|
|
|
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
|
|
import csv
|
|
|
|
import open_clip
|
|
|
|
import os
|
|
|
|
import requests
|
|
|
|
import torch
|
|
|
|
from PIL import Image
|
|
|
|
from clip_interrogator import Interrogator, Config
|
|
|
|
|
|
|
|
def inference(ci, image, mode):
|
|
|
|
image = image.convert('RGB')
|
|
|
|
if mode == 'best':
|
|
|
|
return ci.interrogate(image)
|
|
|
|
elif mode == 'classic':
|
|
|
|
return ci.interrogate_classic(image)
|
|
|
|
else:
|
|
|
|
return ci.interrogate_fast(image)
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('-c', '--clip', default='ViT-L-14/openai', help='name of CLIP model to use')
|
|
|
|
parser.add_argument('-d', '--device', default='auto', help='device to use (auto, cuda or cpu)')
|
|
|
|
parser.add_argument('-f', '--folder', help='path to folder of images')
|
|
|
|
parser.add_argument('-i', '--image', help='image file or url')
|
|
|
|
parser.add_argument('-m', '--mode', default='best', help='best, classic, or fast')
|
|
|
|
parser.add_argument("--lowvram", action='store_true', help="Optimize settings for low VRAM")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
if not args.folder and not args.image:
|
|
|
|
parser.print_help()
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
if args.folder is not None and args.image is not None:
|
|
|
|
print("Specify a folder or batch processing or a single image, not both")
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
# validate clip model name
|
|
|
|
models = ['/'.join(x) for x in open_clip.list_pretrained()]
|
|
|
|
if args.clip not in models:
|
|
|
|
print(f"Could not find CLIP model {args.clip}!")
|
|
|
|
print(f" available models: {models}")
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
# select device
|
|
|
|
if args.device == 'auto':
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
if not torch.cuda.is_available():
|
|
|
|
print("CUDA is not available, using CPU. Warning: this will be very slow!")
|
|
|
|
else:
|
|
|
|
device = torch.device(args.device)
|
|
|
|
|
|
|
|
# generate a nice prompt
|
|
|
|
config = Config(device=device, clip_model_name=args.clip)
|
|
|
|
if args.lowvram:
|
|
|
|
config.apply_low_vram_defaults()
|
|
|
|
ci = Interrogator(config)
|
|
|
|
|
|
|
|
# process single image
|
|
|
|
if args.image is not None:
|
|
|
|
image_path = args.image
|
|
|
|
if str(image_path).startswith('http://') or str(image_path).startswith('https://'):
|
|
|
|
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
|
|
|
else:
|
|
|
|
image = Image.open(image_path).convert('RGB')
|
|
|
|
if not image:
|
|
|
|
print(f'Error opening image {image_path}')
|
|
|
|
exit(1)
|
|
|
|
print(inference(ci, image, args.mode))
|
|
|
|
|
|
|
|
# process folder of images
|
|
|
|
elif args.folder is not None:
|
|
|
|
if not os.path.exists(args.folder):
|
|
|
|
print(f'The folder {args.folder} does not exist!')
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
files = [f for f in os.listdir(args.folder) if f.endswith('.jpg') or f.endswith('.png')]
|
|
|
|
prompts = []
|
|
|
|
for file in files:
|
|
|
|
image = Image.open(os.path.join(args.folder, file)).convert('RGB')
|
|
|
|
prompt = inference(ci, image, args.mode)
|
|
|
|
prompts.append(prompt)
|
|
|
|
print(prompt)
|
|
|
|
|
|
|
|
if len(prompts):
|
|
|
|
csv_path = os.path.join(args.folder, 'desc.csv')
|
|
|
|
with open(csv_path, 'w', encoding='utf-8', newline='') as f:
|
|
|
|
w = csv.writer(f, quoting=csv.QUOTE_MINIMAL)
|
|
|
|
w.writerow(['image', 'prompt'])
|
|
|
|
for file, prompt in zip(files, prompts):
|
|
|
|
w.writerow([file, prompt])
|
|
|
|
|
|
|
|
print(f"\n\n\n\nGenerated {len(prompts)} and saved to {csv_path}, enjoy!")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|