{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a98030af-fcd1-4d63-a36e-38ba053498fa",
   "metadata": {},
   "source": [
    "# A full business solution\n",
    "\n",
    "Create a product that builds a Brochure for a company to be used for prospective clients, investors and potential recruits.\n",
    "\n",
    "We will be provided a company name and their primary website."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d5b08506-dc8b-4443-9201-5f1848161363",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "import json\n",
    "from typing import List\n",
    "from dotenv import load_dotenv\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display, update_display\n",
    "from openai import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fc5d8880-f2ee-4c06-af16-ecbc0262af61",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize and constants\n",
    "\n",
    "load_dotenv()\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "MODEL = 'gpt-4o-mini'\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "106dd65e-90af-4ca8-86b6-23a41840645b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "\n",
    "class Website:\n",
    "    url: str\n",
    "    title: str\n",
    "    body: str\n",
    "    links: List[str]\n",
    "\n",
    "    def __init__(self, url):\n",
    "        self.url = url\n",
    "        response = requests.get(url)\n",
    "        self.body = response.content\n",
    "        soup = BeautifulSoup(self.body, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        if soup.body:\n",
    "            for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "                irrelevant.decompose()\n",
    "            self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
    "        else:\n",
    "            self.text = \"\"\n",
    "        links = [link.get('href') for link in soup.find_all('a')]\n",
    "        self.links = [link for link in links if link]\n",
    "\n",
    "    def get_contents(self):\n",
    "        return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e30d8128-933b-44cc-81c8-ab4c9d86589a",
   "metadata": {},
   "outputs": [],
   "source": [
    "ed = Website(\"https://edwarddonner.com\")\n",
    "print(ed.get_contents())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1771af9c-717a-4fca-bbbe-8a95893312c3",
   "metadata": {},
   "source": [
    "## First step: Have GPT-4o-mini figure out which links are relevant\n",
    "\n",
    "### Use a call to gpt-4o-mini to read the links on a webpage, and respond in structured JSON.  \n",
    "It should decide which links are relevant, and replace relative links such as \"/about\" with \"https://company.com/about\".  \n",
    "We will use \"one shot prompting\" in which we provide an example of how it should respond in the prompt."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6957b079-0d96-45f7-a26a-3487510e9b35",
   "metadata": {},
   "outputs": [],
   "source": [
    "link_system_prompt = \"You are provided with a list of links found on a webpage. \\\n",
    "You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n",
    "such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n",
    "link_system_prompt += \"You should respond in JSON as in this example:\"\n",
    "link_system_prompt += \"\"\"\n",
    "{\n",
    "    \"links\": [\n",
    "        {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n",
    "        {\"type\": \"careers page\": \"url\": \"https://another.full.url/careers\"}\n",
    "    ]\n",
    "}\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8e1f601b-2eaf-499d-b6b8-c99050c9d6b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_links_user_prompt(website):\n",
    "    user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n",
    "    user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n",
    "Do not include Terms of Service, Privacy, email links.\\n\"\n",
    "    user_prompt += \"Links (some might be relative links):\\n\"\n",
    "    user_prompt += \"\\n\".join(website.links)\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6bcbfa78-6395-4685-b92c-22d592050fd7",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(get_links_user_prompt(ed))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a29aca19-ca13-471c-a4b4-5abbfa813f69",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_links(url):\n",
    "    website = Website(url)\n",
    "    completion = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": link_system_prompt},\n",
    "            {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n",
    "      ],\n",
    "        response_format={\"type\": \"json_object\"}\n",
    "    )\n",
    "    result = completion.choices[0].message.content\n",
    "    return json.loads(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d3d583e2-dcc4-40cc-9b28-1e8dbf402924",
   "metadata": {},
   "outputs": [],
   "source": [
    "get_links(\"https://anthropic.com\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0d74128e-dfb6-47ec-9549-288b621c838c",
   "metadata": {},
   "source": [
    "## Second step: make the brochure!\n",
    "\n",
    "Assemble all the details into another prompt to GPT4-o"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "85a5b6e2-e7ef-44a9-bc7f-59ede71037b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_all_details(url):\n",
    "    result = \"Landing page:\\n\"\n",
    "    result += Website(url).get_contents()\n",
    "    links = get_links(url)\n",
    "    print(\"Found links:\", links)\n",
    "    for link in links[\"links\"]:\n",
    "        result += f\"\\n\\n{link['type']}\\n\"\n",
    "        result += Website(link[\"url\"]).get_contents()\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5099bd14-076d-4745-baf3-dac08d8e5ab2",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(get_all_details(\"https://anthropic.com\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9b863a55-f86c-4e3f-8a79-94e24c1a8cf2",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
    "and creates a short brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
    "Include details of company culture, customers and careers/jobs if you have the information.\"\n",
    "\n",
    "# Or uncomment the line below for a more humorous brochure:\n",
    "\n",
    "# system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
    "# and creates a short humorous, entertaining, jokey brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
    "# Include details of company culture, customers and careers/jobs if you have the information.\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6ab83d92-d36b-4ce0-8bcc-5bb4c2f8ff23",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_brochure_user_prompt(company_name, url):\n",
    "    user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n",
    "    user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n",
    "    user_prompt += get_all_details(url)\n",
    "    user_prompt = user_prompt[:20_000] # Truncate if more than 20,000 characters\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e44de579-4a1a-4e6a-a510-20ea3e4b8d46",
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_brochure(company_name, url):\n",
    "    response = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": system_prompt},\n",
    "            {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
    "          ],\n",
    "    )\n",
    "    result = response.choices[0].message.content\n",
    "    display(Markdown(result))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e093444a-9407-42ae-924a-145730591a39",
   "metadata": {},
   "outputs": [],
   "source": [
    "create_brochure(\"Anthropic\", \"https://anthropic.com\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "61eaaab7-0b47-4b29-82d4-75d474ad8d18",
   "metadata": {},
   "source": [
    "## Finally - a minor improvement\n",
    "\n",
    "With a small adjustment, we can change this so that the results stream back from OpenAI,\n",
    "with the familiar typewriter animation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bcb358a4-aa7f-47ec-b2bc-67768783dfe1",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "51db0e49-f261-4137-aabe-92dd601f7725",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_brochure(company_name, url):\n",
    "    stream = openai.chat.completions.create(\n",
    "        model=MODEL,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": system_prompt},\n",
    "            {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
    "          ],\n",
    "        stream=True\n",
    "    )\n",
    "    \n",
    "    response = \"\"\n",
    "    display_handle = display(Markdown(\"\"), display_id=True)\n",
    "    for chunk in stream:\n",
    "        response += chunk.choices[0].delta.content or ''\n",
    "        response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
    "        update_display(Markdown(response), display_id=display_handle.display_id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56bf0ae3-ee9d-4a72-9cd6-edcac67ceb6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "stream_brochure(\"Anthropic\", \"https://anthropic.com\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fdb3f8d8-a3eb-41c8-b1aa-9f60686a653b",
   "metadata": {},
   "outputs": [],
   "source": [
    "stream_brochure(\"HuggingFace\", \"https://huggingface.co\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bcf5168e-f1d9-4fa7-b372-daf16358e93c",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}