You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
694 lines
25 KiB
694 lines
25 KiB
import hashlib |
|
import inspect |
|
import math |
|
import numpy as np |
|
import open_clip |
|
import os |
|
import pickle |
|
import requests |
|
import time |
|
import torch |
|
|
|
from dataclasses import dataclass |
|
from blip.models.blip import blip_decoder, BLIP_Decoder |
|
from PIL import Image |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
from tqdm import tqdm |
|
from typing import List |
|
|
|
BLIP_MODELS = { |
|
"base": "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth", |
|
"large": "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth", |
|
} |
|
|
|
CACHE_URLS_VITL = [ |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_artists.pkl", |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_flavors.pkl", |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_mediums.pkl", |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_movements.pkl", |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_trendings.pkl", |
|
] |
|
|
|
CACHE_URLS_VITH = [ |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl", |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl", |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl", |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl", |
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl", |
|
] |
|
|
|
|
|
@dataclass |
|
class Config: |
|
# models can optionally be passed in directly |
|
blip_model: BLIP_Decoder = None |
|
clip_model = None |
|
clip_preprocess = None |
|
|
|
# blip settings |
|
blip_image_eval_size: int = 384 |
|
blip_max_length: int = 32 |
|
blip_model_type: str = "large" # choose between 'base' or 'large' |
|
blip_num_beams: int = 8 |
|
blip_offload: bool = False |
|
|
|
# clip settings |
|
clip_model_name: str = "ViT-L-14/openai" |
|
clip_model_path: str = None |
|
|
|
# interrogator settings |
|
cache_path: str = "cache" # path to store cached text embeddings |
|
download_cache: bool = ( |
|
True # when true, cached embeds are downloaded from huggingface |
|
) |
|
chunk_size: int = 2048 # batch size for CLIP, use smaller for lower VRAM |
|
data_path: str = os.path.join(os.path.dirname(__file__), "data") |
|
device: str = ( |
|
"mps" |
|
if torch.backends.mps.is_available() |
|
else "cuda" |
|
if torch.cuda.is_available() |
|
else "cpu" |
|
) |
|
flavor_intermediate_count: int = 2048 |
|
quiet: bool = False # when quiet progress bars are not shown |
|
|
|
|
|
class Interrogator: |
|
def __init__(self, config: Config): |
|
self.config = config |
|
self.device = config.device |
|
# Record which model is on the target device |
|
self.blip_loaded = True |
|
|
|
# Load BLIP model (to intended device) |
|
if config.blip_model is None: |
|
if not config.quiet: |
|
print("Loading BLIP model...") |
|
blip_path = os.path.dirname(inspect.getfile(blip_decoder)) |
|
configs_path = os.path.join(os.path.dirname(blip_path), "configs") |
|
med_config = os.path.join(configs_path, "med_config.json") |
|
blip_model = blip_decoder( |
|
pretrained=BLIP_MODELS[config.blip_model_type], |
|
image_size=config.blip_image_eval_size, |
|
vit=config.blip_model_type, |
|
med_config=med_config, |
|
) |
|
blip_model.eval() |
|
blip_model = blip_model.to(config.device) |
|
self.blip_model = blip_model |
|
else: |
|
self.blip_model = config.blip_model |
|
|
|
# Load CLIP (to CPU) |
|
self.load_clip_model() |
|
|
|
def download_cache(self, clip_model_name: str): |
|
if clip_model_name == "ViT-L-14/openai": |
|
cache_urls = CACHE_URLS_VITL |
|
elif clip_model_name == "ViT-H-14/laion2b_s32b_b79k": |
|
cache_urls = CACHE_URLS_VITH |
|
else: |
|
# text embeddings will be precomputed and cached locally |
|
return |
|
|
|
