fabric is an open-source framework for augmenting humans using AI. It provides a modular framework for solving specific problems using a crowdsourced set of AI prompts that can be used anywhere.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

136 lines
5.7 KiB

import argparse
from newspaper import Article
import json
import time
class Np4k:
def __init__(self, file_path=None, single_url=None, output_format='stdout'):
self.file_path = file_path
self.single_url = single_url
self.output_format = output_format.lower()
self.articles_data = []
self.urls = self.load_urls()
def load_urls(self):
'''Load URLs from a file or a single URL based on the input provided.'''
urls = []
if self.file_path:
try:
with open(self.file_path, 'r') as file:
urls = [url.strip() for url in file.readlines() if url.strip()]
except FileNotFoundError:
print(f'The file {self.file_path} was not found.')
except Exception as e:
print(f'Error reading from {self.file_path}: {e}')
elif self.single_url:
urls = [self.single_url]
return urls
def process_urls(self):
'''Run newspaper4k against each URL and extract/produce metadata'''
timestamp = int(time.time())
output_filename = f'_output_{timestamp}.{"json" if self.output_format == "json" else "txt"}'
for url in self.urls:
if url: # Check if URL is not empty
try:
article_data = self.newspaper4k(url)
self.articles_data.append(article_data)
# Always print the article text to stdout.
print(article_data.get('text', 'No text extracted'))
except Exception as e:
print(f'Error processing URL {url}: {e}')
continue
# Write the extracted data to a file in the specified format if 'json' or 'kvp' is specified
if self.output_format != 'stdout':
if self.output_format == 'json':
self.write_json(output_filename)
else: # 'kvp' format
self.write_kvp(output_filename)
def format_data(self, article_data, format_type):
'''Formats the article data based on the specified format for terminal output'''
if format_type == 'json':
return json.dumps(article_data, ensure_ascii=False, indent=4)
elif format_type == 'kvp':
formatted_data = ""
for key, value in article_data.items():
if isinstance(value, list):
value = ', '.join(value)
if isinstance(value, str):
value = value.replace('\n', '\\n')
formatted_data += f"{key}: {value}\n"
return formatted_data
elif format_type == 'stdout': # Only print the article text for stdout
return article_data.get('text', 'No text extracted')
def write_json(self, output_filename):
try:
with open(output_filename, 'w', encoding='utf-8') as f:
json.dump(self.articles_data, f, ensure_ascii=False, indent=4)
print(f'Successfully wrote extracted data to {output_filename}')
except Exception as e:
print(f'Error writing data to {output_filename}: {e}')
def write_kvp(self, output_filename):
try:
with open(output_filename, 'w', encoding='utf-8') as f:
for article in self.articles_data:
for key, value in article.items():
if isinstance(value, list):
value = ', '.join(value)
if isinstance(value, str):
value = value.replace('\n', '\\n')
f.write(f"{key}: {value}\n")
f.write("---\n")
print(f'Successfully wrote extracted data to {output_filename}')
except Exception as e:
print(f'Error writing data to {output_filename}: {e}')
def newspaper4k(self, url):
article = Article(url, fetch_images=False)
processed_article = {
"title": "",
"keywords": [],
"tags": [],
"authors": [],
"summary": "",
"text": "",
"publish_date": "",
"url": "",
}
try:
article.download()
article.parse()
article.nlp()
processed_article["title"] = article.title or "Not Found"
processed_article["keywords"] = article.keywords if article.keywords is not None else []
processed_article["tags"] = list(article.tags) if article.tags is not None else []
processed_article["authors"] = article.authors if article.authors is not None else ["Not Found"]
processed_article["summary"] = article.summary or "Not Found"
processed_article["text"] = article.text or "Not Found"
processed_article["publish_date"] = article.publish_date.isoformat() if article.publish_date else "Not Found"
processed_article["url"] = url
except Exception as e:
print(f'Failed to process article from {url}: {e}')
raise e
return processed_article
def parse_arguments():
parser = argparse.ArgumentParser(description='Np4k is a helper to extract information from blogs or articles.')
parser.add_argument('--url', type=str, help='A single URL to process.')
parser.add_argument('--file', type=str, help='A file containing the list of URLs to process.')
parser.add_argument('--output', type=str, choices=['stdout', 'kvp', 'json'], default='stdout', help='The file format to write the extracted data in. Default is stdout.')
return parser.parse_args()
def main():
args = parse_arguments()
np4k = Np4k(file_path=args.file, single_url=args.url, output_format=args.output)
np4k.process_urls()
if __name__ == "__main__":
main()