|
|
#!/usr/bin/env python3 |
|
|
import argparse |
|
|
import gradio as gr |
|
|
import open_clip |
|
|
from clip_interrogator import Interrogator, Config |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument('-s', '--share', action='store_true', help='Create a public link') |
|
|
args = parser.parse_args() |
|
|
|
|
|
ci = Interrogator(Config(cache_path="cache", clip_model_path="cache")) |
|
|
|
|
|
def inference(image, mode, clip_model_name, blip_max_length, blip_num_beams): |
|
|
if clip_model_name != ci.config.clip_model_name: |
|
|
ci.config.clip_model_name = clip_model_name |
|
|
ci.load_clip_model() |
|
|
ci.config.blip_max_length = int(blip_max_length) |
|
|
ci.config.blip_num_beams = int(blip_num_beams) |
|
|
|
|
|
image = image.convert('RGB') |
|
|
if mode == 'best': |
|
|
return ci.interrogate(image) |
|
|
elif mode == 'classic': |
|
|
return ci.interrogate_classic(image) |
|
|
else: |
|
|
return ci.interrogate_fast(image) |
|
|
|
|
|
models = ['/'.join(x) for x in open_clip.list_pretrained()] |
|
|
|
|
|
inputs = [ |
|
|
gr.inputs.Image(type='pil'), |
|
|
gr.Radio(['best', 'classic', 'fast'], label='Mode', value='best'), |
|
|
gr.Dropdown(models, value='ViT-L-14/openai', label='CLIP Model'), |
|
|
gr.Number(value=32, label='Caption Max Length'), |
|
|
gr.Number(value=64, label='Caption Num Beams'), |
|
|
] |
|
|
outputs = [ |
|
|
gr.outputs.Textbox(label="Output"), |
|
|
] |
|
|
|
|
|
io = gr.Interface( |
|
|
inference, |
|
|
inputs, |
|
|
outputs, |
|
|
title="🕵️♂️ CLIP Interrogator 🕵️♂️", |
|
|
allow_flagging=False, |
|
|
) |
|
|
io.launch(share=args.share) |
|
|
|
|
|
|