Browse Source

Week1 Exercise Ollama Solution with Streaming

pull/186/head
HamzaSH6 3 months ago
parent
commit
8d754ca902
  1. 138
      week1/community-contributions/Week1-Exercise-OllamaStream-Solution.ipynb

138
week1/community-contributions/Week1-Exercise-OllamaStream-Solution.ipynb

@ -0,0 +1,138 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
"metadata": {},
"source": [
"# End of week 1 exercise Solution Ollama with streaming\n",
"\n",
"A tool that takes a technical question, and responds with an explanation."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1070317-3ed9-4659-abe3-828943230e03",
"metadata": {},
"outputs": [],
"source": [
"# Imports\n",
"\n",
"import ollama\n",
"import requests\n",
"from IPython.display import Markdown, display"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
"metadata": {},
"outputs": [],
"source": [
"# Constants\n",
"\n",
"MODEL_LLAMA = 'llama3.2'\n",
"MODEL_LLAMA1b = \"llama3.2:1b\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
"metadata": {},
"outputs": [],
"source": [
"# Environment\n",
"\n",
"system_prompt = \"\"\"\n",
"You are an assistant that takes a technical question and respond with an explanation.\n",
"\"\"\"\n",
"\n",
"question = \"\"\"\n",
"Please explain what this code does and why:\n",
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
"\"\"\"\n",
"\n",
"question2 = \"\"\"\n",
"What is the purpose of using yield from in the following code, and how does it differ from a standard for loop with yield?\n",
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
"\"\"\"\n",
"\n",
"user_prompt = \"Answer these two questions in detail please, Question1:\" + question + \"Question2:\" + question2\n",
"\n",
"def message():\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
"metadata": {},
"outputs": [],
"source": [
"# Llama 3.2 answer, with streaming\n",
"\n",
"def llama():\n",
" response = ollama.chat(\n",
" model = MODEL_LLAMA,\n",
" messages = message(),\n",
" stream =True\n",
" )\n",
" full_response = \"\"\n",
" display_handle = display(Markdown(\"\"), display_id=True)\n",
" for chunk in response:\n",
" content = chunk.get(\"message\", {}).get(\"content\", \"\")\n",
" if content:\n",
" full_response += content\n",
" display_handle.update(Markdown(full_response))\n",
"llama()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "342a470c-9aab-4051-ad21-514dceec76eb",
"metadata": {},
"outputs": [],
"source": [
"# Llama 3.2:1b answer\n",
"\n",
"def llama():\n",
" response = ollama.chat(\n",
" model = MODEL_LLAMA1b,\n",
" messages = message()\n",
" )\n",
" return display(Markdown(response['message']['content']))\n",
"\n",
"llama()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading…
Cancel
Save