fabric is an open-source framework for augmenting humans using AI. It provides a modular framework for solving specific problems using a crowdsourced set of AI prompts that can be used anywhere.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

752 lines
28 KiB

import requests
import os
from openai import OpenAI
import asyncio
import pyperclip
import sys
import platform
from dotenv import load_dotenv
import zipfile
import tempfile
import re
import shutil
current_directory = os.path.dirname(os.path.realpath(__file__))
config_directory = os.path.expanduser("~/.config/fabric")
env_file = os.path.join(config_directory, ".env")
class Standalone:
def __init__(self, args, pattern="", env_file="~/.config/fabric/.env"):
""" Initialize the class with the provided arguments and environment file.
Args:
args: The arguments for initialization.
pattern: The pattern to be used (default is an empty string).
env_file: The path to the environment file (default is "~/.config/fabric/.env").
Returns:
None
Raises:
KeyError: If the "OPENAI_API_KEY" is not found in the environment variables.
FileNotFoundError: If no API key is found in the environment variables.
"""
# Expand the tilde to the full path
env_file = os.path.expanduser(env_file)
load_dotenv(env_file)
try:
apikey = os.environ["OPENAI_API_KEY"]
self.client = OpenAI()
self.client.api_key = apikey
except FileNotFoundError:
print("No API key found. Use the --apikey option to set the key")
sys.exit()
self.local = False
self.config_pattern_directory = config_directory
self.pattern = pattern
self.args = args
self.model = args.model
self.claude = False
sorted_gpt_models, ollamaList, claudeList = self.fetch_available_models()
self.local = self.model.strip() in ollamaList
self.claude = self.model.strip() in claudeList
async def localChat(self, messages):
from ollama import AsyncClient
response = await AsyncClient().chat(model=self.model, messages=messages)
print(response['message']['content'])
async def localStream(self, messages):
from ollama import AsyncClient
async for part in await AsyncClient().chat(model=self.model, messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
async def claudeStream(self, system, user):
from anthropic import AsyncAnthropic
self.claudeApiKey = os.environ["CLAUDE_API_KEY"]
Streamingclient = AsyncAnthropic(api_key=self.claudeApiKey)
async with Streamingclient.messages.stream(
max_tokens=4096,
system=system,
messages=[user],
model=self.model, temperature=0.0, top_p=1.0
) as stream:
async for text in stream.text_stream:
print(text, end="", flush=True)
print()
message = await stream.get_final_message()
async def claudeChat(self, system, user):
from anthropic import Anthropic
self.claudeApiKey = os.environ["CLAUDE_API_KEY"]
client = Anthropic(api_key=self.claudeApiKey)
message = client.messages.create(
max_tokens=4096,
system=system,
messages=[user],
model=self.model,
temperature=0.0, top_p=1.0
)
print(message.content[0].text)
def streamMessage(self, input_data: str, context=""):
""" Stream a message and handle exceptions.
Args:
input_data (str): The input data for the message.
Returns:
None: If the pattern is not found.
Raises:
FileNotFoundError: If the pattern file is not found.
"""
wisdomFilePath = os.path.join(
config_directory, f"patterns/{self.pattern}/system.md"
)
user_message = {"role": "user", "content": f"{input_data}"}
wisdom_File = os.path.join(current_directory, wisdomFilePath)
system = ""
buffer = ""
if self.pattern:
try:
with open(wisdom_File, "r") as f:
if context:
system = context + '\n\n' + f.read()
else:
system = f.read()
system_message = {"role": "system", "content": system}
messages = [system_message, user_message]
except FileNotFoundError:
print("pattern not found")
return
else:
if context:
messages = [
{"role": "system", "content": context}, user_message]
else:
messages = [user_message]
try:
if self.local:
asyncio.run(self.localStream(messages))
elif self.claude:
from anthropic import AsyncAnthropic
asyncio.run(self.claudeStream(system, user_message))
else:
stream = self.client.chat.completions.create(
model=self.model,
messages=messages,
temperature=0.0,
top_p=1,
frequency_penalty=0.1,
presence_penalty=0.1,
stream=True,
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
char = chunk.choices[0].delta.content
buffer += char
if char not in ["\n", " "]:
print(char, end="")
elif char == " ":
print(" ", end="") # Explicitly handle spaces
elif char == "\n":
print() # Handle newlines
sys.stdout.flush()
except Exception as e:
if "All connection attempts failed" in str(e):
print(
"Error: cannot connect to llama2. If you have not already, please visit https://ollama.com for installation instructions")
if "CLAUDE_API_KEY" in str(e):
print(
"Error: CLAUDE_API_KEY not found in environment variables. Please run --setup and add the key")
if "overloaded_error" in str(e):
print(
"Error: Fabric is working fine, but claude is overloaded. Please try again later.")
