Qot9DiXsqb5QoW1fBy85GHLhvWdUdu+yG1hNOEdsJQcki1uRyGHbi0aX/4At+8iNHYc74G0T8Rm9JC4igROxfr4oKUwtKKurS/8EEJfo9dgFKBt0/CU3XL7yJVWgejFmTfofioEEiBE2/9SYyr/+z9O/D7IaboNDcLI1+xlMAACAASURBVKKuJRUh7Zq4eMGEFkhQItSYCsoiKKlALMFDpe2pBCWCF8viShty/lmof/rJ0h8XBg/B3F9ejtw31hbbCUHJV61Jfv5Z6WWu+VVWFevbooURlKiwacAiCUoGlEjFAIISFTYtsUgXoCTR3o6GP05BZtqrKIwchc5tt0NuvQ30i+mwA2mHeodSqE5NUKLavlLxBCX6PQw6kLanEpQoXVfJObNLL3PNrbq6+E/oEZQoXWSLlE1Qot/Dnn8BZXMFtHfl/WioRrsgKNFvvAtQol81eR1IO9TLU0hHRQQlOnxaUpUEJfo9JChx4KFv7yhxIGHklAQlkSV0HoCgxLkFRgrgjRIjMjoPQlDi3ILIBRCURJZQRACCEhE2RC6CoCSyhM4DEJQ4t8BIAdL2VN4oMWIrgyxJAYIS/euDoES/hz2knjdK9HtJUKLfQ4IS/R5K/O2nH6ra74KgxL7mpjMSlJhW1E08ghLLuvNGiWXB+0lHUOLeg6gVEJREVVDGfN4okeFD1CoISqIq6H4+QYl7D0xUIO1Qb6KnWoxBUKLfdYIS/R5KhM+8UeLHuhLdBUGJaHtCFUdQEkom8YMISsRbFKpAH0FJ4/2T0PjQA0h0d6Nzp13QdtBhobTQOoigRKtz5XUTlPjhI0GJfh8JSvR7SFDiwEPeKHEgep+UBCXuPYhaAUFJVAVlzCcokeFD1Cp8AyWZ16Zi2MnHlsky7/xL0LXV1lGlEjufoESsNRUVRlBSkVxiBxOUiLUmdGEEJaGlEj1Q2p7KGyWil4sfxRGU6PeRoES/hz2knu8o0e+lb6Bk0KQ70XTz9WXGtO/9Y7QdeqR+sxbTAUGJH9ZKO9T7oar9LghK7GtuOiNBiWlF3cSTtqcSlLhZBzWVlaBEv90EJfo9JCjxw8OgC99ASeaVlzDs1BPKDJp79gXo/s62/pjWpxOCEj+slXao90NV+10QlNjX3HRGghLTirqJJ21PJShxsw5qKitBiX67CUr0e0hQ4oeHPoISFItovvZK1P39udI7Sro3+ybmn3w6kE77YxpBiZdeSjvUeymyhaYISiyIHHMKgpKYBbYUXtqeSlBiyfhaTkNQot99ghL9HhKU+OGhl6DEH2tCd8IbJaGlEj1Q2qFetFiCiyMoEWxOyNIISkIKJXyYtD2VoET4gvGhPIIS/S4SlOj3kKDEDw8JSvzwkaBEro+pTz9B0/grUDftVeRWWQ2tx52E3Bpr9luwtEO9XFVlV0ZQItufMNURlIRRSf4YaXsqQYn8NaO+QoIS9RaCoES/hwQlfnhIUOKHjwQlcn0ccvbpqH/ub70F5pdeBrMmPkhQIteyyJURlESW0HkAghLnFhgpgKDEiIzhg/DzwOG1imskQUlcytqLS1BiT+s4M/HzwHGqay+2by9ztaecnEwEJXK86FvJyD13QXL2rLJ/3HLfZBRGjvpK0dIO9XJVlV0ZQYlsf8JUR1ASRiX5Y6TtqbxRIn/NqK+QoES9hbxRot/CUgcEJX4YSVCi30eCErkeDj3zFNS98HxvgflRS2HWvQ/3W7C0Q71cVWVXRlAi258w1RGUhFFJ/hhpeypBifw1o75CghL1FhKU6LeQoMQTD4M2CEr0m0lQItfDzJtvYNDN1yPz1pvIjV4Z7fvtj+6ttiYokWtZ5MoISiJL6DwAQYlzC4wUQFBiRMbwQfjoTXit4hpJUBKXsvbi8tEbe1rHmYk3SuJU115sghJ7WseViaAkLmXtxpV2qLfbvT/ZCEr0e0lQot/DoANpeypvlPixrkR3QVAi2p5QxRGUhJJJ/CCCEvEWhSqQoCSUTKIHEZSItid0cdIO9aEL58AyBQhK9C8IghL9HhKUOPCQN0ociN4nJUGJew+iVkBQElVBGfMJSmT4ELUKgpKoCrqf7ysoSeRyaHzofqRfm1r6tG7nuL1RGDrMveAxVUBQEpOwlsMSlFgWPIZ0BCUxiOogpLQ9lTdKHCyCWktJUKLfcYIS/R72kPpsroD2rrwfDdVoFwQl+o33FZQ0/+YqNP7u/l6DsmutgznX3qjfsMV0IO1Q763QMTdGUBKzwBbCE5RYENlCCml7KkGJBdNrPQVBif4VQFCi30OCEj88DLogKNHvpa+gZMS+eyD12adlBs2c/CcUmwfrN62fDqQd6r0U2UJTBCUWRI45BUFJzAJbCi9tTyUosWR8LachKNHvPkGJfg8JSvzwkKDEDx99BSXDjjkMwVdjen4KDQ1oeeRxIJXyw7g+XUg71HspsoWmCEosiBxzCoKSmAW2FF7ankpQYsn4Wk5DUKLffYIS/R4SlPjhIUGJPR8z/34dTdeNR/rd6ejeYCO0nnAKCkt9zUgBvoKS+qefxOBLL0KisxPFZBIdP9oPbYccYUQziUGkHeolaqShJoISDS4tuUaCEv0e9pxTc/ki2jpzIhoiKBFhg99FEJTo95egRL+HBCV+eEhQYs/Hvo+RdG31f5h3/i+NFOArKAnESXR3I/XeO8gvvyKKTU1G9JIahKBEqjOV1UVQUpleEkcTlEh0pfKapO2pBCWVe8gZFSpAUFKhYAKHE5QINKWKkvjVmypEEziF7yiJ35Rky0yM3GtsWaLC8BFoeWCKkeQ+gxIjAikJIu1Qr0Q2cWUSlIizpOKCCEoqlkzkBGl7KkGJyGXiV1EDgpJ8Hk233IiGxx5FsbERHT/cCx277+mXCMq7IShRbuCX5ROU+OEjQYkdH0f8aDekZn7Rm6x7i29h7kWXGUlOUGJERudBpB3qnQuitACCEqXGLVI2QYl+D4MOpO2pBCV+rCvRXQwESgJAEjzTvOjP7OtvQW6NNUX3VUvFEZT44TZBiR8+EpTY8bH+qSfQeN8kpD94D9k110LbEccY+/cSQYkdD+POIu1QH3e/vsYnKNHvLEGJfg8JShx4OKOlw0FWplxUgYFASfOVl6Lx95PLRJt//M/QuevuFFKIAgQlQoyIWAZBSUQBhUwnKBFiRIQyCEoiiCdoKkGJIDMilEJQEkE8IVMJSoQYEbEMaXsqb5RENJTTB1ZgIFDS8OgUDL68/AV5syfcjNyaaw0cnCOsKEBQYkXm2JMQlMQusZUEBCVWZI41CUFJrPJaCy7tUG+tcc8SEZToN5SgRL+HQQfS9lSCEj/WleguBgIl6OzE4CsvRd0rL5XeUdK15bfRdtRxonuqteIISvxwnKDEDx/DgpL0O9ORmfoS8iuMRvfmWwDJpB8CeNAFQYkHJgo81Puhqv0uCErsa246I0GJaUXdxCMosaw7H72xLHg/6QYEJe5LZAUDKEBQ4scSWRwoSb/+T2TefAO5r38D2Q028qNZj7sIA0rqn34Sgy84G4lisaRE17e/g3nnXeyxKrpaIyjR5dfiqpV2qPdDVftdEJTY19x0RoIS04q6iSdtT+WNEjfroKayEpTot5ugRL+HQQf9gZJBd96Kpttu7m2w7YBD0P6TA/1o2NMuwoCSYScdg8y0V8sUaLlvMgojR3mqiq62jIKSQgH1f38WyU8/QfdmWyA/eiVdYiiuVtqhXrGUTksnKHEqv5HkBCVGZHQeRNqeSlDifEn4XwBBiX6PCUr0e7g4UDJyz12QnD2rt8FiczNmTn7Mj4Y97YKgRL+xJkHJ0JOPRd1rUxeIkk5j7gW/WvCoFX9iV0DaoT72hj1NQFCi31iCEv0e9pxTc/ki2jpzIhoiKBFhg99FEJTo95egRL+HBCV+eBh0EQaUND54L5onXNPbdG6tdTD72hv9EUF5J6ZASfqD9zH8wH3L1Oja6v8w7/zyF6Qrl0ts+QQlYq2pqDCCkorkEjmYoESkLRUXJW1PJSip2EJOqFQBgpJKFZM3nqBEnifVVNTfozd9P8/dOWYnzD/1zGrCc44lBcKAEhSLyPz7daTffAP55VZAdsONURw0yFKFTDOQAgQlAymk48+lHep1qCavSoISeZ5UWhFBSaWKyRwvbU8lKJG5TryqiqBEv50EJW48THR2IvXh+8iNXhmor49cRH+gJJHLIfP6P5H631vIrbIacsF/UKfTkXMxQHwKhAIl8aVnZAMKmAIlARAbccA+SH30YW9VAegMgCd/4ldA2qE+/o79zEBQot9XghL9HgYdSNtTCUr8WFeiuyAoEW1PqOIISkLJZHRQ3XPPYMjF5yGAJcWmJsw77Rfo3mrrSDn4eeBI8omZTFAixoqqCzEGSgAkW1uRee0VJD/7FNl110duzbWqrosTK1NA2qG+suo5ukcBghL9a4GgRL+HBCUOPOTngR2I3iclQYl7D6JWQFASVcHK54/YayxSLTN7JwZfsph168TKAy0yg6AkknxiJhOUiLGi6kJMgpKqi+DEyAoQlESWUEQAghIRNkQqgqAkknxiJkvbU3mjRMzS8LcQghL93hKU2PUw0Tofo8buUJa0mMlg5p+eilQIQUkk+cRMJigRY0XVhRCUVC2dqInSDvWixFFUDEGJIrMWUypBiX4Pgw6k7akEJX6sK9FdEJSItidUcQQloWQyOmjoKcejburLvTG7tvgW5l10WaQcBCWR5BMzmaBEjBVVF0JQUrV0oiZKO9SLEkdRMQQliswiKNFv1hI6kLanEpR4vdxkNEdQIsOHKFUQlERRr7q5yU9moPHRKUi9Ox251b9eejljYdnlqgv25SyCkkjyiZlMUCLGiqoLISipWjpRE6Ud6kWJo6gYghJFZhGU6DeLoESOh3xHiXsvCErcexC1AoKSqArKmE9QIsOHqFUQlERV0P18ghL3HpiogKDEhIruYxCUuPcgagV89CaqgjLmS9tTeaNExrrwugqCEv32EpTo9zDogKDEnY/pd6YjM/Ul5FcYje5vbgkkElUXQ1BStXRiJhKUiLEiUiHSDvWRmqnhyQQl+s0nKNHvYc85NZcvoq0zJ6IhghIRNvhXRLJlJhLz5iG/8ioIDvWfzelEsehfn5I6yrw2FZn/vYXsOushu/a6RksjKDEqp7NgBCVupK9/+kkMvuBsJL7cBLu23gbzzrmw6mIISqqWTsxEghIxVkQqhKAkknxiJhOUiLGi6kIISqqWTtREaXsqQYmo5eFHMYN/dSEaHv9jqZncaquj/qYb8BkaCEpitLf5uvFofOCe3gytRxyDjnH7GMtIUGJMSqeBCErcyD/spGOQmfZqWfKW+yajMHJUVQURlFQlm6hJBCWi7Ki6GGmH+qobqfGJBCX6FwBBiX4Pgw6k7akEJX6sKzFdZN58A8OOOaysnvSRh+PTcfsTlMTlUj6PUWPHINHR0Zshv/QymDXxQWMZCUqMSek0EEGJG/kJStzoLjkrQYlkd8LXJu1QH75yjlxUAYIS/euBoES/hwQlDjzky1ztit7wyEMYfPWvy0HJDmPw6alnE5TEZQVBSVzKeheXoMSNpY0P3ovmCdf0Js+ttQ5mX3tj1cXwRknV0omZSFAixopIhRCURJJPzGSCEjFWVF0IQUnV0omaKG1P5Y0SUctDfzHJWS0YuffuQD7f20z6ogvx6ZbbEJTEaG/w/oOGp57ozdD+w3FoO/oEYxl5o8SYlL2B6p99GvVP/BmFIUPQOXYP5FZdzXySPhEJSr4qcaK7G5m/P4tUSwu6tvgWCsstb96HYhGZf7+O9JtvIL/cCshuuDGKgwZVnYegpGrpxEwkKBFjRaRCpB3qIzVTw5MJSvSbT1Ci38OgA2l7KkGJH+tKVBd1LzyPur8/i+S8echutAmG7jcOn7XmCEpidCn4j730P19D5t3pyK2xJrrX2wBIpYxlJCgxJmUpUN1zz2Do2Wf0Bg3+o3nWnfehMGy42UQEJUvWM5/HsKMPLb0EOfgpZjKYc9nVyAV/fwT/EJQINidkaQQlIYUSPkzaoV64XGLLIygRa03owghKQksleqC0PZWgRPRy8aM4fh5Yv48EJWY9bL7yUjT+fnJZ0Hlnnouubbczm4igZIl6Brc8hh17eNmYzjE7Yf6pZ8bqQ9TgBCVRFXQ/n6DEvQcmKpB2qDfRUy3GICjR7zpBiX4Pgw6k7anqQckTf5uK485a+Ox3zzKZ+vhNqK/LgO8ocf8Xh6DEvQdRKyAoiapg+fxBt92MpjtvLfuHc665vvRp5zh/+OhNuboEJXGuNsZekgIEJX6sD2mHej9Utd8FQYl9zU1nJCgxraibeNL2VPWg5C9/ewVnXHwTHrjpvDJHRy//NSQSCYISN+u8LCtBiQATIpZAUBJRwD7TUzM+xrDjj0TwTp/gJ7vu+phz+XggnTabqE80gpI+guRyGLHvHki1zOz9g3nnX4KurbaO1YeowXmjJKqC7ucTlLj3wEQF0g71JnqqxRgEJfpdJyjR72HQgbQ91QtQct7lt+FvD4/vd4XwRon7vzgEJe49iFpBGFDSeP8kND70AIL3pXTutAvaDir/THTUGrybXywi9d67KA4ZgsLIUVbaIyj5qsyJeXNR9+orSLa0ILv+Bsit/nUrXkRJQlASRT0ZcwlKZPgQtQpph/qo/dTqfIIS/c4TlOj3kKAkBg+DGyXHnzUeY8dshfr6Omy6wZoY893NkP7yRZYEJTGIXmFIgpIKBRM4fCBQknltKoadfGxZ5XPPvgDd39lWYDe1W5IkUJJsbUVyxkfIr7o6ijHfpPHNcYIS/Y4SlOj3UOKh3g9V7XdBUGJfc9MZCUpMK+omnjT4LPZGyYxPZ+IPT7ywWJd+vMf2aGyow7/+8y4ee+pFDB3chBmfteC+R/6KfXf/Hs48/ieluS3zutw4zay9CowYXIdZrd1AUZ8oqTdeR/0jDwNdXejeeRfkNt1cXxMGKk6nkmhqSGNuW3e/0ervvwcN15a/K6hrj3HoPO5EA9nNhSgWgUTCXDxtkQIPc/kiurILP9/tooe6h3+HxmuuLH1GvDhiBNouuAT5deN9P4uLPuPKOWJwPWa3dvFLYnEJbCHukEEZZNJJzGvPIpsrWMjIFHEoEOyp+UIRnd1u99Q4equlmMMH12FOazcKhdo+I2j2PDinDqpPlfZU/uhVQNqeGvxSw+RPolgM/lMk+s/7H32GeyY/udhAxx60OwY1Nnzlz3/36DM469JbMO2J35ZulXRleQCJ7ka0CAHlDQ6CRhZGtFIqm/3ee8j8ZD8ksgs33dxvb0FhnXUri+PB6GQi+NpwAtlc/y4mXvwHMseV3yjJnXMuCjvuJKr7fPC4Sw2TknQqgWCLzrvcFjs6kNnue0jkcr1ro7DFFshd9dWXcotaPIKKqcskkc0q3FMFaei6lACSBPtq8O/Ggrp/ObpWT07+BXsqSrCEP3oV6Dmn5mr8jKDXQZT20yWdUzX3Vku1S9tT6zNJo/IbAyXVVvW3f/wLR5x2OV557EY01NfxZa7VCmlwntZHbxoeeQiDr/51mRJt+x+E9p8ebFAdHaEGevQmOCk2X3sl6v7+XOkdJd2bfRPzj/8Z0PBVmKmjYz+rlPDoTfrt/2L44QeWCZxfehnMmvign6LH0BUfvYlBVMsh+eiNZcFjSiftmnhMbXoflo/e6LeYj97o9zDoQNqeKvbRm7B2T3zoCay52opY++srY+78Vpxy/vXIpFO45crTSiH4jpKwSsY3Tisoqf/rXzDkwnPKhJl/wino3GW3+MQSGnlAUCK0bpZVroAEUBLcbR7+072RnvFxb3Ede+6N1iPLbyTRu8UrQFCif3UQlOj3UOKh3g9V7XdBUGJfc9MZCUpMK+omHkGJYd2vuOE+/HbSo71R1197NVx21hFYYdmlCEoMa11tOK2gBJ2dGH7sYUi/M73UevBb79k33Iri4CHVSqF2HkGJWuvKChcBSgCkp7+Nhsf/iORHHyC3znro/MGuKAwd5ofIFrogKLEgcswpFgdKgkfSUu+8jcJyK6DQ3BxzFQwfVQFph/qo/dTqfIIS/c4TlOj3UCJ8Vn+jJBC1s6sbX7TMweCmQRg2tPxgwRsl7v/iqAUlX0qX+vST0uMkudEruRfTUQUEJY6EN5xWCigx3FbNhSMo0W95f6Ak88a/MOTcM5Gc1RI8bI/5x5yIzl1319+sxx0QlPhhLkGJfh8JSvR7SFDiwEOCEgei90mpHZS4V9B9BQQlbjxouuVGNDw6BcW6OnTsvic6xu0TqRCCkkjyiZlMUCLGiqoL6Q+UDD39JNS99I/emMFns1se/hOKjY1V5+HEeBUgKIlXX1vRCUpsKR1fHoKS+LS1GVnanurFjZIlGUhQYnN595+LoMS9B1ErICiJqmDl8+ufewZDzj6jbOKcy8cju+HGlQf7cgZBSdXSiZpIUCLKjqqK6Q+UjNh3D6Q++7QsXvC4Z271r1eVg5PiV0DaoT7+jv3MQFCi31eCEv0eBh1I21MJSvxYV6K7ICgRbU+o4ghKQslkdFDTTddh0D13lcVsO+QItO/zk6rzEJRULZ2oiT6AkkRbG5onXI36Z59GftRSaDv0KHRv8S1ROsdZTH+gpPm68Wh84J7etLnllsfs2+8BkmY/TxhnX7UWW9qhvtb0N9UvQYkpJd3FIShxp73JzNL2VIISk+4yVr8KEJToXxgEJfY9rHv6SQw9/6yyxHMuvQrZTTaruhiCkqqlEzXRB1ASPFY26O7be3UNHi+ZdfcDNfNS3/5ASXLuHDT84RGk3/gXCiuMRuf2OyK32uqi1h6LKVdA2qGe/lSnAEFJdbpJmkVQIsmN6muRtqcSlFTvJWeGVICgJKRQgocRlDgwJ5fD4Mt/WXpnQfCOku4tt0LrMScCiUTVxRCUVC2dqIk+gJJhJx2DzLRXy0FgxEfLRJk0QDH8PLAmtxZfq7RDvR+q2u+CoMS+5qYzEpSYVtRNPGl7KkGJm3VQU1kJSvTbTVCi38OgA4ISP3z0AZQ0X38tGu+f1GtIMZnErHseQmHkKD9MqgKUJD//DMEjSflVVq0JDXxoUtqh3gdNXfRAUOJCdbM5CUrM6ukqmrQ9laDE1Uqoobw+gZL0/95C8zVXIP3udHRvsBHajj0J+WWW9d5NghI/LCYo8cNHH0BJ8Nn1pglXo27aq8iPHIXOH4xFxx57+WFQiC763igZfPF5aHji8dLM7BprYt6vrqiZx5BCyCV2iLRDvVihhBdGUCLcoBDlEZSEEEnBEGl7KkGJgkWjvUSfQEnfrxIELx+ce9Fl2i0asH6CkgElUjGAoESFTQMW6QMoGbBJzwcsCkoKL72MYScfW9Zx6yFHoCPCi5s9l09Me9IO9WKEUVYIQYkyw/opl6BEv4dBB9L2VIISP9aV6C58ASWJ1vkYNXaHMq2Lzc2YOfkx0fqbKI6gxISK7mMQlLj3wEQFBCUmVHQbY1FQknjwQQy++tdlBXV+93uYf9b5botk9gEVkHaoH7BgDuhXAYIS/QuDoES/hwQlDjyc0dLhICtTLqqAL6Ak6GnEj3ZDauYXve11b7QJ5v76Gu8NJyiRYXHyi8/RfNVlpccVcqushrYjj0V27XVDF0dQEloq0QMJSkTbE6q4RUFJ9oOPMPKnewP5fO/ceedciK6ttwkVi4PcKUBQ4k57k5kJSkyq6SYWQYkb3U1nlban8kaJaYcZ7ysK+ARK6p57BoPuvgPpD95Dds210HbAIcitt4H3rhOUyLB4yNmno/65v/UWU1h6GbTceR+QSoUqkKAklEziBxGUiLdowAL7vqOk7u/Pof65Z0ovc+3eZDN07vADIJ0eMA4HuFVA2qHerRp6sxOU6PWup3KCEv0eBh1I21MJSvxYV6K78AmUiBY6xuIISmIUt4LQfd+RE0yddfcDoV8oTFBSgdiChxKUCDYnZGn8PHBIoYQPk3aoFy6X2PIISsRaE7owgpLQUokeKG1PJSgRvVz8KI6gRL+PBCUyPBx65imoe+H53mIKw4aj5b7JvFEiwx5rVRCUWJM6tkQEJbFJ2xs4uJ3TPOFq1D/7NPKjlkLbwUeg+1vfNppY2qG+v+Ya/vQHDLrnLiTmzUPX97ZD22FHo5jJGNVBezCCEu0OAgQl+j0MOpC2pxKU+LGuRHdBUCLanlDFEZSEkin2QcHnqZuuvxaZt95EbvTK6NxjL3R+b/vQeXmjJLRUogeaBCWJXA6pd6ejsOzyKDQ3i+7bp+IISuJ3s+mWGzHo7tt7ExXTacya9DsURow0llzaob5vY6kP3sfwg/ZDoljs/aPWo45Dxx4/MqaBD4EISvS7SFCi30OCEgce8mWuDkTvk5KgxL0HUSsgKImqoIz5BCUyfIhahSlQkp7+NoaefhKSs1pKt5JaDz4cHT/aL2p5nB9CAYKSECJFHDLspGOQmfZqWZQ5l49HdsONI0ZeOF06KGl47FEMvvSisn47x+yE+aeeaUwDHwIRlOh3kaBEv4cEJQ48JChxIDpBiXvRDVdAUGJYUEfhCEocCW84rSlQMvTnP0PdP/6+sLpUqvS582Jjo+GKGa6vAgQl8a+J5uuvReP9k3oTFZNJzLrnIRRGjjKWXDooSb0zHSMO3b+s37bDj0b7Xvsa08CHQAQl+l0kKNHvIUGJAw8JShyITlDiXnTDFRCUGBbUUTiCEkfCG05rCpT093LgOeNvqOiT04Zbq5lwBCXxW5369BM0Tbi69Dn1/MhR6PzBWHTssZfRxNJBSdDsoJuvR8OzT5feUdK94cZoPelUFJsHl+tQKKD+788i+ckMdG+2BfIrrWxUJ+nBCEqkOzRwfQQlA2ukYYS0PZXvKNGwapTXyEdvlBuIBS/JGtKUwcy5XfqbqeEOCEr8MN8UKAnedzNokd+4lz43fdf9QDLph1CCuyAoEWxOBaVJO9RXUHrZ0EU/PV9MJDDvvIvRvdXW1YZTN4+gRJ1lXymYoES/h0EH0vZUghI/1pXoLghKRNsTqjiCklAyiR9EUCLeolAFmgIlifnz0DjlYaTffAOF5VZA57bfR27NtULVwEHRFCAoiaaflNnSDvXV6BLcvBmx355lU7s33Rxzf3Vlv+ESHR2o5B9yBQAAIABJREFUC26fBF/R2XIrBIBV+w9BiXYH+dUb/Q4u6EDankpQ4svKEtwHQYlgc0KWRlASUijhwwhKhBsUsjxToCRkOg6LQQGCkhhEdRBS2qG+GgkqASWJ7m4MP/wABF/TCX6C9xnNueo65FZfo5rUYuYQlIixoupCeKOkaulETZS2pxKUiFoefhZDUKLfV4IS/R72kPpsroD2rrwfDdVoFwQl+o0nKNHvocTfflalarGIYUcdgsx//9M7ff7xP0Pnrrt/JVzdiy9g6Bknl/3z9h+OQ9vRJ1SVWsokghIpTlRfB0FJ9dpJmklQYtkNvszVsuD9pCMoce9B1AoISqIqKGM+b5TI8CFqFQQlURV0P5+gxL0HJiqQdqivtqdEezvqpr6E5KefILveBsh9/RtAIkFQUq2gnGddAYIS65LHklDansobJbHYzKCLKkBQon89EJTo9zDogKDEDx8JSvT7SFCi38OePTWXL6KtM+dHQwN10dmJkT/aDcnW+b0j51w+HtkNNx5opug/540S0faEKo6gJJRM4gcRlFi2iDdKLAveTzqCEvceRK2AoCSqgjLmE5TI8CFqFQQlURV0P5+gxL0HJiqQdqg30dNAMZKzZyHz6iull7l2b7SJF58SJigZyHX5f05QIt+jMBVK21N5oySMaxwTSQGCkkjyiZhMUCLChshFEJREllBEABegJPXxR6Xe88uvIEID7UUQlGh3cEH90g71fqhqvwuCEvuam85IUGJaUTfxpO2pBCVu1kFNZSUo0W83QYl+D3sO9XyZq34vbYKS4CsXQ846DXUvv1gSrnvDjTHvkstRrKvTL6TDDghKHIpvMLW0Q73B1moqFEGJfrsJSvR7KBE+E5T4sa5Ed0FQItqeUMURlISSSfwg3igRb1GoAm2Ckvq//gVDLjynrK75J52Gzh/sGqpWDupfAYISP1YGQYkfPhKU6PeRoES