1 changed files with 150 additions and 0 deletions
@ -0,0 +1,150 @@ |
|||||||
|
{ |
||||||
|
"nbformat": 4, |
||||||
|
"nbformat_minor": 0, |
||||||
|
"metadata": { |
||||||
|
"colab": { |
||||||
|
"provenance": [], |
||||||
|
"gpuType": "T4", |
||||||
|
"authorship_tag": "ABX9TyPtAT7Yq5xd4vDcJEZtg69J" |
||||||
|
}, |
||||||
|
"kernelspec": { |
||||||
|
"name": "python3", |
||||||
|
"display_name": "Python 3" |
||||||
|
}, |
||||||
|
"language_info": { |
||||||
|
"name": "python" |
||||||
|
}, |
||||||
|
"accelerator": "GPU" |
||||||
|
}, |
||||||
|
"cells": [ |
||||||
|
{ |
||||||
|
"cell_type": "code", |
||||||
|
"source": [ |
||||||
|
"# getting the latest transformers first, since this will require a restart\n", |
||||||
|
"\n", |
||||||
|
"!pip install git+https://github.com/huggingface/transformers.git" |
||||||
|
], |
||||||
|
"metadata": { |
||||||
|
"id": "6gGKXU5RXORf" |
||||||
|
}, |
||||||
|
"execution_count": null, |
||||||
|
"outputs": [] |
||||||
|
}, |
||||||
|
{ |
||||||
|
"cell_type": "code", |
||||||
|
"source": [ |
||||||
|
"# imports\n", |
||||||
|
"\n", |
||||||
|
"import torch\n", |
||||||
|
"from google.colab import userdata\n", |
||||||
|
"from huggingface_hub import login\n", |
||||||
|
"from transformers import AutoProcessor, AutoModelForImageTextToText\n", |
||||||
|
"from google.colab import files" |
||||||
|
], |
||||||
|
"metadata": { |
||||||
|
"id": "yCRrF4aiXPPo" |
||||||
|
}, |
||||||
|
"execution_count": null, |
||||||
|
"outputs": [] |
||||||
|
}, |
||||||
|
{ |
||||||
|
"cell_type": "code", |
||||||
|
"source": [ |
||||||
|
"# logging in to HF\n", |
||||||
|
"\n", |
||||||
|
"hf_token = userdata.get('HF_TOKEN')\n", |
||||||
|
"login(hf_token, add_to_git_credential=True)" |
||||||
|
], |
||||||
|
"metadata": { |
||||||
|
"id": "AAlOQuCbXcrv" |
||||||
|
}, |
||||||
|
"execution_count": null, |
||||||
|
"outputs": [] |
||||||
|
}, |
||||||
|
{ |
||||||
|
"cell_type": "code", |
||||||
|
"execution_count": null, |
||||||
|
"metadata": { |
||||||
|
"id": "_RRVc2j2Vun-" |
||||||
|
}, |
||||||
|
"outputs": [], |
||||||
|
"source": [ |
||||||
|
"# this will start an input prompt for uploading local files\n", |
||||||
|
"\n", |
||||||
|
"uploaded = files.upload()\n", |
||||||
|
"print(uploaded.keys()) # this will look sth like dict_keys([\"note2.jpg\"])" |
||||||
|
] |
||||||
|
}, |
||||||
|
{ |
||||||
|
"cell_type": "code", |
||||||
|
"source": [ |
||||||
|
"'''\n", |
||||||
|
"ChatGPT and Gemini explain the following part roughly like so:\n", |
||||||
|
"The string contained in image_path is the key of the entry in the dictionary of uploaded files (see box above).\n", |
||||||
|
"The value to that key contains the image in binary format.\n", |
||||||
|
"The \"with open(image_path, \"wb\") as f\" part means: Create a new file \"note2.jpg\" on the server, and write to it in binary mode (\"wb\").\n", |
||||||
|
"f.write(image) writes the binary image to that new file. \"note2.jpg\" aka image_path will now contain the image.\n", |
||||||
|
"'''\n", |
||||||
|
"\n", |
||||||
|
"image_path = \"note2.jpg\" # update this string depending on the printout in the previous cell!\n", |
||||||
|
"image = uploaded[image_path]\n", |
||||||
|
"with open(image_path, \"wb\") as f:\n", |
||||||
|
" f.write(image)" |
||||||
|
], |
||||||
|
"metadata": { |
||||||
|
"id": "V_UAuSSkXBKh" |
||||||
|
}, |
||||||
|
"execution_count": null, |
||||||
|
"outputs": [] |
||||||
|
}, |
||||||
|
{ |
||||||
|
"cell_type": "code", |
||||||
|
"source": [ |
||||||
|
"# from HF model instructions\n", |
||||||
|
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", |
||||||
|
"model = AutoModelForImageTextToText.from_pretrained(\"stepfun-ai/GOT-OCR-2.0-hf\", device_map=device)\n", |
||||||
|
"processor = AutoProcessor.from_pretrained(\"stepfun-ai/GOT-OCR-2.0-hf\")" |
||||||
|
], |
||||||
|
"metadata": { |
||||||
|
"id": "AiFP-mQtXrpV" |
||||||
|
}, |
||||||
|
"execution_count": null, |
||||||
|
"outputs": [] |
||||||
|
}, |
||||||
|
{ |
||||||
|
"cell_type": "code", |
||||||
|
"source": [ |
||||||
|
"# also from HF documentation about this model, see https://huggingface.co/stepfun-ai/GOT-OCR-2.0-hf\n", |
||||||
|
"\n", |
||||||
|
"image = image_path\n", |
||||||
|
"inputs = processor(image, return_tensors=\"pt\").to(device)\n", |
||||||
|
"\n", |
||||||
|
"ocr = model.generate(\n", |
||||||
|
" **inputs,\n", |
||||||
|
" do_sample=False,\n", |
||||||
|
" tokenizer=processor.tokenizer,\n", |
||||||
|
" stop_strings=\"<|im_end|>\",\n", |
||||||
|
" max_new_tokens=4096,\n", |
||||||
|
")" |
||||||
|
], |
||||||
|
"metadata": { |
||||||
|
"id": "7Adr8HB_YNf5" |
||||||
|
}, |
||||||
|
"execution_count": null, |
||||||
|
"outputs": [] |
||||||
|
}, |
||||||
|
{ |
||||||
|
"cell_type": "code", |
||||||
|
"source": [ |
||||||
|
"# prints out the recognized text. This can read my handwriting pretty well! And it works super quick on the free T4 GPU server here.\n", |
||||||
|
"\n", |
||||||
|
"print(processor.decode(ocr[0, inputs[\"input_ids\"].shape[1]:], skip_special_tokens=True))" |
||||||
|
], |
||||||
|
"metadata": { |
||||||
|
"id": "nRsRUIIuYdJ9" |
||||||
|
}, |
||||||
|
"execution_count": null, |
||||||
|
"outputs": [] |
||||||
|
} |
||||||
|
] |
||||||
|
} |
Loading…
Reference in new issue