os.makedirs(self.config.cache_path, exist_ok=True) |
|
for url in cache_urls: |
|
filepath = os.path.join(self.config.cache_path, url.split("/")[-1]) |
|
if not os.path.exists(filepath): |
|
_download_file(url, filepath, quiet=self.config.quiet) |
|
|
|
def load_clip_model(self): |
|
start_time = time.time() |
|
config = self.config |
|
|
|
if config.clip_model is None: |
|
if not config.quiet: |
|
print("Loading CLIP model...") |
|
|
|
clip_model_name, clip_model_pretrained_name = config.clip_model_name.split( |
|
"/", 2 |
|
) |
|
( |
|
self.clip_model, |
|
_, |
|
self.clip_preprocess, |
|
) = open_clip.create_model_and_transforms( |
|
clip_model_name, |
|
pretrained=clip_model_pretrained_name, |
|
precision="fp16" if config.device == "cuda" else "fp32", |
|
device="cpu", |
|
jit=False, |
|
cache_dir=config.clip_model_path, |
|
) |
|
self.clip_model.eval() |
|
else: |
|
self.clip_model = config.clip_model |
|
self.clip_preprocess = config.clip_preprocess |
|
self.tokenize = open_clip.get_tokenizer(clip_model_name) |
|
|
|
sites = [ |
|
"Artstation", |
|
"behance", |
|
"cg society", |
|
"cgsociety", |
|
"deviantart", |
|
"dribble", |
|
"flickr", |
|
"instagram", |
|
"pexels", |
|
"pinterest", |
|
"pixabay", |
|
"pixiv", |
|
"polycount", |
|
"reddit", |
|
"shutterstock", |
|
"tumblr", |
|
"unsplash", |
|
"zbrush central", |
|
] |
|
trending_list = [site for site in sites] |
|
trending_list.extend(["trending on " + site for site in sites]) |
|
trending_list.extend(["featured on " + site for site in sites]) |
|
trending_list.extend([site + " contest winner" for site in sites]) |
|
|
|
raw_artists = _load_list(config.data_path, "artists.txt") |
|
artists = [f"by {a}" for a in raw_artists] |
|
artists.extend([f"inspired by {a}" for a in raw_artists]) |
|
|
|
if config.download_cache: |
|
self.download_cache(config.clip_model_name) |
|
|
|
self.artists = LabelTable( |
|
artists, "artists", self.clip_model, self.tokenize, config |
|
) |
|
self.flavors = LabelTable( |
|
_load_list(config.data_path, "flavors.txt"), |
|
"flavors", |
|
self.clip_model, |
|
self.tokenize, |
|
config, |
|
) |
|
self.mediums = LabelTable( |
|
_load_list(config.data_path, "mediums.txt"), |
|
"mediums", |
|
self.clip_model, |
|
self.tokenize, |
|
config, |
|
) |
|
self.movements = LabelTable( |
|
_load_list(config.data_path, "movements.txt"), |
|
"movements", |
|
self.clip_model, |
|
self.tokenize, |
|
config, |
|
) |
|
self.trendings = LabelTable( |
|
trending_list, "trendings", self.clip_model, self.tokenize, config |
|
) |
|
self.negative = LabelTable( |
|
_load_list(config.data_path, "negative.txt"), |
|
"negative", |
|
self.clip_model, |
|
self.tokenize, |
|
config, |
|
) |
|
|
|
end_time = time.time() |
|
if not config.quiet: |
|
print(f"Loaded CLIP model and data in {end_time-start_time:.2f} seconds.") |
|
|
|
def chain( |
|
self, |
|
image_features: torch.Tensor, |
|
phrases: List[str], |
|
best_prompt: str = "", |
|
best_sim: float = 0, |
|
min_count: int = 8, |
|
max_count: int = 32, |
|
desc="Chaining", |
|
reverse: bool = False, |
|
) -> str: |
|
phrases = set(phrases) |
|
if not best_prompt: |
|
best_prompt = self.rank_top( |
|
image_features, [f for f in phrases], reverse=reverse |
|
) |
|
best_sim = self.similarity(image_features, best_prompt) |
|
phrases.remove(best_prompt) |
|
curr_prompt, curr_sim = best_prompt, best_sim |
|
|
|
def check(addition: str, idx: int) -> bool: |
|
nonlocal best_prompt, best_sim, curr_prompt, curr_sim |
|
prompt = curr_prompt + ", " + addition |
|
sim = self.similarity(image_features, prompt) |
|
if reverse: |
|
sim = -sim |
|
|
|
if sim > best_sim: |
|
best_prompt, best_sim = prompt, sim |
|
if sim > curr_sim or idx < min_count: |
|
curr_prompt, curr_sim = prompt, sim |
|
