You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
3.4 KiB
110 lines
3.4 KiB
from dotenv import load_dotenv |
|
from pydub import AudioSegment |
|
from openai import OpenAI |
|
import os |
|
import argparse |
|
|
|
|
|
class Whisper: |
|
def __init__(self): |
|
env_file = os.path.expanduser("~/.config/fabric/.env") |
|
load_dotenv(env_file) |
|
try: |
|
apikey = os.environ["OPENAI_API_KEY"] |
|
self.client = OpenAI() |
|
self.client.api_key = apikey |
|
except KeyError: |
|
print("OPENAI_API_KEY not found in environment variables.") |
|
|
|
except FileNotFoundError: |
|
print("No API key found. Use the --apikey option to set the key") |
|
self.whole_response = [] |
|
|
|
def split_audio(self, file_path): |
|
""" |
|
Splits the audio file into segments of the given length. |
|
|
|
Args: |
|
- file_path: The path to the audio file. |
|
- segment_length_ms: Length of each segment in milliseconds. |
|
|
|
Returns: |
|
- A list of audio segments. |
|
""" |
|
audio = AudioSegment.from_file(file_path) |
|
segments = [] |
|
segment_length_ms = 10 * 60 * 1000 # 10 minutes in milliseconds |
|
for start_ms in range(0, len(audio), segment_length_ms): |
|
end_ms = start_ms + segment_length_ms |
|
segment = audio[start_ms:end_ms] |
|
segments.append(segment) |
|
|
|
return segments |
|
|
|
def process_segment(self, segment): |
|
""" Transcribe an audio file and print the transcript. |
|
|
|
Args: |
|
audio_file (str): The path to the audio file to be transcribed. |
|
|
|
Returns: |
|
None |
|
""" |
|
|
|
try: |
|
# if audio_file.startswith("http"): |
|
# response = requests.get(audio_file) |
|
# response.raise_for_status() |
|
# with tempfile.NamedTemporaryFile(delete=False) as f: |
|
# f.write(response.content) |
|
# audio_file = f.name |
|
audio_file = open(segment, "rb") |
|
response = self.client.audio.transcriptions.create( |
|
model="whisper-1", |
|
file=audio_file |
|
) |
|
self.whole_response.append(response.text) |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
def process_file(self, audio_file): |
|
""" Transcribe an audio file and print the transcript. |
|
|
|
Args: |
|
audio_file (str): The path to the audio file to be transcribed. |
|
|
|
Returns: |
|
None |
|
""" |
|
|
|
try: |
|
# if audio_file.startswith("http"): |
|
# response = requests.get(audio_file) |
|
# response.raise_for_status() |
|
# with tempfile.NamedTemporaryFile(delete=False) as f: |
|
# f.write(response.content) |
|
# audio_file = f.name |
|
|
|
segments = self.split_audio(audio_file) |
|
for i, segment in enumerate(segments): |
|
segment_file_path = f"segment_{i}.mp3" |
|
segment.export(segment_file_path, format="mp3") |
|
self.process_segment(segment_file_path) |
|
print(' '.join(self.whole_response)) |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Transcribe an audio file.") |
|
parser.add_argument( |
|
"audio_file", help="The path to the audio file to be transcribed.") |
|
args = parser.parse_args() |
|
whisper = Whisper() |
|
whisper.process_file(args.audio_file) |
|
|
|
|
|
if __name__ == "__main__": |
|
main()
|
|
|