1 changed files with 241 additions and 0 deletions
@ -0,0 +1,241 @@
|
||||
{ |
||||
"cells": [ |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 1, |
||||
"id": "1b809d22-d170-4db3-a298-1740ce06b534", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"#Udemy Course >> LLM Engineering: Master AI and LLMs\n", |
||||
"#Student: Jay\n", |
||||
"#Date: Apr 20, 2025\n", |
||||
"#Home work: Day1 - Summmarize website using local LLama\n", |
||||
"\n", |
||||
"import os\n", |
||||
"import requests\n", |
||||
"from dotenv import load_dotenv\n", |
||||
"from bs4 import BeautifulSoup\n", |
||||
"from IPython.display import Markdown, display\n", |
||||
"from openai import OpenAI" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 10, |
||||
"id": "01e91579-7e32-4c4d-9cc9-c06d13c16209", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Constants\n", |
||||
"\n", |
||||
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n", |
||||
"HEADERS = {\"Content-Type\": \"application/json\"}\n", |
||||
"MODEL = \"llama3.2\"" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 2, |
||||
"id": "8d780fba-868c-4216-88f5-1e3ca5ad43ed", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# A class to represent a Webpage\n", |
||||
"# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n", |
||||
"\n", |
||||
"# Some websites need you to use proper headers when fetching them:\n", |
||||
"headers = {\n", |
||||
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n", |
||||
"}\n", |
||||
"\n", |
||||
"class Website:\n", |
||||
"\n", |
||||
" def __init__(self, url):\n", |
||||
" \"\"\"\n", |
||||
" Create this Website object from the given url using the BeautifulSoup library\n", |
||||
" \"\"\"\n", |
||||
" self.url = url\n", |
||||
" response = requests.get(url, headers=headers)\n", |
||||
" soup = BeautifulSoup(response.content, 'html.parser')\n", |
||||
" self.title = soup.title.string if soup.title else \"No title found\"\n", |
||||
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", |
||||
" irrelevant.decompose()\n", |
||||
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 3, |
||||
"id": "839b645f-90ee-434d-b0bd-1cb4e574a8de", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n", |
||||
"and provides a short summary, ignoring text that might be navigation related. \\\n", |
||||
"Respond in markdown.\"" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 4, |
||||
"id": "ef2453e8-3eca-4f6d-8ccf-9e5274b589a7", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def user_prompt_for(website):\n", |
||||
" user_prompt = f\"You are looking at a website titled {website.title}\"\n", |
||||
" user_prompt += \"\\nThe contents of this website is as follows; \\\n", |
||||
"please provide a short summary of this website in markdown. \\\n", |
||||
"If it includes news or announcements, then summarize these too.\\n\\n\"\n", |
||||
" user_prompt += website.text\n", |
||||
" return user_prompt" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 5, |
||||
"id": "6ec397d5-e9b0-411d-8bdb-66605273cb11", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"messages = [\n", |
||||
" {\"role\": \"system\", \"content\": \"You are a snarky assistant\"},\n", |
||||
" {\"role\": \"user\", \"content\": \"What is 2 + 2?\"}\n", |
||||
"]" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 6, |
||||
"id": "76aed9eb-a085-4687-859d-817c771156fa", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def messages_for(website):\n", |
||||
" return [\n", |
||||
" {\"role\": \"system\", \"content\": system_prompt},\n", |
||||
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n", |
||||
" ]" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 7, |
||||
"id": "26de4682-cf4f-4b7e-8cb2-049f7f46b758", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def summarize(url):\n", |
||||
" website = Website(url)\n", |
||||
" ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", |
||||
"\n", |
||||
" response = ollama_via_openai.chat.completions.create(\n", |
||||
" model=MODEL,\n", |
||||
" messages=messages_for(website) \n", |
||||
" )\n", |
||||
" return response.choices[0].message.content" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 8, |
||||
"id": "16b2532a-d44c-4903-83ec-0b828a2d1b92", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def display_summary(url):\n", |
||||
" summary = summarize(url)\n", |
||||
" display(Markdown(summary))" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 11, |
||||
"id": "86af4905-5d5c-47c9-b9b2-27257452ff94", |
||||
"metadata": {}, |
||||
"outputs": [ |
||||
{ |
||||
"data": { |
||||
"text/markdown": [ |
||||
"**Anthropic Website Summary**\n", |
||||
"=====================================\n", |
||||
"\n", |
||||
"### Mission and Values\n", |
||||
"\n", |
||||
"Anthropic's mission is to build AI that serves humanity's long-term well-being. They focus on designing powerful technologies with human benefit at their foundation, aiming to demonstrate responsible AI development in practice.\n", |
||||
"\n", |
||||
"### Notable Releases\n", |
||||
"\n", |
||||
"#### 2025\n", |
||||
"\n", |
||||
"* **Claude 3.7 Sonnet**: Anthropic's most intelligent AI model, now available.\n", |
||||
"* Recent news articles:\n", |
||||
"\t+ \"Tracing the thoughts of a large language model: Interpretability\"\n", |
||||
"\t+ \"Anthropic Economic Index: Societal Impacts\"\n", |
||||
"\n", |
||||
"### Products and Solutions\n", |
||||
"\n", |
||||
"* **Claude**: A suite of AI tools for building applications and custom experiences with human benefit in mind.\n", |
||||
"* **Claude Overview**, **API Platform**, and various other products, including:\n", |
||||
"\t+ **Claude 3.5 Haiku**\n", |
||||
"\t+ **Claude 3 Opus**\n", |
||||
"\n", |
||||
"### Research and Commitments\n", |
||||
"\n", |
||||
"* The Anthropic Academy: A learning platform for developers to build AI solutions with Claude.\n", |
||||
"* Responsible scaling policy and alignment science initiatives.\n", |
||||
"\n", |
||||
"### News Section (Selection)**\n", |
||||
"\n", |
||||
"Anthropic's recent news articles:\n", |
||||
"* \"Claude extended thinking\"\n", |
||||
"* \"Alignment faking in large language models\"\n", |
||||
"\n", |
||||
"### Company Information\n", |
||||
"\n", |
||||
"For more information on Anthropic, including company, careers, and help resources, follow the provided links." |
||||
], |
||||
"text/plain": [ |
||||
"<IPython.core.display.Markdown object>" |
||||
] |
||||
}, |
||||
"metadata": {}, |
||||
"output_type": "display_data" |
||||
} |
||||
], |
||||
"source": [ |
||||
"display_summary(\"https://anthropic.com\")" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "a5151062-614e-44ff-b341-d3f64e28aa93", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [] |
||||
} |
||||
], |
||||
"metadata": { |
||||
"kernelspec": { |
||||
"display_name": "Python 3 (ipykernel)", |
||||
"language": "python", |
||||
"name": "python3" |
||||
}, |
||||
"language_info": { |
||||
"codemirror_mode": { |
||||
"name": "ipython", |
||||
"version": 3 |
||||
}, |
||||
"file_extension": ".py", |
||||
"mimetype": "text/x-python", |
||||
"name": "python", |
||||
"nbconvert_exporter": "python", |
||||
"pygments_lexer": "ipython3", |
||||
"version": "3.11.11" |
||||
} |
||||
}, |
||||
"nbformat": 4, |
||||
"nbformat_minor": 5 |
||||
} |
Loading…
Reference in new issue