1 changed files with 432 additions and 0 deletions
@ -0,0 +1,432 @@
|
||||
{ |
||||
"cells": [ |
||||
{ |
||||
"cell_type": "markdown", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Requirements\n", |
||||
"\n", |
||||
"1. Install pytest and pytest-cov library\n" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"!pipenv install pytest pytest-cov" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 1, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# imports\n", |
||||
"import re\n", |
||||
"import os\n", |
||||
"import sys\n", |
||||
"import textwrap\n", |
||||
"from dotenv import load_dotenv\n", |
||||
"from openai import OpenAI\n", |
||||
"import anthropic\n", |
||||
"import gradio as gr\n", |
||||
"from pathlib import Path\n", |
||||
"import subprocess\n", |
||||
"from IPython.display import Markdown" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Initialization\n", |
||||
"\n", |
||||
"load_dotenv()\n", |
||||
"\n", |
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n", |
||||
"os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n", |
||||
"if openai_api_key:\n", |
||||
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n", |
||||
"else:\n", |
||||
" print(\"OpenAI API Key not set\")\n", |
||||
" \n", |
||||
"OPENAI_MODEL = \"gpt-4o-mini\"\n", |
||||
"CLAUDE_MODEL = \"claude-3-5-sonnet-20240620\"\n", |
||||
"openai = OpenAI()\n", |
||||
"claude = anthropic.Anthropic()" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 3, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n", |
||||
"HEADERS = {\"Content-Type\": \"application/json\"}\n", |
||||
"OLLAMA_MODEL = \"llama3.2\"" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Code execution" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 4, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"\n", |
||||
"def extract_code(text):\n", |
||||
" # Regular expression to find text between ``python and ``\n", |
||||
" match = re.search(r\"```python(.*?)```\", text, re.DOTALL)\n", |
||||
"\n", |
||||
" if match:\n", |
||||
" code = match.group(0).strip() # Extract and strip extra spaces\n", |
||||
" else:\n", |
||||
" code = \"\"\n", |
||||
" print(\"No matching substring found.\")\n", |
||||
"\n", |
||||
" return code.replace(\"```python\\n\", \"\").replace(\"```\", \"\")\n", |
||||
"\n", |
||||
"\n", |
||||
"def execute_coverage_report(python_interpreter=sys.executable):\n", |
||||
" if not python_interpreter:\n", |
||||
" raise EnvironmentError(\"Python interpreter not found in the specified virtual environment.\")\n", |
||||
" # test_code_path = Path(\"tests\")\n", |
||||
" # command = [\"pytest\", \"-cov\",\"--capture=no\"]\n", |
||||
" command = [\"coverage\", \"run\", \"-m\", \"pytest\"]\n", |
||||
" # command =[\"pytest\", \"--cov=your_package\", \"--cov-report=term-missing\"]\n", |
||||
"\n", |
||||
" try:\n", |
||||
" result = subprocess.run(command, check=True, capture_output=True, text=True)\n", |
||||
" print(\"Tests ran successfully!\")\n", |
||||
" print(result.stdout)\n", |
||||
" return result.stdout\n", |
||||
" except subprocess.CalledProcessError as e:\n", |
||||
" print(\"Some tests failed!\")\n", |
||||
" print(\"Output:\\n\", e.stdout)\n", |
||||
" print(\"Errors:\\n\", e.stderr)\n", |
||||
" # Extracting failed test information\n", |
||||
" failed_tests = []\n", |
||||
" for line in e.stdout.splitlines():\n", |
||||
" if \"FAILED\" in line and \"::\" in line:\n", |
||||
" failed_tests.append(line.strip())\n", |
||||
" if failed_tests:\n", |
||||
" print(\"Failed Tests:\")\n", |
||||
" for test in failed_tests:\n", |
||||
" print(test)\n", |
||||
" return failed_tests\n", |
||||
"\n", |
||||
"def save_unit_tests(code):\n", |
||||
"\n", |
||||
" match = re.search(r\"def\\s+(\\w+)\\(\", code, re.DOTALL)\n", |
||||
"\n", |
||||
" if match:\n", |
||||
" function_name = match.group(1).strip() # Extract and strip extra spaces\n", |
||||
" else:\n", |
||||
" function_name = \"\"\n", |
||||
" print(\"No matching substring found.\")\n", |
||||
"\n", |
||||
" test_code_path = Path(\"tests\")\n", |
||||
" (test_code_path / f\"test_{function_name}.py\").write_text(extract_code(code))\n", |
||||
" Path(\"tests\", \"test_code.py\").unlink()\n", |
||||
" \n", |
||||
"\n", |
||||
"def execute_tests_in_venv(code_to_test, tests, python_interpreter=sys.executable):\n", |
||||
" \"\"\"\n", |
||||
" Execute the given Python code string within the specified virtual environment.\n", |
||||
" \n", |
||||
" Args:\n", |
||||
" - code_str: str, the Python code to execute.\n", |
||||
" - venv_dir: str, the directory path to the virtual environment created by pipenv.\n", |
