Browse Source

Add notebooks to community-contributions

pull/341/head
Khalid Taha 2 weeks ago
parent
commit
49f8bbcc35
  1. 431
      week1/community-contributions/day1-pluggable_scraper_summary.ipynb

431
week1/community-contributions/day1-pluggable_scraper_summary.ipynb

@ -0,0 +1,431 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "35f59eb3",
"metadata": {},
"source": [
"# Pluggable Web Scraper and Summarizer with Interface-Based Design\n",
"\n",
"This system implements a **pluggable architecture** for web scraping and summarization, built on interface-based design using Python’s `Protocol` types. Each stage of the pipeline—content fetching, HTML parsing, and LLM-based summarization—is defined through explicit structural contracts rather than concrete implementations. Components like `RequestsFetcher`, `RobustSoupParser`, and `OllamaClient` fulfill these protocols and can be swapped independently, enabling flexibility, testing, and future extension without modifying core logic. Immutable data models (`@dataclass(frozen=True)`) enforce data integrity throughout the pipeline, while the design cleanly separates concerns across modules to support maintainability and modular growth."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f42e6d21",
"metadata": {},
"outputs": [],
"source": [
"from dataclasses import dataclass\n",
"from typing import Protocol, Optional, List, Dict, Tuple\n",
"import requests\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display\n",
"from openai import OpenAI\n",
"import logging\n",
"import chardet"
]
},
{
"cell_type": "markdown",
"id": "65c17368",
"metadata": {},
"source": [
"# Configuration"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "eb0904d7",
"metadata": {},
"outputs": [],
"source": [
"logging.basicConfig(level=logging.INFO)\n",
"logger = logging.getLogger(__name__)\n",
"\n",
"HEADERS = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36\",\n",
"}\n",
"DEFAULT_TIMEOUT = 10\n",
"UNWANTED_TAGS = [\"script\", \"style\", \"nav\", \"header\", \"footer\", \"img\", \"input\"]"
]
},
{
"cell_type": "markdown",
"id": "8110aa46",
"metadata": {},
"source": [
"# Data Models"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "cdb6c990",
"metadata": {},
"outputs": [],
"source": [
"@dataclass(frozen=True)\n",
"class RawResponse:\n",
" content: bytes\n",
" status_code: int\n",
" encoding: str\n",
" headers: Dict[str, str]\n",
" elapsed: float\n",
" final_url: str\n",
"\n",
"@dataclass(frozen=True)\n",
"class WebsiteContent:\n",
" url: str\n",
" title: str\n",
" text: str\n",
" status_code: int\n",
" response_time: float\n",
"\n",
"@dataclass(frozen=True)\n",
"class LLMResponse:\n",
" content: str\n",
" model: str\n",
" tokens_used: int"
]
},
{
"cell_type": "markdown",
"id": "87b2a97a",
"metadata": {},
"source": [
"# Protocols"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "3070eac2",
"metadata": {},
"outputs": [],
"source": [
"class ContentFetcher(Protocol):\n",
" def fetch(self, url: str) -> RawResponse: ...\n",
"\n",
"class ContentParser(Protocol):\n",
" def parse(self, response: RawResponse) -> WebsiteContent: ...\n",
"\n",
"class LLMClient(Protocol):\n",
" def generate(self, messages: List[Dict[str, str]], model: str) -> LLMResponse: ...\n"
]
},
{
"cell_type": "markdown",
"id": "553daa11",
"metadata": {},
"source": [
"# Implementations"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "1a42bed9",
"metadata": {},
"outputs": [],
"source": [
"class RequestsFetcher:\n",
" def __init__(self, \n",
" headers: Dict[str, str] = HEADERS,\n",
" timeout: int = DEFAULT_TIMEOUT,\n",
" max_redirects: int = 5):\n",
" self.headers = headers\n",
" self.timeout = timeout\n",
" self.max_redirects = max_redirects\n",
"\n",
" def fetch(self, url: str) -> RawResponse:\n",
" logger.info(f\"Fetching content from {url}\")\n",
" try:\n",
" response = requests.get(\n",
" url,\n",
" headers=self.headers,\n",
" timeout=self.timeout,\n",
" allow_redirects=True,\n",