else:
print(f"Error: {e}")
print(e)
if self.args.copy:
pyperclip.copy(buffer)
if self.args.output:
with open(self.args.output, "w") as f:
f.write(buffer)
def sendMessage(self, input_data: str, context=""):
""" Send a message using the input data and generate a response.
Args:
input_data (str): The input data to be sent as a message.
Returns:
None
Raises:
FileNotFoundError: If the specified pattern file is not found.
"""
wisdomFilePath = os.path.join(
config_directory, f"patterns/{self.pattern}/system.md"
)
user_message = {"role": "user", "content": f"{input_data}"}
wisdom_File = os.path.join(current_directory, wisdomFilePath)
system = ""
if self.pattern:
try:
with open(wisdom_File, "r") as f:
if context:
system = context + '\n\n' + f.read()
else:
system = f.read()
system_message = {"role": "system", "content": system}
messages = [system_message, user_message]
except FileNotFoundError:
print("pattern not found")
return
else:
if context:
messages = [
{'role': 'system', 'content': context}, user_message]
else:
messages = [user_message]
try:
if self.local:
asyncio.run(self.localChat(messages))
elif self.claude:
asyncio.run(self.claudeChat(system, user_message))
else:
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
temperature=0.0,
top_p=1,
frequency_penalty=0.1,
presence_penalty=0.1,
)
print(response.choices[0].message.content)
except Exception as e:
if "All connection attempts failed" in str(e):
print(
"Error: cannot connect to llama2. If you have not already, please visit https://ollama.com for installation instructions")
if "CLAUDE_API_KEY" in str(e):
print(
"Error: CLAUDE_API_KEY not found in environment variables. Please run --setup and add the key")
if "overloaded_error" in str(e):
print(
"Error: Fabric is working fine, but claude is overloaded. Please try again later.")
if "Attempted to call a sync iterator on an async stream" in str(e):
print("Error: There is a problem connecting fabric with your local ollama installation. Please visit https://ollama.com for installation instructions. It is possible that you have chosen the wrong model. Please run fabric --listmodels to see the available models and choose the right one with fabric --model <model> or fabric --changeDefaultModel. If this does not work. Restart your computer (always a good idea) and try again. If you are still having problems, please visit https://ollama.com for installation instructions.")
else:
print(f"Error: {e}")
print(e)
if self.args.copy:
pyperclip.copy(response.choices[0].message.content)
if self.args.output:
with open(self.args.output, "w") as f:
f.write(response.choices[0].message.content)
def fetch_available_models(self):
gptlist = []
fullOllamaList = []
claudeList = ['claude-3-opus-20240229']
headers = {
"Authorization": f"Bearer {self.client.api_key}"
}
response = requests.get(
"https://api.openai.com/v1/models", headers=headers)
if response.status_code == 200:
models = response.json().get("data", [])
# Filter only gpt models
gpt_models = [model for model in models if model.get(
"id", "").startswith(("gpt"))]
# Sort the models alphabetically by their ID
sorted_gpt_models = sorted(
gpt_models, key=lambda x: x.get("id"))
for model in sorted_gpt_models:
gptlist.append(model.get("id"))
else:
print(f"Failed to fetch models: HTTP {response.status_code}")
sys.exit()
import ollama
try:
default_modelollamaList = ollama.list()['models']
for model in default_modelollamaList:
fullOllamaList.append(model['name'].rstrip(":latest"))
except:
fullOllamaList = []
return gptlist, fullOllamaList, claudeList
def get_cli_input(self):
""" aided by ChatGPT; uses platform library
accepts either piped input or console input
from either Windows or Linux
Args:
none
Returns:
string from either user or pipe
"""
system = platform.system()
if system == 'Windows':
if not sys.stdin.isatty(): # Check if input is being piped
return sys.stdin.read().strip() # Read piped input
else:
# Prompt user for input from console
return input("Enter Question: ")
else:
return sys.stdin.read()
class Update:
def __init__(self):
"""Initialize the object with default values."""