/hwQlDjzkO0ociN4nJUGJew+iVkBQElVBGfMJSmT4ELUKm6Ck6abrMOieu8pK9uFzoFE9iDqfoCSqgjLmE5TI8CFqFQQlURV0P5+gxL0HJiqQtqfyRokJVxljiQoQlOhfIAQl+j3sIfV89Ea/lzZBSfq//8HwIw8uE232VROQW28D/UI67ICgxKH4BlNLO9QbbK2mQhGU6LeboES/hz3nVElfEiMo8WNdie6CoES0PaGKIygJJZP4QbZulCRyOTRMeRiZl/+B/OiV0bH3figMHSZeHy0F2gQlgSYNTzyOzD/+XpKne7Nvomu7HbRIJabOzLRXEUCn3DrrIbv2uiAoEWNNpEIISiLJJ2YyQYkYK6ouhKCkaulETZS2pxKUiFoefhZDUKLfV4IS/R72kHobN0qabr4egybd2StabrU1MPvG2/wQUUAXtkGJgJZVl9B0600YdNfC9d92wCFoPPoI1GeSaJnXha5sQXV/tVy8tEN9LXsRpXeCkijqyZhLUCLDh6hVSNtTCUqiOsr5AypAUDKgROIHEJSItyhUgbZulIw4YB+kPvygrKaW+yajMHJUqDo5aMkKEJToWiGjxo5BorW1t+jC8BHA448TlOiysd9qpR3qPZDUSQsEJU5kN5qUoMSonM6CSdtTCUqcLYXaSUxQot9rghL9HgYd2AIlQ087sfdzsiXlUinMfPRJFNNpP4R03AVBiWMDKkxPUFKhYIqGSzvUK5JOVKkEJaLsqKoYgpKqZBM3SdqeSlAibon4VxBBiX5PCUr0e2gTlNQ//SQGX3YxEh0dKCYS6NzjR2g98lg/RBTQBUGJABMqKGHwpReh4bFHe2d07DwW9eecxRslFWgodai0Q71UnaTXRVAi3aGB6yMoGVgjDSOk7akEJRpWjfIaCUqUGwiAoES/hzZBSZAreKFr6p23UVhuBRSam/0QUEgXBCVCjAhZRvB3If3aVKTfnY78Gmsiu+76GDGiiaAkpH6Sh0k71EvWSnJtBCWS3QlXG0FJOJ2kj5K2pxKUSF8xHtRHUKLfRIIS/R7aBiV+KCazC4ISmb5UUhW/elOJWnLHSjvUy1VKdmUEJbL9CVMdQUkYleSPkbanEpTIXzPqKyQoUW8hb5Tot7DUga13lHgil9g2CEpitqZQQN2LLyD10QfIbrwZcquuZjwhQYlxSZ0ElHaodyKCB0kJSvSbSFCi38Oec2ouX0RbZ05EQwQlImzwuwiCEv3+8kaJfg8JSvzwMOiCoCReL4ec83PUP/t0KUnwjp35Z52Pru9sazQpQYlROZ0FIyhxJr3RxAQlRuV0EoygxInsxpNK21MJSoxbzIB9FSAo0b8mCEr0e0hQ4oeHBCXx+phsmYmRe40tS5LdYCPMueJao4mlgZJEdzcaJz9YepdKbpXV0Ln3j/luoRCOSzvUhyiZQ/pRgKBE/7IgKNHvYc85lTdKLHo5o6XDYjam6k8BghL964KgRL+HBCV+eEhQEq+PtQpKmq+6DI1THu4VNw44FK9zbqITlLjR3XRWghLTitqPR1BiX/M4MkrbU3mjJA6XGbNMAYIS/QuCoES/hwQlfnhIUBK/j8OPOQzpN9/oTdR61HHo2ONHRhNLu1Eycs9dkJw9q7fHYjKJlsmPoThokNG+fQsm7VDvm762+iEosaV0fHkISuLT1mZkaXsqQYlN92s0F0GJfuMJSvR7SFDih4cEJfH7mGhvR+a1qUjN+Ai5tdZBdu11gUTCaGJpoGTY0Yci859/LwQlTU2Y+cjjRnv2MZi0Q72PGtvoiaDEhsrx5iAoiVdfW9Gl7akEJbacr+E8BCX6zSco0e8hQYkfHhKU+OGjNFDS8Mffo/naK5Ho7ERwm6T9Jweiff+D/BA7xi6kHepjbNXr0AQl+u0lKNHvYc85le8osegl31FiUezFpCIoce9B1AoISqIqKGM+Pw8sw4eoVdj+6k3q/fcw+OpfI/2/t0q3K1qPPgH50StFbaOm50sDJYEZwQtdU++9g/zyK6LY1FTT/oRtnqAkrFKyxxGUyPYnTHUEJWFUkj9G2p7KGyXy14z6CglK1FsIghL9HvaQ+myugPauvB8N1WgXtkHJ8MN+ivT0t3vVzq67PuZcfV2Nqm+mbYmgxExntRVF2qG+ttQ31y1BiTktXUUiKHGlvNm80vZUghKz/jJaPwoQlOhfFgQl+j0kKPHDw6ALq6Akn8eoHb6LRKHQK2Axk8HMPz3lj6AOOiEocSB6DCmlHepjaLEmQhKU6LeZoES/hz3nVD56Y9FLPnpjUezFpCIoce9B1AoISqIqKGM+H72R4UPUKqyCEgDDD/4x0u+921t2do01Mef6W6K2UdPzCUr8sJ+gxA8fCUr0+0hQot9DghIHHhKUOBC9T0qCEvceRK2gYlDS1YXmG65F/RN/RnH4cLT99GB0bfP9qGVwfkQFCEoiCihkum1Qknn5RTTdcQvS705HdvWvo32/nyK76eZC1NBZBkGJTt/6Vk1Q4oePBCX6fSQo0e8hQYkDDwlKHIhOUOJedMMVVApKGh+8F80TrumtophIYPYd9yK/3PKGK2O4ShQgKKlELbljbYMSuUrorYygRK93i1ZOUOKHjwQl+n0kKNHvIUGJAw8JShyITlDiXnTDFVQKSgZfcDYannqirIp5Z56Lrm23M1wZw1WiAEFJJWrJHUtQItebsJURlIRVSvY4ghLZ/oStjqAkrFJyxxGUyPWmksqk7al8mWsl7nFsVQrw0ZuqZBM1qVJQMui+iWi64TdlPcy6/R7kV1hRVF+1VgxBiR+OE5To95GgRL+HQQfSDvV+qGq/C4IS+5qbzkhQYlpRN/Gk7akEJW7WQU1lJSjRb3eloCQ5dw6ar/o1MlNfLr2jpHO7HUrvNeCPWwUIStzqbyo7QYkpJd3FIShxp73JzNIO9SZ7q6VYBCX63SYo0e+hRPhMUOLHuhLdBUGJaHtCFVcpKAkVlIOsK0BQYl3yWBISlMQiq9WgBCVW5Y4tGUFJbNJaDUxQYlXuWJIRlMQiq/Wg0vZUghLrS6D2EhKU6PecoES/hz2kPpsroL0r70dDNdoFQYl+4wlK9Hso8beffqhqvwuCEvuam85IUGJaUTfxCEos686XuVoWvJ90BCXuPYhaAUFJVAVlzOeNEhk+RK2CoCSqgu7nE5S498BEBdIO9SZ6qsUYBCX6XSco0e+hRPjMGyV+rCvRXRCUiLYnVHEEJaFkEj+IoES8RaEKJCgJJZPoQQQlou0JXRxBSWipRA8kKBFtT6jiCEpCySR+kLQ9laBE/JLRXyBBiX4PCUr0e9hD6vnojX4vCUr0e0hQot9Dib/99ENV+10QlNjX3HRGghLTirqJR1BiWXc+emNZ8H7SEZS49yBqBQQlURWUMZ83SmT4ELUKgpKoCrqfT1Di3gMTFUg71JvoqRZjEJTod52gRL+HEuEzb5T4sa5Ed0FQItqeUMURlISSSfwgghLxFoUqkKAklEyiBxGUiLYndHEEJaGlEj2QoES0PaGKIygJJZP4QdL2VIIS8UtGf4EEJfo9JCjR72EPqeejN/q9JCjR7yFBiX4PJf720w9V7XdBUGJfc9MZCUpMK+omHkGJZd356I1lwftJR1Di3oOoFRCURFVQxnzeKJHhQ9QqCEqiKuh+PkGJew9MVCDtUG+ip1qMQVCi33WCEv0eSoTPvFHix7oS3QVBiWh7QhVXU6CkUED63XdQGDkShWHDQ+mjZRBBiRanllwnQYl+HwlK9Hso8VDvh6r2uyAosa+56YwEJaYVdRNPGnwmKHGzDmoqK0GJfrtrBZQkP/8MQ08+FukZH5dM6/jhOLQefYJ+A7/sgKDEDysJSvT7SFCi30OCEj88DLogKNHvJUGJfg8l7qkEJX6sK9FdEJSItidUcbUCSpqv/jUaH3moTJNZt05EfvRKoXSSPoigRLpD4eojKAmnk+RRBCWS3Qlfm7TffoavnCMXVYCgRP96ICjR7yFBiQMP+Y4SB6L3SUlQ4t6DqBXUCigZdtIxyEx7tUyueWeei65tt4sqoYj5BCUibIhcBEFJZAmdByAocW6BkQIISozI6DwIQYlzCyIXQFASWUIRAaTtqbxRImJZ+F0EQYl+f2sFlDQ+/CCax1/Ra1ixvh4t9z2CYnOzfhMBEJR4YSMISvT7SFCi30OJv/30Q1X7XRCU2NfcdEaCEtOKuolHUGJZd94osSx4P+kIStx7ELWCWgEl6OpC4+8fRmbaa6WXuXZtvQ2yG20SVT4x8wlKxFgRqRCCkkjyiZhMUCLChshFSDvUR26oRgMQlOg3nqBEv4cS4TNvlPixrkR3QVAi2p5QxdUMKAmlht5BBCV6vVu0coIS/T4SlOj3UOKh3g9V7XdBUGJfc9MZCUpMK+omnjT4TFDiZh3UVFaCEv12SwMliY4ONN43Een/vYXc2uuiY/dxKDY26hc65g4ISmIW2FJ4ghJLQseYhqAkRnEthpZ2qLfYulepCEr020lQot9DifCZoMSPdSW6C4IS0faEKk4aKBl69hmoe+6Z3tq7tvk+5v3ivFC91PIgghI/3Cco0e8jQYl+DyUe6v1Q1X4XBCX2NTedkaDEtKJu4kmDzwQlbtZBTWUlKNFvt0lQkvrgfdS99AIKyyyLri2/DSSTlQmUz2PU2DEIbpX0/AQvW505+bHK4tTgaIISP0wnKNHvI0GJfg8JSvzwMOiCoES/lwQl+j2UuKcSlPixrkR3QVAi2p5QxZkCJXUvvoChZ50G5HKlvN0bbYK5v74mVA2LDho5blckZ7X0/qP86JUw69aJFceptQkEJX44TlCi30eCEv0eSjzU+6Gq/S4ISuxrbjojQYlpRd3E440Sy7rzqzeWBe8nHUGJew+iVmAKlAw5+3TUP/e3snJm3zoRudErVVRi44P3ovnGCSXgUsxk0HbkcegY+8OKYtTiYIISP1wnKNHvI0GJfg8JSvzwMOiCoES/lwQl+j2UuKfyRokf60p0FwQlou0JVZw0UBIUnejsROrD95EbvTJQXx+qj1ofRFDixwogKNHvI0GJfg8lHur9UNV+FwQl9jU3nZGgxLSibuLxRoll3XmjxLLg/aQjKHHvQdQKTIGShscexeBLL+otJ7/Ciph12yQgkYhaIueHUICgJIRICoYQlCgwaYASCUr0e0hQ4oeHQRcEJfq9JCjR76HEPZU3SvxYV6K7ICgRbU+o4kyBkiBZ+q03kXn9nygsvQyyG26CQnNzqBo4KLoCBCXRNZQQgaBEggvRaiAoiaaflNnSfvspRRdtdRCUaHPsq/USlOj3kKDEgYe8UeJA9D4pCUrcexC1ApOgJGotnF+9AgQl1WsnaSZBiSQ3qquFoKQ63aTNIiiR5kh19RCUVKebpFkEJZLcqL4WaXsqb5RU7yVnhlSAoCSkUIKHEZQINqeC0ghKKhBL8FCCEsHmhCyNoCSkUMKHSTvUC5dLbHkEJWKtCV0YQUloqUQPlLanEpSIXi5+FEdQot9HghL9HgYdEJT44SNBiX4fCUr0e9izp+byRbR1LvjkPX90KkBQotO3RasmKNHvocQ9laDEj3UluguCEtH2hCqOoCSUTOIHEZSItyhUgQQloWQSPYigRLQ9oYuT9tvP0IVzYJkCBCX6FwRBiX4PCUoceMh3lDgQvU9KghL3HkStgKAkqoIy5hOUyPAhahUEJVEVdD+foMS9ByYqICgxoaL7GAQl7j2IWgFBSVQFZcyXtqfyRomMdeF1FQQl+u0lKNHvYQ+pz+YKaO/K+9FQjXZBUKLfeIIS/R5K/O2nH6ra74KgxL7mpjMSlJhW1E08ghLLuvNGiWXB+0lHUOLeg6gVEJREVVDGfN4okeFD1CoISqIq6H4+QYl7D0xUIO1Qb6KnWoxBUKLfdYIS/R5KhM+8UeLHuhLdBUGJaHtCFUdQEkom8YMISsRbFKpAgpJQMokeRFAi2p7QxRGUhJZK9ECCEtH2hCqOoCSUTOIHSdtTCUrELxn9BRKU6PeQoES/hz2kno/e6PeSoES/hwQl+j2U+NtPP1S13wVBiX3NTWckKDGtqJt4BCWWdeejN5YF7ycdQYl7D6JWQFASVUEZ83mjRIYPUasgKImqoPv5BCXuPTBRgbRDvYmeajEGQYl+1wlK9HsoET7zRokf60p0FwQlou0JVRxBSSiZxA8iKBFvUagCCUpCySR6EEGJaHtCF0dQEloq0QMJSkTbE6o4gpJQMokfJG1PJSgRv2T0F0hQot9DghL9HvaQej56o99LghL9HhKU6PdQ4m8//VDVfhcEJfY1N52RoMS0om7iEZRY1p2P3lgWvJ90BCXuPYhaAUFJVAVlzOeNEhk+RK2CoCSqgu7nE5S498BEBdIO9SZ6qsUYBCX6XSco0e+hRPjMGyV+rCvRXRCUiLYnVHEEJaFkEj+IoES8RaEKJCgJJZPoQQQlou0JXRxBSWipRA8kKBFtT6jiCEpCySR+kLQ9laBE/JLRXyBBiX4PCUr0e9hD6vnojX4vCUr0e0hQot9Dib/99ENV+10QlNjX3HRGghLTirqJR1BiWXc+emNZ8H7SEZS49yBqBQQlURWUMZ83SmT4ELUKgpKoCrqfT1Di3gMTFUg71JvoqRZjLD2sAV/M60ShUIvd+9EzQYkfPkrbU3mjxI91JboLghLR9oQqjqAklEziBxGUiLcoVIEEJaFkEj2IoES0PaGLk3aoD104B5YpQFCif0EQlOj3MOhA2p5KUOLHuhLdBUGJaHtCFUdQEkom8YMISsRbFKpAgpJQMokeRFAi2p7QxUk71IcunAMJSjxbAwQlfhgqbU9VBUpy+TySiSSSycRXVsP81nYEfz586OCyP+OjN+7/4hCUuPcgagUEJVEVlDGfoESGD1GrICiJqqD7+QQl7j0wUYG0Q72JnmoxBm+U6HedoES/h0EH0vZUNaCko7MbPzr8XBz2412w83Zb9q6G9o5OnHbhDXjyuVdL/2z9tVfD+AuPw6gRQ0v/n6DE/V8cghL3HkStgKAkqoIy5hOUyPAhahUEJVEVdD+foMS9ByYqkHaoN9FTLcYgKNHvOkGJfg8JSqr08NfX34tb7/ljafavzjy8DJTcPPEPuH/KU7hz/JlobKjDkadfiVVGL4sLTj2IoKRKvU1PIygxraj9eAQl9jWPIyNBSRyq2o9JUGJfc9MZCUpMK+omHkGJG91NZyUoMa2o/XgEJfY1jyOjtD1VxY2SOXNb0dndjX2PugAnHbZXGSjZ89BzMOa7m+HQ/XYu+fXYUy/ipHMn4PW/3opEIsEbJXGs4gpjEpRUKJjA4QQlAk2poiSCkipEEziFoESgKRWWRFBSoWBCh0s71AuVSXxZBCXiLRqwQIKSASVSMUDanqoClPQ4O2afU3DsQT8sAyWb7XgELjzt4BIsCX7+/d/3MO6wc/H8lN9g6OAmghIBfy0ISgSYELEEgpKIAgqZTlAixIiIZRCURBRQwHSCEgEmGChB2qHeQEs1GYKgRL/tBCX6PQw6kLanOgUlUx5/Hp9+MatfZ9f++srYarN1y/6sLygpFotYd5sDMeGSE/GdLTcojZ3+3sfY9YAz8Zd7L8eyS49EMIY/VIAK1KYCwa2yRX+6sgXUZ5K1KQa7pgJUgApQASpABRarQFc2j/pMigoZVoD/LWZYUIazpkDf/46ImjhRrOBvw92/+ws++uSLfnNuvN4a2G7rTZcISoI/DG6UXHT6Idj+OwvG8kZJVAvNz+eNEvOa2o7IGyW2FY8nH2+UxKOr7ai8UWJbcfP5eKPEvKYuIkr77acLDXzIyRsl+l3kjRL9HgYdSNtTnd4oqdTS/h69Cd5RssM2m+OQfX9QCsd3lFSqavzjCUri1zjuDAQlcStsJz5BiR2d485CUBK3wvHHJyiJX2MbGaQd6m307GMOghL9rhKU6PeQoKRKD3P5PIqFInbe/wwcsf+u2Pn7WyKTSZei3XT37/HA758uffVmUGM9jjjtCn71pkqd45pGUBKXsvbiEpTY0zrOTAQlcaprLzZBiT2t48pEUBKXsnbjEpTY1TuubAQlcSlrLy5BiT2t48wkbU9VcaMk+IpNcFNk0Z/f33FJCYi0tXfiZ+dfh2demFb643XXXAXjLzoeXxs1LE4fGZsKUAEqQAWoABWgAlSAClABKkAFqAAVoAIDKlDRO0oGjFbBgLnz25DN5jBqxNAKZnEoFaACVIAKUAEqQAWoABWgAlSAClABKkAF4lPAGSiJryVGpgJUgApQASpABagAFaACVIAKUAEqQAWoQHUKEJRUp1vNzfrk81lYetRwJJPln2+tOSGUNxzc4vq8ZQ6WGjEUdXUZ5d2wfCqgU4HgRmVXV5aPnCqyr7s7i9lzW0uemf78oCIZVJcavD/vi5a5GDFsMOr57z/VXrJ4PxQoFIr4vGU2mhobMLh5kB9N1VgX7R2dyGbzGDqkycvOCUq8tNVcU3fc/xiCz0Jnc7nSo1K77/h/OOnwvcwlYCQrCrz7wSc4+7JbMfVf/y3lO+vE/bH32G2t5GYSswoE/8F28MmXoaOzCw/cdJ7Z4IwWqwIzZ83F/sddjPc/+qyUZ7WVlsOh++2MXbb/Vqx5Gbx6BYrFIq674xH85taHSkGC/8i+9uITsMHaq1UflDOtKxB8SOCqmx7ozTvmu5vhnJMO8PZwb11gywk//nQmdjvwF9hnt215JrWsvYl081vbcdE1d2HK48+XwgV/H68492gToRnDkgKffTEbF151B16Y+mYp4zdWH42fH7cf1lpjJUsV2ElDUGJHZ5VZ3njrPex1+Lm49crTsflG38A7H3yCXfY/AxMnnMVDoiJHg81s23EnYsdtv4l9d/8e1lpjZXR2dWH40MGKumCp/9/enUdVcd1xAP8CLmBtFi2KdUnANTZUY6OJWzXxuBPilihGC0JMEYS4gFjUqgWMTzEoBkSjAhqPoFafBoXagiYQiU3UE2s0FjjE4JKGaDzWJW21p+d3DaTJgQSfb3jvDt/773szc+/nznsz87v3/kYE5KFtoWUTrHlF6mLEQIle58UXX16FNa8Q/