" stream=False # Prevent partial content issues\n",
" )\n",
" response.raise_for_status()\n",
" \n",
" return RawResponse(\n",
" content=response.content,\n",
" status_code=response.status_code,\n",
" encoding=response.encoding,\n",
" headers=dict(response.headers),\n",
" elapsed=response.elapsed.total_seconds(),\n",
" final_url=response.url\n",
" )\n",
" except requests.exceptions.RequestException as e:\n",
" logger.error(f\"Failed to fetch {url}: {str(e)}\")\n",
" raise\n",
"\n",
"class RobustSoupParser:\n",
" def __init__(self, unwanted_tags: Tuple[str] = UNWANTED_TAGS):\n",
" self.unwanted_tags = unwanted_tags\n",
"\n",
" def parse(self, response: RawResponse) -> WebsiteContent:\n",
" logger.info(f\"Parsing content from {response.final_url}\")\n",
" \n",
" # Detect encoding if not provided\n",
" encoding = response.encoding or self._detect_encoding(response.content)\n",
" \n",
" try:\n",
" decoded_content = response.content.decode(encoding, errors='replace')\n",
" soup = BeautifulSoup(decoded_content, 'html.parser')\n",
" except Exception as e:\n",
" logger.error(f\"Failed to parse content: {str(e)}\")\n",
" raise\n",
"\n",
" return WebsiteContent(\n",
" url=response.final_url,\n",
" title=self._extract_title(soup),\n",
" text=self._clean_content(soup),\n",
" status_code=response.status_code,\n",
" response_time=response.elapsed\n",
" )\n",
"\n",
" def _detect_encoding(self, content: bytes) -> str:\n",
" result = chardet.detect(content)\n",
" return result['encoding'] or 'utf-8'\n",
"\n",
" def _extract_title(self, soup: BeautifulSoup) -> str:\n",
" title_tag = soup.find('title')\n",
" return title_tag.text.strip() if title_tag else \"Untitled\"\n",
"\n",
" def _clean_content(self, soup: BeautifulSoup) -> str:\n",
" # Remove unwanted tags\n",
" for tag in self.unwanted_tags:\n",
" for element in soup.find_all(tag):\n",
" element.decompose()\n",
"\n",
" # Extract text with semantic line breaks\n",
" text = '\\n\\n'.join([\n",
" element.get_text().strip()\n",
" for element in soup.find_all(['p', 'h1', 'h2', 'h3', 'article'])\n",
" if element.get_text().strip()\n",
" ])\n",
" \n",
" return text or \"No readable content found\"\n",
"\n",
"class OllamaClient:\n",
" def __init__(self, \n",
" base_url: str = 'http://localhost:11434/v1',\n",
" api_key: str = 'ollama',\n",
" max_retries: int = 3):\n",
" self.client = OpenAI(base_url=base_url, api_key=api_key)\n",
" self.max_retries = max_retries\n",
"\n",
" def generate(self, \n",
" messages: List[Dict[str, str]], \n",
" model: str = \"llama3.2\") -> LLMResponse:\n",
" logger.info(f\"Generating summary with {model}\")\n",
" \n",
" for attempt in range(self.max_retries):\n",
" try:\n",
" response = self.client.chat.completions.create(\n",
" model=model,\n",
" messages=messages\n",
" )\n",
" return LLMResponse(\n",
" content=response.choices[0].message.content,\n",
" model=model,\n",
" tokens_used=response.usage.total_tokens\n",
" )\n",
" except Exception as e:\n",
" if attempt == self.max_retries - 1:\n",
" logger.error(f\"Failed after {self.max_retries} attempts: {str(e)}\")\n",
" raise\n",
" logger.warning(f\"Retry {attempt + 1}/{self.max_retries}\")"
]
},
{
"cell_type": "markdown",
"id": "1805d4f8",
"metadata": {},
"source": [
"# Core Pipeline"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "a985806a",
"metadata": {},
"outputs": [],
"source": [
"class SummarizationPipeline:\n",
" SYSTEM_PROMPT = \"\"\"You are a professional web content analyst. Provide a structured markdown summary containing:\n",
"- Key points\n",
"- Notable statistics\n",
"- Important names/dates\n",
"- Actionable insights\n",
"Avoid navigation content and marketing fluff.\"\"\"\n",
"\n",
" def __init__(self,\n",
" fetcher: ContentFetcher,\n",
" parser: ContentParser,\n",
" llm_client: LLMClient):\n",
" self.fetcher = fetcher\n",
" self.parser = parser\n",
" self.llm_client = llm_client\n",
"\n",
" def summarize(self, url: str, model: str = \"llama3.2\") -> LLMResponse:\n",