self.repo_zip_url = "https://github.com/danielmiessler/fabric/archive/refs/heads/main.zip"
self.config_directory = os.path.expanduser("~/.config/fabric")
self.pattern_directory = os.path.join(
self.config_directory, "patterns")
os.makedirs(self.pattern_directory, exist_ok=True)
print("Updating patterns...")
self.update_patterns() # Start the update process immediately
def update_patterns(self):
"""Update the patterns by downloading the zip from GitHub and extracting it."""
with tempfile.TemporaryDirectory() as temp_dir:
zip_path = os.path.join(temp_dir, "repo.zip")
self.download_zip(self.repo_zip_url, zip_path)
extracted_folder_path = self.extract_zip(zip_path, temp_dir)
# The patterns folder will be inside "fabric-main" after extraction
patterns_source_path = os.path.join(
extracted_folder_path, "fabric-main", "patterns")
if os.path.exists(patterns_source_path):
# If the patterns directory already exists, remove it before copying over the new one
if os.path.exists(self.pattern_directory):
shutil.rmtree(self.pattern_directory)
shutil.copytree(patterns_source_path, self.pattern_directory)
print("Patterns updated successfully.")
else:
print("Patterns folder not found in the downloaded zip.")
def download_zip(self, url, save_path):
"""Download the zip file from the specified URL."""
response = requests.get(url)
response.raise_for_status() # Check if the download was successful
with open(save_path, 'wb') as f:
f.write(response.content)
print("Downloaded zip file successfully.")
def extract_zip(self, zip_path, extract_to):
"""Extract the zip file to the specified directory."""
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
print("Extracted zip file successfully.")
return extract_to # Return the path to the extracted contents
class Alias:
def __init__(self):
self.config_files = []
home_directory = os.path.expanduser("~")
self.patterns = os.path.join(home_directory, ".config/fabric/patterns")
if os.path.exists(os.path.join(home_directory, ".bashrc")):
self.config_files.append(os.path.join(home_directory, ".bashrc"))
if os.path.exists(os.path.join(home_directory, ".zshrc")):
self.config_files.append(os.path.join(home_directory, ".zshrc"))
if os.path.exists(os.path.join(home_directory, ".bash_profile")):
self.config_files.append(os.path.join(
home_directory, ".bash_profile"))
self.remove_all_patterns()
self.add_patterns()
print('Aliases added successfully. Please restart your terminal to use them.')
def add(self, name, alias):
for file in self.config_files:
with open(file, "a") as f:
f.write(f"alias {name}='{alias}'\n")
def remove(self, pattern):
for file in self.config_files:
# Read the whole file first
with open(file, "r") as f:
wholeFile = f.read()
# Determine if the line to be removed is in the file
target_line = f"alias {pattern}='fabric --pattern {pattern}'\n"
if target_line in wholeFile:
# If the line exists, replace it with nothing (remove it)
wholeFile = wholeFile.replace(target_line, "")
# Write the modified content back to the file
with open(file, "w") as f:
f.write(wholeFile)
def remove_all_patterns(self):
allPatterns = os.listdir(self.patterns)
for pattern in allPatterns:
self.remove(pattern)
def find_line(self, name):
for file in self.config_files:
with open(file, "r") as f:
lines = f.readlines()
for line in lines:
if line.strip("\n") == f"alias ${name}='{alias}'":
return line
def add_patterns(self):
allPatterns = os.listdir(self.patterns)
for pattern in allPatterns:
self.add(pattern, f"fabric --pattern {pattern}")
class Setup:
def __init__(self):
""" Initialize the object.
Raises:
OSError: If there is an error in creating the pattern directory.