sP7qxG0rbsOIj07D+/uSYaHexO9GtNAanviVAmmzEzA1rWx8O3mg+RNu7E/vxh/yX6dMyw1Ogd25hxG+5+3Qo/unVBx8QuEzLEgJGA0giaO0KgVrKoIyEP2S+HxKDt3ESEBoxgo0ey0kFkk8mzh5uqK4ICRGPhUD1y/cYszLDXrx3lxabh67TpSls2Ci6sLlq7KROXlr5BmmatZS364ugyUmKo77duYoyfOIHi2BbnbLOjQtrXa+cAxEZgXFsARUPtSG7q3FSnb8fafj+DQH1ejkZubocfizo0VkFHRA/nvw29oP+QWHGWgxFhuw/d+/lIlhgdEq4fwXr5dDD8eD3DvAqvSduBM6TlsTIxWG0uw65kJs9Rvz2wjZ/euo+8Wi1ZsxoVLldicFKNvIxpgzWX51MzY1fDybIlr12+iXZufMVCi2XlQ8N4JRCxYgwNvWfBIu7vPFiz6CcgAgvRfwvyXVeX35BZi7ebdKNiZpF9jfqDGDJSYqjvt25iqKf6flH6GyJBxuH7zFg4e/gCZybF4gGsJ7Ytt4N78A2Ph4d4UbVq3xKV/XFY396GB/vDybGHgUblrewscfOdDxCVlYuebS/Fu8UfY8fZhBkrsjVzP+5MbC5khVGhdq5Z0sDifQNQf1uHhB5tjwatTqyv3i8FBSH1tNgb17eF8FWaNflTgP7fvYHhAFEYP6Yu5oVxK/KNgTvSFZcnbUFp+HutXzEVMwgYGSpyob+paFUvKduzKeQcjnumD0k8vwLPlg2p2F5cz1lXQOb5XUHQcEQuTMWRgL5WWYWVqFoInjcIEv0HOUUE71YKBEjtB6rSbO3f+i81ZB2qt8pCBv4JPhzbqcxnBljWE8qB96mw5Xp48GhEh4zgzwQk6/OLnX2J//vu11mTK+GFqOr/c1D/1xGPpx/Y2AAAF/klEQVTqj6xJk0Z4c9t+SPKlvekJaNy4kRO0pGFX4djJv1fnjvm+hCyPkovO3z4pV7O7ZPTTt5s3duw7xECJk5028j/5eeWVGmvVvcuj6N/78e98VlJ+HpPD4hH4wnDMDB7rZK1hdaoEXolORNeOHb7zQN17ZCiWRAVh9JCnCaWhwOLEdBzIP4r9W5dzur9G/bfdmo+M7DzsWL9E5ZaZsySVgRKN+q+qqpGLknG2tEIte5OXROQd+qu6l83Z8hq8v3n20LBZDa7KkidoetRKdPFpj/c+OAX3po1VqoZO3m1NZcFAiam6s26NkamLMp24tjJmxAB07dgehUdPIjTmdRTnpKoZJPJDmPX7NxAV+iImMhFo3bAN/JYkhMzaW1DrESKCx6KZh7sKlCTHRaqorxRJ7Or3m99h96Y41c8sjhWQ39mRDz+usRIyy0CSfcYlbUHxsY8xuG9P9b3TJecgOYRe8BuEGYHPM1u8Y7tQHV2SXstSmppKL9/OGPrrJ6s/khuMqREJ6N2zG5bNnw43N1cnaAGrUJOAzCiR32Fs5JTqjzmjRN9zJTXDipQMK7LSFqugM4s+ArJMUab6d3r07oNYftFxde2TRKBynWTRQ0ACJW29PBETHqAqLIO3g8e/ihmBY1QePRY9BCb+dikG9euJsMDnVd6gxYkZ6rmxOCfFVIPpDJTocT46pJaSIV6mVu3LXFZ9/PDY1SoJ4YpFoQ6pEw967wITpi9WI5/TJo1UG5d9egH+QQt4o3jvlA7bQi4+Z0rOVR//o9NlOHm6DFMnDMOU8UNVQIxFD4HS8guYNns5nh3QS719inmDnLvfZFDhbNln2LAySlWUOUqcu79qq50kkFyVlq1m4mWumQ+Z5cWil0D23gLIq9WriiQ1b/HQA3huaF8O3mnUlfKfWlJeUZ30UwIlT/uFIXzaGAS9yOTKOnTljZtfo8+oUKyNj1T3MlKqXgBiTY9HZ+92OjSjTnVkoKROTA3zSzI1NTpuHdIsczCgjy8qLlZi5EvzED1jEjPFa3RKyDKr9KxcFRhp/hMPJK3fifyiYziYtYpv2tCoH/+/qlx6o2fHnS2rwLiQRSpwKUsYXV3vziRp5tGUb6Fy0i799q03C+D7mA/WbNylEirzrTdO2mG1VEtyAUlOIHkjg88jd5cWS2nt+TCDlXp1ZXVtufRGz46TgZ7JYXEq+NynZzdY/1SEJYkZTJCtWXfKDC/vDl6wLAxFM/em6vXrh46cUIPrZhoAYqBEsxOzPqsrIzDr39oHa24Rrlz9J37a3AP+w/ojfNpYNG7Et6fUZ1/cz7EkKW/s8o3qLSlVN4arl87EL7t3vJ/dclsHCjBQ4kD8+zi0/AZlKcf3y3PD+mF57Cv3sWduapSAvJL7jfQ9SNuy75ugljs2rJyLJx7vbNQhuV8DBOSmvqalcXzzhgHY9bRLBkrqCdqAw8jgXWJadvWe42NCVB49Fn0EZJbzui17kV94XM1qfrJHV7UMRwYUzFQYKDFTbxrYFkkc6tWqJVxdXQw8CndtpIC8Su/GjVvwatUCLi7sRyOtuW8KUMBcAl//69+48tU1XgfN1a1sDQUo4CAB+U+tvHxV/ady8NVBnWCHw8oynNu376gEy2YsDJSYsVfZJgpQgAIUoAAFKEABClCAAhSgAAVsEmCgxCY2bkQBClCAAhSgAAUoQAEKUIACFKCAGQUYKDFjr7JNFKAABShAAQpQgAIUoAAFKEABCtgkwECJTWzciAIUoAAFKEABClCAAhSgAAUoQAEzCjBQYsZeZZsoQAEKUIACFKAABShAAQpQgAIUsEmAgRKb2LgRBShAAQpQgAIUoAAFKEABClCAAmYUYKDEjL3KNlGAAhSgAAUoQAEKUIACFKAABShgkwADJTaxcSMKUIACFKAABShAAQpQgAIUoAAFzCjAQIkZe5VtogAFKEABClCAAhSgAAUoQAEKUMAmAQZKbGLjRhSgAAUoQAEKUIACFKAABShAAQqYUYCBEjP2KttEAQpQgAIUoAAFKEABClCAAhSggE0C/wM3SoeWb1CdbgAAAABJRU5ErkJggg==",
"text/html": [
"