||||
" \"\"\"\n", |
||||
" \n", |
||||
" if not python_interpreter:\n", |
||||
" raise EnvironmentError(\"Python interpreter not found in the specified virtual environment.\")\n", |
||||
"\n", |
||||
" # Prepare the command to execute the code\n", |
||||
" code_str = textwrap.dedent(code_to_test) + \"\\n\" + extract_code(tests)\n", |
||||
" test_code_path = Path(\"tests\")\n", |
||||
" test_code_path.mkdir(parents=True, exist_ok=True)\n", |
||||
" (test_code_path / f\"test_code.py\").write_text(code_str)\n", |
||||
" command = [\"pytest\", str(test_code_path)]\n", |
||||
"\n", |
||||
" try:\n", |
||||
" result = subprocess.run(command, check=True, capture_output=True, text=True)\n", |
||||
" print(\"Tests ran successfully!\")\n", |
||||
" print(result.stderr)\n", |
||||
" return result.stdout\n", |
||||
" except subprocess.CalledProcessError as e:\n", |
||||
" print(\"Some tests failed!\")\n", |
||||
" print(\"Output:\\n\", e.stdout)\n", |
||||
" print(\"Errors:\\n\", e.stderr)\n", |
||||
" # Extracting failed test information\n", |
||||
" failed_tests = []\n", |
||||
" for line in e.stdout.splitlines():\n", |
||||
" if \"FAILED\" in line and \"::\" in line:\n", |
||||
" failed_tests.append(line.strip())\n", |
||||
" if failed_tests:\n", |
||||
" print(\"Failed Tests:\")\n", |
||||
" for test in failed_tests:\n", |
||||
" print(test)\n", |
||||
" return e.stderr\n", |
||||
" " |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Prompts and calls to the models" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 5, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"system_message = \"\"\"You are a helpful assistant which helps developers to write unit test cases for their code.\"\"\"" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 6, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def get_user_prompt(code):\n", |
||||
"\n", |
||||
" user_prompt = \"Write for a python code the unit test cases.\"\n", |
||||
" user_prompt += \"Return unit tests cases using pytest library, do not create any custom imports; do not explain your work other than a few comments.\"\n", |
||||
" user_prompt += \"Do not insert the function to be tested in the output before the tests. Validate both the case where the function is executed successfully and where it is expected to fail.\"\n", |
||||
" user_prompt += code\n", |
||||
"\n", |
||||
" return user_prompt" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 7, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def stream_gpt(code):\n", |
||||
"\n", |
||||
" user_prompt = get_user_prompt(code)\n", |
||||
" stream = openai.chat.completions.create(\n", |
||||
" model=OPENAI_MODEL,\n", |
||||
" messages=[\n", |
||||
" {\"role\": \"system\", \"content\": system_message},\n", |
||||
" {\n", |
||||
" \"role\": \"user\",\n", |
||||
" \"content\": user_prompt,\n", |
||||
" },\n", |
||||
" ],\n", |
||||
" stream=True,\n", |
||||
" )\n", |
||||
"\n", |
||||
" response = \"\"\n", |
||||
" for chunk in stream:\n", |
||||
" response += chunk.choices[0].delta.content or \"\"\n", |
||||
" yield response\n", |
||||
" \n", |
||||
" return response\n", |
||||
"\n", |
||||
"def stream_ollama(code):\n", |
||||
"\n", |
||||
" user_prompt = get_user_prompt(code)\n", |
||||
" ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", |
||||
" stream = ollama_via_openai.chat.completions.create(\n", |
||||
" model=OLLAMA_MODEL,\n", |
||||
" messages=[\n", |
||||
" {\"role\": \"system\", \"content\": system_message},\n", |
||||
" {\n", |
||||
" \"role\": \"user\",\n", |
||||
" \"content\": user_prompt,\n", |
||||
" },\n", |
||||
" ],\n", |
||||
" stream=True,\n", |
||||
" )\n", |
||||
"\n", |
||||
" response = \"\"\n", |
||||
" for chunk in stream:\n", |
||||
" response += chunk.choices[0].delta.content or \"\"\n", |
||||
" yield response\n", |
||||
" \n", |
||||
" return response\n", |
||||
"\n", |
||||
"\n", |
||||
"def stream_claude(code):\n", |
||||
" user_prompt = get_user_prompt(code)\n", |
||||
" result = claude.messages.stream(\n", |
||||
" model=CLAUDE_MODEL,\n", |
||||
" max_tokens=2000,\n", |
||||
" system=system_message,\n", |
||||
" messages=[\n", |
||||
" {\n", |
||||
" \"role\": \"user\",\n", |
||||
" \"content\": user_prompt,\n", |
||||
" }\n", |
||||
" ],\n", |
||||
" )\n", |
||||
" reply = \"\"\n", |
||||
" with result as stream:\n", |
||||
" for text in stream.text_stream:\n", |
||||
" reply += text\n", |
||||
" yield reply\n", |
||||
" print(text, end=\"\", flush=True)\n", |
||||