"""
self.config_directory = os.path.expanduser("~/.config/fabric")
self.pattern_directory = os.path.join(
self.config_directory, "patterns")
os.makedirs(self.pattern_directory, exist_ok=True)
self.env_file = os.path.join(self.config_directory, ".env")
self.gptlist = []
self.fullOllamaList = []
self.claudeList = ['claude-3-opus-20240229']
load_dotenv(self.env_file)
try:
openaiapikey = os.environ["OPENAI_API_KEY"]
self.openaiapi_key = openaiapikey
except:
pass
try:
self.fetch_available_models()
except:
pass
def fetch_available_models(self):
headers = {
"Authorization": f"Bearer {self.openaiapi_key}"
}
response = requests.get(
"https://api.openai.com/v1/models", headers=headers)
if response.status_code == 200:
models = response.json().get("data", [])
# Filter only gpt models
gpt_models = [model for model in models if model.get(
"id", "").startswith(("gpt"))]
# Sort the models alphabetically by their ID
sorted_gpt_models = sorted(
gpt_models, key=lambda x: x.get("id"))
for model in sorted_gpt_models:
self.gptlist.append(model.get("id"))
else:
print(f"Failed to fetch models: HTTP {response.status_code}")
sys.exit()
import ollama
try:
default_modelollamaList = ollama.list()['models']
for model in default_modelollamaList:
self.fullOllamaList.append(model['name'].rstrip(":latest"))
except:
self.fullOllamaList = []
allmodels = self.gptlist + self.fullOllamaList + self.claudeList
return allmodels
def api_key(self, api_key):
""" Set the OpenAI API key in the environment file.
Args:
api_key (str): The API key to be set.
Returns:
None
Raises:
OSError: If the environment file does not exist or cannot be accessed.
"""
api_key = api_key.strip()
if not os.path.exists(self.env_file) and api_key:
with open(self.env_file, "w") as f:
f.write(f"OPENAI_API_KEY={api_key}")
print(f"OpenAI API key set to {api_key}")
elif api_key:
# erase the line OPENAI_API_KEY=key and write the new key
with open(self.env_file, "r") as f:
lines = f.readlines()
with open(self.env_file, "w") as f:
for line in lines:
if "OPENAI_API_KEY" not in line:
f.write(line)
f.write(f"OPENAI_API_KEY={api_key}")
def claude_key(self, claude_key):
""" Set the Claude API key in the environment file.
Args:
claude_key (str): The API key to be set.
Returns:
None
Raises:
OSError: If the environment file does not exist or cannot be accessed.
"""
claude_key = claude_key.strip()
if os.path.exists(self.env_file) and claude_key:
with open(self.env_file, "r") as f:
lines = f.readlines()
with open(self.env_file, "w") as f:
for line in lines:
if "CLAUDE_API_KEY" not in line:
f.write(line)
f.write(f"CLAUDE_API_KEY={claude_key}")
elif claude_key:
with open(self.env_file, "w") as f:
f.write(f"CLAUDE_API_KEY={claude_key}")
def update_fabric_command(self, line, model):
fabric_command_regex = re.compile(
r"(alias.*fabric --pattern\s+\S+.*?)( --model.*)?'")
match = fabric_command_regex.search(line)
if match:
base_command = match.group(1)
# Provide a default value for current_flag
current_flag = match.group(2) if match.group(2) else ""
new_flag = ""
new_flag = f" --model {model}"
# Update the command if the new flag is different or to remove an existing flag.
# Ensure to add the closing quote that was part of the original regex
return f"{base_command}{new_flag}'\n"
else:
return line # Return the line unmodified if no match is found.
def update_fabric_alias(self, line, model):
fabric_alias_regex = re.compile(
r"(alias fabric='[^']+?)( --model.*)?'")
match = fabric_alias_regex.search(line)
if match:
base_command, current_flag = match.groups()
new_flag = f" --model {model}"
# Update the alias if the new flag is different or to remove an existing flag.
return f"{base_command}{new_flag}'\n"
else:
return line # Return the line unmodified if no match is found.
def clear_alias(self, line):
fabric_command_regex = re.compile(
r"(alias fabric='[^']+?)( --model.*)?'")
match = fabric_command_regex.search(line)
if match:
base_command = match.group(1)
return f"{base_command}'\n"
else:
return line # Return the line unmodified if no match is found.
def clear_env_line(self, line):
fabric_command_regex = re.compile(
r"(alias.*fabric --pattern\s+\S+.*?)( --model.*)?'")
match = fabric_command_regex.search(line)
if match:
base_command = match.group(1)
return f"{base_command}'\n"
else:
return line # Return the line unmodified if no match is found.
def pattern(self, line):
fabric_command_regex = re.compile(
r"(alias fabric='[^']+?)( --model.*)?'")
match = fabric_command_regex.search(line)
if match:
base_command = match.group(1)
return f"{base_command}'\n"
else:
return line # Return the line unmodified if no match is found.
def clean_env(self):
"""Clear the DEFAULT_MODEL from the environment file.