return True |
|
return False |
|
|
|
for idx in tqdm(range(max_count), desc=desc, disable=self.config.quiet): |
|
best = self.rank_top( |
|
image_features, |
|
[f"{curr_prompt}, {f}" for f in phrases], |
|
reverse=reverse, |
|
) |
|
flave = best[len(curr_prompt) + 2 :] |
|
if not check(flave, idx): |
|
break |
|
if _prompt_at_max_len(curr_prompt, self.tokenize): |
|
break |
|
phrases.remove(flave) |
|
|
|
return best_prompt |
|
|
|
def generate_caption(self, pil_image: Image) -> str: |
|
if self.config.blip_offload: |
|
self.blip_model = self.blip_model.to(self.device) |
|
size = self.config.blip_image_eval_size |
|
gpu_image = ( |
|
transforms.Compose( |
|
[ |
|
transforms.Resize( |
|
(size, size), interpolation=InterpolationMode.BICUBIC |
|
), |
|
transforms.ToTensor(), |
|
transforms.Normalize( |
|
(0.48145466, 0.4578275, 0.40821073), |
|
(0.26862954, 0.26130258, 0.27577711), |
|
), |
|
] |
|
)(pil_image) |
|
.unsqueeze(0) |
|
.to(self.device) |
|
) |
|
|
|
with torch.no_grad(): |
|
caption = self.blip_model.generate( |
|
gpu_image, |
|
sample=False, |
|
num_beams=self.config.blip_num_beams, |
|
max_length=self.config.blip_max_length, |
|
min_length=5, |
|
) |
|
if self.config.blip_offload: |
|
self.blip_model = self.blip_model.to("cpu") |
|
return caption[0] |
|
|
|
def image_to_features(self, image: Image) -> torch.Tensor: |
|
images = self.clip_preprocess(image).unsqueeze(0).to(self.device) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = self.clip_model.encode_image(images) |
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
return image_features |
|
|
|
def _first_bit(self, image: Image) -> (str, torch.Tensor): |
|
if self.blip_loaded: |
|
caption = self.generate_caption(image) |
|
|
|
# Move BLIP to RAM |
|
self.blip_model.to("cpu") |
|
# Move CLIP to intended device |
|
self.clip_model.to(self.device) |
|
|
|
image_features = self.image_to_features(image) |
|
else: # CLIP is loaded |
|
image_features = self.image_to_features(image) |
|
|
|
# Move CLIP to RAM |
|
self.clip_model.to("cpu") |
|
# Move BLIP to intended device |
|
self.blip_model.to(self.device) |
|
|
|
caption = self.generate_caption(image) |
|
|
|
# Toggle `blip_loaded` |
|
self.blip_loaded ^= True |
|
|
|
return caption, image_features |
|
|
|
def _first_bit_batch(self, images: list[Image]) -> (list[str], list[torch.Tensor]): |
|
image_features: list[torch.Tensor] = [] |
|
if self.blip_loaded: |
|
captions = [self.generate_caption(img) for img in images] |
|
|
|
# Move BLIP to RAM |
|
self.blip_model.to("cpu") |
|
# Move CLIP to intended device |
|
self.clip_model.to(self.device) |
|
|
|
image_features = [self.image_to_features(img) for img in images] |
|
else: # CLIP is loaded |
|
image_features = [self.image_to_features(img) for img in images] |
|
|
|
# Move CLIP to RAM |
|
self.clip_model.to("cpu") |
|
# Move BLIP to intended device |
|
self.blip_model.to(self.device) |
|
|
|
captions = [self.generate_caption(img) for img in images] |
|
|
|
# Toggle `blip_loaded` |
|
self.blip_loaded ^= True |
|
|
|
return captions, image_features |
|
|
|
def _interrogate_classic( |
|
self, caption: str, image_features: torch.Tensor, max_flavours: int = 3 |
|
) -> str: |
|
medium = self.mediums.rank(image_features, 1)[0] |
|
artist = self.artists.rank(image_features, 1)[0] |
|
trending = self.trendings.rank(image_features, 1)[0] |
|
movement = self.movements.rank(image_features, 1)[0] |
|
flaves = ", ".join(self.flavors.rank(image_features, max_flavours)) |
|
|
|
if caption.startswith(medium): |
|
prompt = f"{caption} {artist}, {trending}, {movement}, {flaves}" |
|
else: |
|
prompt = f"{caption}, {medium} {artist}, {trending}, {movement}, {flaves}" |
|
|
|
return _truncate_to_fit(prompt, self.tokenize) |
|
|
|