" return reply" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Code examples to test the inteface" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 8, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"function_to_test = \"\"\"\n", |
||||
" def lengthOfLongestSubstring(s):\n", |
||||
" max_length = 0\n", |
||||
" substring = \"\"\n", |
||||
" start_idx = 0\n", |
||||
" while start_idx < len(s):\n", |
||||
" string = s[start_idx:]\n", |
||||
" for i, x in enumerate(string):\n", |
||||
" substring += x\n", |
||||
" if len(substring) == len(set((list(substring)))):\n", |
||||
" \n", |
||||
" if len(set((list(substring)))) > max_length:\n", |
||||
" \n", |
||||
" max_length = len(substring)\n", |
||||
"\n", |
||||
" start_idx += 1\n", |
||||
" substring = \"\"\n", |
||||
" \n", |
||||
" \n", |
||||
" return max_length\"\"\"" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 9, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"test_code = \"\"\"```python\n", |
||||
"import pytest\n", |
||||
"\n", |
||||
"# Unit tests using pytest\n", |
||||
"def test_lengthOfLongestSubstring():\n", |
||||
" assert lengthOfLongestSubstring(\"abcabcbb\") == 3 # Case with repeating characters\n", |
||||
" assert lengthOfLongestSubstring(\"bbbbb\") == 1 # Case with all same characters\n", |
||||
" assert lengthOfLongestSubstring(\"pwwkew\") == 3 # Case with mixed characters\n", |
||||
" assert lengthOfLongestSubstring(\"\") == 0 # Empty string case\n", |
||||
" assert lengthOfLongestSubstring(\"abcdef\") == 6 # All unique characters\n", |
||||
" assert lengthOfLongestSubstring(\"abca\") == 3 # Case with pattern and repeat\n", |
||||
" assert lengthOfLongestSubstring(\"dvdf\") == 3 # Case with repeated characters separated\n", |
||||
" assert lengthOfLongestSubstring(\"a\") == 1 # Case with single character\n", |
||||
" assert lengthOfLongestSubstring(\"au\") == 2 # Case with unique two characters\n", |
||||
"```\"\"\"" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 10, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def optimize(code, model):\n", |
||||
" if model == \"GPT\":\n", |
||||
" result = stream_gpt(code)\n", |
||||
" elif model == \"Claude\":\n", |
||||
" result = stream_claude(code)\n", |
||||
" elif model == \"Ollama\":\n", |
||||
" result = stream_ollama(code)\n", |
||||
" else:\n", |
||||
" raise ValueError(\"Unknown model\")\n", |
||||
" for stream_so_far in result:\n", |
||||
" yield stream_so_far\n", |
||||
" return result" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Gradio interface" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"with gr.Blocks() as ui:\n", |
||||
" gr.Markdown(\"## Write unit tests for Python code\")\n", |
||||
" with gr.Row():\n", |
||||
" with gr.Column(scale=1, min_width=300):\n", |
||||
" python = gr.Textbox(label=\"Python code:\", value=function_to_test, lines=10)\n", |
||||
" model = gr.Dropdown([\"GPT\", \"Claude\", \"Ollama\"], label=\"Select model\", value=\"GPT\")\n", |
||||
" unit_tests = gr.Button(\"Write unit tests\")\n", |
||||
" with gr.Column(scale=1, min_width=300):\n", |
||||
" unit_tests_out = gr.TextArea(label=\"Unit tests\", value=test_code, elem_classes=[\"python\"])\n", |
||||
" unit_tests_run = gr.Button(\"Run unit tests\")\n", |
||||
" coverage_run = gr.Button(\"Coverage report\")\n", |
||||
" save_test_run = gr.Button(\"Save unit tests\")\n", |
||||
" with gr.Row():\n", |
||||
" \n", |
||||
" python_out = gr.TextArea(label=\"Unit tests result\", elem_classes=[\"python\"])\n", |
||||
" coverage_out = gr.TextArea(label=\"Coverage report\", elem_classes=[\"python\"])\n", |
||||
" \n", |
||||
"\n", |
||||
" unit_tests.click(optimize, inputs=[python, model], outputs=[unit_tests_out])\n", |
||||
" unit_tests_run.click(execute_tests_in_venv, inputs=[python, unit_tests_out], outputs=[python_out])\n", |
||||
" coverage_run.click(execute_coverage_report, outputs=[coverage_out])\n", |
||||
" save_test_run.click(save_unit_tests, inputs=[unit_tests_out])\n", |
||||
"\n", |
||||
"\n", |
||||
"ui.launch(inbrowser=True)" |
||||
] |
||||
} |
||||
], |
||||
"metadata": { |
||||
"kernelspec": { |
||||
"display_name": "llm_engineering-yg2xCEUG", |
||||
"language": "python", |
||||
"name": "python3" |
||||
}, |
||||
"language_info": { |
||||
"codemirror_mode": { |
||||
"name": "ipython", |
||||
"version": 3 |
||||
}, |
||||
"file_extension": ".py", |
||||
"mimetype": "text/x-python", |
||||
"name": "python", |
||||
"nbconvert_exporter": "python", |
||||
"pygments_lexer": "ipython3", |
||||
"version": "3.10.8" |
||||
} |
||||
}, |
||||
"nbformat": 4, |
||||
"nbformat_minor": 2 |
||||
} |
Loading…
Reference in new issue