{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "fef36918-109d-41e3-8603-75ff81b42379",
   "metadata": {},
   "source": [
    "# Solution for exercise day 2 - slight modification: model is a parameter also - display_summary(\"deepseek-r1:1.5b\",\"https://yoururl\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b50349ac-93ea-496b-ae20-bd72a93bb138",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "edd073c7-8444-4a0d-b84e-4b2ed0ee7f35",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Constants\n",
    "OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
    "HEADERS = {\"Content-Type\": \"application/json\"}\n",
    "#MODEL = \"llama3.2\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2e3a6e1a-e4c7-4448-9852-1b6ba2bd8d66",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "# Some websites need you to use proper headers when fetching them:\n",
    "headers = {\n",
    " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "}\n",
    "\n",
    "class Website:\n",
    "\n",
    "    def __init__(self, url):\n",
    "        \"\"\"\n",
    "        Create this Website object from the given url using the BeautifulSoup library\n",
    "        \"\"\"\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        soup = BeautifulSoup(response.content, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "        self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ae3752ca-3a97-4d6a-ac84-5b75ebfb50ed",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the system prompt \n",
    "system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
    "and provides a short summary, ignoring text that might be navigation related. \\\n",
    "Respond in markdown.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "48b5240f-7617-4e51-a320-cba9650bec84",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function that writes a User Prompt that asks for summaries of websites:\n",
    "\n",
    "def user_prompt_for(website):\n",
    "    user_prompt = f\"You are looking at a website titled {website.title}\"\n",
    "    user_prompt += \"\\nThe contents of this website is as follows; \\\n",
    "please provide a short summary of this website in markdown. \\\n",
    "If it includes news or announcements, then summarize these too.\\n\\n\"\n",
    "    user_prompt += website.text\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6f7d84f0-60f2-4cbf-b4d1-173a79fe3380",
   "metadata": {},
   "outputs": [],
   "source": [
    "def messages_for(website):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_prompt},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "25520a31-c857-4ed5-86da-50dfe5fab7bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "def summarize(model,url):\n",
    "    website = Website(url)\n",
    "    payload = {\n",
    "        \"model\": model,\n",
    "        \"messages\": messages_for(website),\n",
    "        \"stream\": False\n",
    "    }\n",
    "    response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n",
    "    return response.json()['message']['content']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "430776ed-8516-43a9-8a22-618d9080f2e1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function to display this nicely in the Jupyter output, using markdown\n",
    "def display_summary(model,url):\n",
    "    summary = summarize(model,url)\n",
    "    display(Markdown(summary))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b2b05c1f-e4a2-4f65-bd6d-634d72e38b6e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#!ollama pull deepseek-r1:1.5b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "01513f8a-15b7-4053-bfe4-44b36e5494d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "display_summary(\"deepseek-r1:1.5b\",\"https://www.ipma.pt\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}