def interrogate_classic(self, image: Image, max_flavors: int = 3) -> str: |
|
"""Classic mode creates a prompt in a standard format first describing the image, |
|
then listing the artist, trending, movement, and flavor text modifiers.""" |
|
caption, image_features = self._first_bit(image) |
|
|
|
return self._interrogate_classic(caption, image_features, max_flavors) |
|
|
|
def interrogate_classic_batch( |
|
self, images: list[Image], max_flavors: int = 3 |
|
) -> list[str]: |
|
"""Classic mode creates a prompt in a standard format first describing the image, |
|
then listing the artist, trending, movement, and flavor text modifiers. |
|
|
|
This function interrogates a batch of images (more efficient than doing |
|
it individually).""" |
|
captions, image_features = self._first_bit_batch(images) |
|
|
|
returns: list[str] = [ |
|
self._interrogate_classic(caption, feature, max_flavors) |
|
for caption, feature in zip(captions, image_features) |
|
] |
|
|
|
return returns |
|
|
|
def _interrogate_fast( |
|
self, caption: str, image_features: torch.Tensor, max_flavours: int = 32 |
|
) -> str: |
|
merged = _merge_tables( |
|
[self.artists, self.flavors, self.mediums, self.movements, self.trendings], |
|
self.config, |
|
) |
|
tops = merged.rank(image_features, max_flavours) |
|
return _truncate_to_fit(caption + ", " + ", ".join(tops), self.tokenize) |
|
|
|
def interrogate_fast(self, image: Image, max_flavors: int = 32) -> str: |
|
"""Fast mode simply adds the top ranked terms after a caption. It generally results in |
|
better similarity between generated prompt and image than classic mode, but the prompts |
|
are less readable.""" |
|
caption, image_features = self._first_bit(image) |
|
|
|
return self._interrogate_fast(caption, image_features, max_flavors) |
|
|
|
def interrogate_fast_batch(self, images: list[Image], max_flavors: int = 32) -> str: |
|
"""Fast mode simply adds the top ranked terms after a caption. It generally results in |
|
better similarity between generated prompt and image than classic mode, but the prompts |
|
are less readable. |
|
|
|
This function interrogates a batch of images (more efficient than doing |
|
it individually).""" |
|
captions, image_features = self._first_bit_batch(images) |
|
|
|
returns: list[str] = [ |
|
self._interrogate_fast(caption, feature, max_flavors) |
|
for caption, feature in zip(captions, image_features) |
|
] |
|
|
|
return returns |
|
|
|
def interrogate_negative(self, image: Image, max_flavors: int = 32) -> str: |
|
"""Negative mode chains together the most dissimilar terms to the image. It can be used |
|
to help build a negative prompt to pair with the regular positive prompt and often |
|
improve the results of generated images particularly with Stable Diffusion 2.""" |
|
if self.blip_loaded: # Move CLIP to intended device |
|
self.blip_model.to("cpu") |
|
self.cli_model.to(self.device) |
|
self.blip_loaded = False |
|
|
|
image_features = self.image_to_features(image) |
|
flaves = self.flavors.rank( |
|
image_features, self.config.flavor_intermediate_count, reverse=True |
|
) |
|
flaves = flaves + self.negative.labels |
|
return self.chain( |
|
image_features, |
|
flaves, |
|
max_count=max_flavors, |
|
reverse=True, |
|
desc="Negative chain", |
|
) |
|
|
|
def _interrogate( |
|
self, |
|
caption: str, |
|
image_features: torch.Tensor, |
|
min_flavours: int = 8, |
|
max_flavours: int = 32, |
|
) -> str: |
|
merged = _merge_tables( |
|
[self.artists, self.flavors, self.mediums, self.movements, self.trendings], |
|
self.config, |
|
) |
|
flaves = merged.rank(image_features, self.config.flavor_intermediate_count) |
|
|
|
best_prompt, best_sim = caption, self.similarity(image_features, caption) |
|
best_prompt = self.chain( |
|
