{ "cells": [ { "cell_type": "markdown", "id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9", "metadata": {}, "source": [ "# Welcome to your first assignment!\n", "\n", "Instructions are below. Please give this a try, and look in the solutions folder if you get stuck (or feel free to ask me!)" ] }, { "cell_type": "markdown", "id": "ada885d9-4d42-4d9b-97f0-74fbbbfe93a9", "metadata": {}, "source": [ "\n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", "

Just before we get to the assignment --

\n", " I thought I'd take a second to point you at this page of useful resources for the course. This includes links to all the slides.
\n", " https://edwarddonner.com/2024/11/13/llm-engineering-resources/
\n", " Please keep this bookmarked, and I'll continue to add more useful links there over time.\n", "
\n", "
" ] }, { "cell_type": "markdown", "id": "6e9fa1fc-eac5-4d1d-9be4-541b3f2b3458", "metadata": {}, "source": [ "# HOMEWORK EXERCISE ASSIGNMENT\n", "\n", "Upgrade the day 1 project to summarize a webpage to use an Open Source model running locally via Ollama rather than OpenAI\n", "\n", "You'll be able to use this technique for all subsequent projects if you'd prefer not to use paid APIs.\n", "\n", "**Benefits:**\n", "1. No API charges - open-source\n", "2. Data doesn't leave your box\n", "\n", "**Disadvantages:**\n", "1. Significantly less power than Frontier Model\n", "\n", "## Recap on installation of Ollama\n", "\n", "Simply visit [ollama.com](https://ollama.com) and install!\n", "\n", "Once complete, the ollama server should already be running locally. \n", "If you visit: \n", "[http://localhost:11434/](http://localhost:11434/)\n", "\n", "You should see the message `Ollama is running`. \n", "\n", "If not, bring up a new Terminal (Mac) or Powershell (Windows) and enter `ollama serve` \n", "And in another Terminal (Mac) or Powershell (Windows), enter `ollama pull llama3.2` \n", "Then try [http://localhost:11434/](http://localhost:11434/) again.\n", "\n", "If Ollama is slow on your machine, try using `llama3.2:1b` as an alternative. Run `ollama pull llama3.2:1b` from a Terminal or Powershell, and change the code below from `MODEL = \"llama3.2\"` to `MODEL = \"llama3.2:1b\"`" ] }, { "cell_type": "code", "execution_count": null, "id": "4e2a9393-7767-488e-a8bf-27c12dca35bd", "metadata": {}, "outputs": [], "source": [ "# imports\n", "\n", "import requests\n", "from bs4 import BeautifulSoup\n", "from IPython.display import Markdown, display" ] }, { "cell_type": "code", "execution_count": null, "id": "29ddd15d-a3c5-4f4e-a678-873f56162724", "metadata": {}, "outputs": [], "source": [ "# Constants\n", "\n", "OLLAMA_API = \"http://localhost:11434/api/chat\"\n", "HEADERS = {\"Content-Type\": \"application/json\"}\n", "MODEL = \"llama3.2\"" ] }, { "cell_type": "code", "execution_count": null, "id": "dac0a679-599c-441f-9bf2-ddc73d35b940", "metadata": {}, "outputs": [], "source": [ "# Create a messages list using the same format that we used for OpenAI\n", "\n", "messages = [\n", " {\"role\": \"user\", \"content\": \"Describe some of the business applications of Generative AI\"}\n", "]" ] }, { "cell_type": "code", "execution_count": null, "id": "7bb9c624-14f0-4945-a719-8ddb64f66f47", "metadata": {}, "outputs": [], "source": [ "payload = {\n", " \"model\": MODEL,\n", " \"messages\": messages,\n", " \"stream\": False\n", " }" ] }, { "cell_type": "code", "execution_count": null, "id": "42b9f644-522d-4e05-a691-56e7658c0ea9", "metadata": {}, "outputs": [], "source": [ "response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n", "print(response.json()['message']['content'])" ] }, { "cell_type": "markdown", "id": "6a021f13-d6a1-4b96-8e18-4eae49d876fe", "metadata": {}, "source": [ "# Introducing the ollama package\n", "\n", "And now we'll do the same thing, but using the elegant ollama python package instead of a direct HTTP call.\n", "\n", "Under the hood, it's making the same call as above to the ollama server running at localhost:11434" ] }, { "cell_type": "code", "execution_count": null, "id": "7745b9c4-57dc-4867-9180-61fa5db55eb8", "metadata": {}, "outputs": [], "source": [ "import ollama\n", "\n", "response = ollama.chat(model=MODEL, messages=messages)\n", "print(response['message']['content'])" ] }, { "cell_type": "markdown", "id": "a4704e10-f5fb-4c15-a935-f046c06fb13d", "metadata": {}, "source": [ "## Alternative approach - using OpenAI python library to connect to Ollama" ] }, { "cell_type": "code", "execution_count": null, "id": "23057e00-b6fc-4678-93a9-6b31cb704bff", "metadata": {}, "outputs": [], "source": [ "# There's actually an alternative approach that some people might prefer\n", "# You can use the OpenAI client python library to call Ollama:\n", "\n", "from openai import OpenAI\n", "ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", "\n", "response = ollama_via_openai.chat.completions.create(\n", " model=MODEL,\n", " messages=messages\n", ")\n", "\n", "print(response.choices[0].message.content)" ] }, { "cell_type": "markdown", "id": "1622d9bb-5c68-4d4e-9ca4-b492c751f898", "metadata": {}, "source": [ "# NOW the exercise for you\n", "\n", "Take the code from day1 and incorporate it here, to build a website summarizer that uses Llama 3.2 running locally instead of OpenAI; use either of the above approaches." ] }, { "cell_type": "code", "execution_count": null, "id": "402d5686-4e76-4110-b65a-b3906c35c0a4", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 5 }