" raw_response = self.fetcher.fetch(url)\n",
" website_content = self.parser.parse(raw_response)\n",
" messages = self._build_messages(website_content)\n",
" return self.llm_client.generate(messages, model)\n",
"\n",
" def _build_messages(self, content: WebsiteContent) -> List[Dict[str, str]]:\n",
" user_prompt = f\"\"\"**Website Analysis Request**\n",
"URL: {content.url}\n",
"Title: {content.title}\n",
"\n",
"Content:\n",
"{content.text[:8000]} # Truncate to stay within context window\n",
"\n",
"Please provide a comprehensive summary following the guidelines above.\"\"\"\n",
" \n",
" return [\n",
" {\"role\": \"system\", \"content\": self.SYSTEM_PROMPT},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]"
]
},
{
"cell_type": "markdown",
"id": "41832e20",
"metadata": {},
"source": [
"# Factory & Presentation"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "656b8dd4",
"metadata": {},
"outputs": [],
"source": [
"def create_default_pipeline() -> SummarizationPipeline:\n",
" return SummarizationPipeline(\n",
" fetcher=RequestsFetcher(),\n",
" parser=RobustSoupParser(),\n",
" llm_client=OllamaClient()\n",
" )\n",
"\n",
"class JupyterPresenter:\n",
" @staticmethod\n",
" def display(response: LLMResponse) -> None:\n",
" display(Markdown(f\"\"\"\n",
"## Summary Results\n",
"**Model**: {response.model} \n",
"**Tokens Used**: {response.tokens_used} \n",
"**Summary**:\n",
"{response.content}\n",
" \"\"\"))\n",
" "
]
},
{
"cell_type": "markdown",
"id": "76339788",
"metadata": {},
"source": [
"# Execution"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "69304964",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:__main__:Fetching content from https://edwarddonner.com\n",
"INFO:__main__:Parsing content from https://edwarddonner.com/\n",
"INFO:__main__:Generating summary with llama3.2\n",
"INFO:httpx:HTTP Request: POST http://localhost:11434/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
]
},
{
"data": {
"text/markdown": [
"\n",
"## Summary Results\n",
"**Model**: llama3.2 \n",
"**Tokens Used**: 630 \n",
"**Summary**:\n",
"**Website Analysis Summary**\n",
"==========================\n",
"\n",
"### Key Points\n",
"\n",
"* The website belongs to Edward Donner, a co-founder and CTO of Nebula.io, an AI startup applying LLMs for talent discovery.\n",
"* The website showcases Donner's interests in code writing, music production, and technology.\n",
"* It announces the launch of The Complete Agentic AI Engineering Course and provides resources on LLM workshop and mastering AI.\n",
"\n",
"### Notable Statistics\n",
"\n",
"* None mentioned, as there are no explicit statistics provided on the website.\n",
"\n",
"### Important Names/Dates\n",
"\n",
"* Edward Donner: Website owner and CTO of Nebula.io.\n",
"* 2021: Year in which AI startup untapt was acquired by an unknown party (no information about the acquirer is available).\n",
"\n",
"### Actionable Insights\n",
"\n",
"* The website appears to be a personal page showcasing Donner's expertise in AI, LLMs, and talent discovery. It may serve as a way for him to establish his professional brand and network with potential clients or collaborators.\n",
"* Offering resources and courses, such as \"The Complete Agentic AI Engineering Course\" and workshops, can help attract visitors and demonstrate the company's capabilities.\n",
"* Subscribing to the website might offer exclusive access to updates, insights on LLMs and talent discovery, and potentially lucrative career opportunities.\n",
" "
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pipeline = create_default_pipeline()\n",
"try:\n",
" response = pipeline.summarize(\"https://edwarddonner.com\")\n",
" JupyterPresenter.display(response)\n",
"except Exception as e:\n",
" logger.error(f\"Summarization failed: {str(e)}\")\n",
" display(Markdown(\"## Error\\nUnable to generate summary. Please check the URL and try again.\"))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading…
Cancel
Save