image_features, |
|
flaves, |
|
best_prompt, |
|
best_sim, |
|
min_count=min_flavours, |
|
max_count=max_flavours, |
|
desc="Flavor chain", |
|
) |
|
|
|
fast_prompt = self._interrogate_fast(caption, image_features, max_flavours) |
|
classic_prompt = self.interrogate_classic(caption, image_features, max_flavours) |
|
candidates = [caption, classic_prompt, fast_prompt, best_prompt] |
|
return candidates[np.argmax(self.similarities(image_features, candidates))] |
|
|
|
def interrogate( |
|
self, image: Image, min_flavors: int = 8, max_flavors: int = 32 |
|
) -> str: |
|
caption, image_features = self._first_bit(image) |
|
|
|
return self._interrogate(caption, image_features, min_flavors, max_flavors) |
|
|
|
def interrogate_batch( |
|
self, images: list[Image], min_flavors: int = 8, max_flavors: int = 32 |
|
) -> list[str]: |
|
"""This function interrogates a batch of images (more efficient than doing |
|
it individually).""" |
|
captions, image_features = self._first_bit_batch(images) |
|
|
|
returns: list[str] = [ |
|
self._interrogate(caption, features, min_flavors, max_flavors) |
|
for caption, features in zip(captions, image_features) |
|
] |
|
|
|
return returns |
|
|
|
def rank_top( |
|
self, image_features: torch.Tensor, text_array: List[str], reverse: bool = False |
|
) -> str: |
|
text_tokens = self.tokenize([text for text in text_array]).to(self.device) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
text_features = self.clip_model.encode_text(text_tokens) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
similarity = text_features @ image_features.T |
|
if reverse: |
|
similarity = -similarity |
|
return text_array[similarity.argmax().item()] |
|
|
|
def similarity(self, image_features: torch.Tensor, text: str) -> float: |
|
text_tokens = self.tokenize([text]).to(self.device) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
text_features = self.clip_model.encode_text(text_tokens) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
similarity = text_features @ image_features.T |
|
return similarity[0][0].item() |
|
|
|
def similarities( |
|
self, image_features: torch.Tensor, text_array: List[str] |
|
) -> List[float]: |
|
text_tokens = self.tokenize([text for text in text_array]).to(self.device) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
text_features = self.clip_model.encode_text(text_tokens) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
similarity = text_features @ image_features.T |
|
return similarity.T[0].tolist() |
|
|
|
|
|
class LabelTable: |
|
def __init__( |
|
self, labels: List[str], desc: str, clip_model, tokenize, config: Config |
|
): |
|
self.chunk_size = config.chunk_size |
|
self.config = config |
|
self.device = config.device |
|
self.embeds = [] |
|
self.labels = labels |
|
self.tokenize = tokenize |
|
|
|
hash = hashlib.sha256(",".join(labels).encode()).hexdigest() |
|
|
|
cache_filepath = None |
|
if config.cache_path is not None and desc is not None: |
|
os.makedirs(config.cache_path, exist_ok=True) |
|
sanitized_name = config.clip_model_name.replace("/", "_").replace("@", "_") |
|
cache_filepath = os.path.join( |
|
config.cache_path, f"{sanitized_name}_{desc}.pkl" |
|
) |
|
if desc is not None and os.path.exists(cache_filepath): |
|
with open(cache_filepath, "rb") as f: |
|
try: |
|
data = pickle.load(f) |
|
if data.get("hash") == hash: |
|
self.labels = data["labels"] |
|
self.embeds = data["embeds"] |
|
except Exception as e: |
|
print(f"Error loading cached table {desc}: {e}") |
|
|
|
if len(self.labels) != len(self.embeds): |
|
self.embeds = [] |
|
chunks = np.array_split( |
|
self.labels, max(1, len(self.labels) / config.chunk_size) |
|
) |
|
for chunk in tqdm( |
|
chunks, |
|
desc=f"Preprocessing {desc}" if desc else None, |
