{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "9964872b-225d-4ced-93e4-fc5b279ec2ed",
   "metadata": {},
   "source": [
    "# Webpage English summarizer with user inputs (url, ollama-based LLM) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e49d399-d18c-4c91-8abc-cf3289e11e2f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "# from dotenv import load_dotenv\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display\n",
    "from openai import OpenAI\n",
    "import ollama, time\n",
    "from tqdm import tqdm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "46e7d809-248d-41b8-80e1-36b210041581",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define system prompt.\n",
    "\n",
    "system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
    "and provides a detailed summary, ignoring text that might be navigation related. \\\n",
    "Respond in markdown, in English.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8bf237f-591f-4c32-9415-5d5d4e2522b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function that writes a User Prompt that asks for summaries of websites:\n",
    "\n",
    "def user_prompt_for(website):\n",
    "    user_prompt = f\"You are looking at a website titled {website.title}\"\n",
    "    user_prompt += \"\\nThe contents of this website is as follows; \\\n",
    "please provide a detailed summary of this website in markdown. \\\n",
    "If it includes news or announcements, then summarize these too.\\n\\n\"\n",
    "    user_prompt += website.text\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7d39ee6d-c670-41ba-a0b8-debd55bda8e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# See how this function creates exactly the format above\n",
    "\n",
    "def messages_for(website):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_prompt},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "43e28ff5-2def-4a47-acdd-2e06c0666956",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Constants\n",
    "\n",
    "OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
    "HEADERS = {\"Content-Type\": \"application/json\"}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "32f4f481-81a3-479d-817b-4e754d9af46d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n",
    "\n",
    "# Some websites need you to use proper headers when fetching them:\n",
    "headers = HEADERS\n",
    "\n",
    "class Website:\n",
    "\n",
    "    def __init__(self, url):\n",
    "        \"\"\"\n",
    "        Create this Website object from the given url using the BeautifulSoup library\n",
    "        \"\"\"\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        soup = BeautifulSoup(response.content, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "        self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f81cfd17-8208-4192-a59f-485ff3ea74e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now: call the ollama API wrapper and return the relevant component of the response\n",
    "\n",
    "def summarize(url):\n",
    "    website = Website(url)\n",
    "    response = ollama.chat(\n",
    "        model=MODEL,\n",
    "        messages = messages_for(website)\n",
    "    )\n",
    "    return response['message']['content']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7a9eedc6-2183-473d-84ca-b10d40e2a1e6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Ask the user the name of the url address\n",
    "\n",
    "url= str(input(\"\"\"\n",
    "Please provide a valid url address:\n",
    "https://\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5d012de2-0ef2-43db-9f51-fc7f989c3642",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Ask the user to select a valid model\n",
    "\n",
    "MODEL= str(input(\"\"\"\n",
    "Please select a LLM:\n",
    "(examples: llama3.2, deepseek-r1:1.5b)\n",
    "\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ac8c02e-4a62-448b-a231-8c6f65891811",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's just make sure the model is loaded\n",
    "\n",
    "!ollama pull {MODEL}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0544541f-11a8-4eb7-8eb6-bc032ed6d0d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "print('url: https://{0}\\nModel= {1}'.format(url, MODEL))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45518950-f2c9-43af-b897-4fe8fe48dfd8",
   "metadata": {},
   "outputs": [],
   "source": [
    "summary = summarize('https://'+ url)\n",
    "for summ in tqdm(summary):\n",
    "    time.sleep(0.01)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02c0c15e-216d-47c7-843d-ac27af02820b",
   "metadata": {},
   "outputs": [],
   "source": [
    "display(Markdown(summary))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "985a3689-5827-4b15-b8d5-276f9b292afd",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}