Returns:
None
"""
user_home = os.path.expanduser("~")
sh_config = None
# Check for shell configuration files
if os.path.exists(os.path.join(user_home, ".bashrc")):
sh_config = os.path.join(user_home, ".bashrc")
elif os.path.exists(os.path.join(user_home, ".zshrc")):
sh_config = os.path.join(user_home, ".zshrc")
else:
print("No environment file found.")
if sh_config:
with open(sh_config, "r") as f:
lines = f.readlines()
with open(sh_config, "w") as f:
for line in lines:
modified_line = line
# Update existing fabric commands
if "fabric --pattern" in line:
modified_line = self.clear_env_line(
modified_line)
elif "fabric=" in line:
modified_line = self.clear_alias(
modified_line)
f.write(modified_line)
self.remove_duplicates(env_file)
else:
print("No shell configuration file found.")
def default_model(self, model):
"""Set the default model in the environment file.
Args:
model (str): The model to be set.
"""
model = model.strip()
if model:
# Write or update the DEFAULT_MODEL in env_file
allModels = self.claudeList + self.fullOllamaList + self.gptlist
if model not in allModels:
print(
f"Error: {model} is not a valid model. Please run fabric --listmodels to see the available models.")
sys.exit()
# Compile regular expressions outside of the loop for efficiency
user_home = os.path.expanduser("~")
sh_config = None
# Check for shell configuration files
if os.path.exists(os.path.join(user_home, ".bashrc")):
sh_config = os.path.join(user_home, ".bashrc")
elif os.path.exists(os.path.join(user_home, ".zshrc")):
sh_config = os.path.join(user_home, ".zshrc")
if sh_config:
with open(sh_config, "r") as f:
lines = f.readlines()
with open(sh_config, "w") as f:
for line in lines:
modified_line = line
# Update existing fabric commands
if "fabric --pattern" in line:
modified_line = self.update_fabric_command(
modified_line, model)
elif "fabric=" in line:
modified_line = self.update_fabric_alias(
modified_line, model)
f.write(modified_line)
print(f"""Default model changed to {
model}. Please restart your terminal to use it.""")
else:
print("No shell configuration file found.")
def remove_duplicates(filename):
unique_lines = set()
with open(filename, 'r') as file:
lines = file.readlines()
with open(filename, 'w') as file:
for line in lines:
if line not in unique_lines:
file.write(line)
unique_lines.add(line)
def patterns(self):
""" Method to update patterns and exit the system.
Returns:
None
"""
Update()
def run(self):
""" Execute the Fabric program.
This method prompts the user for their OpenAI API key, sets the API key in the Fabric object, and then calls the patterns method.
Returns:
None
"""
print("Welcome to Fabric. Let's get started.")
apikey = input(
"Please enter your OpenAI API key. If you do not have one or if you have already entered it, press enter.\n")
self.api_key(apikey.strip())
print("Please enter your claude API key. If you do not have one, or if you have already entered it, press enter.\n")
claudekey = input()
self.claude_key(claudekey.strip())
model = input(
"Please enter your default model. Press enter to choose the default gpt-4-turbo-preview\n")
self.patterns()
self.default_model(model)
class Transcribe:
def youtube(video_id):
"""
This method gets the transciption
of a YouTube video designated with the video_id
Input:
the video id specifing a YouTube video
an example url for a video: https://www.youtube.com/watch?v=vF-MQmVxnCs&t=306s
the video id is vF-MQmVxnCs&t=306s
Output:
a transcript for the video
Raises:
an exception and prints error
"""
try:
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
transcript = ""
for segment in transcript_list:
transcript += segment['text'] + " "
return transcript.strip()
except Exception as e:
print("Error:", e)
return None
class AgentSetup:
def apiKeys(self):
"""Method to set the API keys in the environment file.
Returns:
None
"""
print("Welcome to Fabric. Let's get started.")
browserless = input("Please enter your Browserless API key\n")
serper = input("Please enter your Serper API key\n")
# Entries to be added
browserless_entry = f"BROWSERLESS_API_KEY={browserless}"
serper_entry = f"SERPER_API_KEY={serper}"
# Check and write to the file
with open(env_file, "r+") as f:
content = f.read()
# Determine if the file ends with a newline
if content.endswith('\n'):
# If it ends with a newline, we directly write the new entries
f.write(f"{browserless_entry}\n{serper_entry}\n")
else:
# If it does not end with a newline, add one before the new entries
f.write(f"\n{browserless_entry}\n{serper_entry}\n")