|
disable=self.config.quiet, |
|
): |
|
text_tokens = self.tokenize(chunk).to(self.device) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
text_features = clip_model.encode_text(text_tokens) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
text_features = text_features.half().cpu().numpy() |
|
for i in range(text_features.shape[0]): |
|
self.embeds.append(text_features[i]) |
|
|
|
if cache_filepath is not None: |
|
with open(cache_filepath, "wb") as f: |
|
pickle.dump( |
|
{ |
|
"labels": self.labels, |
|
"embeds": self.embeds, |
|
"hash": hash, |
|
"model": config.clip_model_name, |
|
}, |
|
f, |
|
) |
|
|
|
if self.device == "cpu" or self.device == torch.device("cpu"): |
|
self.embeds = [e.astype(np.float32) for e in self.embeds] |
|
|
|
def _rank( |
|
self, |
|
image_features: torch.Tensor, |
|
text_embeds: torch.Tensor, |
|
top_count: int = 1, |
|
reverse: bool = False, |
|
) -> str: |
|
top_count = min(top_count, len(text_embeds)) |
|
text_embeds = torch.stack([torch.from_numpy(t) for t in text_embeds]).to( |
|
self.device |
|
) |
|
with torch.cuda.amp.autocast(): |
|
similarity = image_features @ text_embeds.T |
|
if reverse: |
|
similarity = -similarity |
|
_, top_labels = similarity.float().cpu().topk(top_count, dim=-1) |
|
return [top_labels[0][i].numpy() for i in range(top_count)] |
|
|
|
def rank( |
|
self, image_features: torch.Tensor, top_count: int = 1, reverse: bool = False |
|
) -> List[str]: |
|
if len(self.labels) <= self.chunk_size: |
|
tops = self._rank( |
|
image_features, self.embeds, top_count=top_count, reverse=reverse |
|
) |
|
return [self.labels[i] for i in tops] |
|
|
|
num_chunks = int(math.ceil(len(self.labels) / self.chunk_size)) |
|
keep_per_chunk = int(self.chunk_size / num_chunks) |
|
|
|
top_labels, top_embeds = [], [] |
|
for chunk_idx in tqdm(range(num_chunks), disable=self.config.quiet): |
|
start = chunk_idx * self.chunk_size |
|
stop = min(start + self.chunk_size, len(self.embeds)) |
|
tops = self._rank( |
|
image_features, |
|
self.embeds[start:stop], |
|
top_count=keep_per_chunk, |
|
reverse=reverse, |
|
) |
|
top_labels.extend([self.labels[start + i] for i in tops]) |
|
top_embeds.extend([self.embeds[start + i] for i in tops]) |
|
|
|
tops = self._rank(image_features, top_embeds, top_count=top_count) |
|
return [top_labels[i] for i in tops] |
|
|
|
|
|
def _download_file( |
|
url: str, filepath: str, chunk_size: int = 64 * 1024, quiet: bool = False |
|
): |
|
r = requests.get(url, stream=True) |
|
file_size = int(r.headers.get("Content-Length", 0)) |
|
filename = url.split("/")[-1] |
|
progress = tqdm( |
|
total=file_size, unit="B", unit_scale=True, desc=filename, disable=quiet |
|
) |
|
with open(filepath, "wb") as f: |
|
for chunk in r.iter_content(chunk_size=chunk_size): |
|
if chunk: |
|
f.write(chunk) |
|
progress.update(len(chunk)) |
|
progress.close() |
|
|
|
|
|
def _load_list(data_path: str, filename: str) -> List[str]: |
|
with open( |
|
os.path.join(data_path, filename), "r", encoding="utf-8", errors="replace" |
|
) as f: |
|
items = [line.strip() for line in f.readlines()] |
|
return items |
|
|
|
|
|
def _merge_tables(tables: List[LabelTable], config: Config) -> LabelTable: |
|
m = LabelTable([], None, None, None, config) |
|
for table in tables: |
|
m.labels.extend(table.labels) |
|
m.embeds.extend(table.embeds) |
|
return m |
|
|
|
|
|
def _prompt_at_max_len(text: str, tokenize) -> bool: |
|
tokens = tokenize([text]) |
|
return tokens[0][-1] != 0 |
|
|
|
|
|
def _truncate_to_fit(text: str, tokenize) -> str: |
|
parts = text.split(", ") |
|
new_text = parts[0] |
|
for part in parts[1:]: |
|
if _prompt_at_max_len(new_text + part, tokenize): |
|
break |
|
new_text += ", " + part |
|
return new_text
|
|
|