|
|
#!/usr/bin/env python3 |
|
|
import clip |
|
|
import gradio as gr |
|
|
from clip_interrogator import Interrogator, Config |
|
|
|
|
|
ci = Interrogator(Config()) |
|
|
|
|
|
def inference(image, mode, clip_model_name, blip_max_length, blip_num_beams): |
|
|
global ci |
|
|
if clip_model_name != ci.config.clip_model_name: |
|
|
ci = Interrogator(Config(clip_model_name=clip_model_name)) |
|
|
ci.config.blip_max_length = int(blip_max_length) |
|
|
ci.config.blip_num_beams = int(blip_num_beams) |
|
|
|
|
|
image = image.convert('RGB') |
|
|
if mode == 'best': |
|
|
return ci.interrogate(image) |
|
|
elif mode == 'classic': |
|
|
return ci.interrogate_classic(image) |
|
|
else: |
|
|
return ci.interrogate_fast(image) |
|
|
|
|
|
inputs = [ |
|
|
gr.inputs.Image(type='pil'), |
|
|
gr.Radio(['best', 'classic', 'fast'], label='Mode', value='best'), |
|
|
gr.Dropdown(clip.available_models(), value='ViT-L/14', label='CLIP Model'), |
|
|
gr.Number(value=32, label='Caption Max Length'), |
|
|
gr.Number(value=64, label='Caption Num Beams'), |
|
|
] |
|
|
outputs = [ |
|
|
gr.outputs.Textbox(label="Output"), |
|
|
] |
|
|
|
|
|
io = gr.Interface( |
|
|
inference, |
|
|
inputs, |
|
|
outputs, |
|
|
title="🕵️♂️ CLIP Interrogator 🕵️♂️", |
|
|
allow_flagging=False, |
|
|
) |
|
|
io.launch()
|
|
|
|