|
|
|
import hashlib
|
|
|
|
import inspect
|
|
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
import open_clip
|
|
|
|
import os
|
|
|
|
import pickle
|
|
|
|
import requests
|
|
|
|
import time
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from blip.models.blip import blip_decoder, BLIP_Decoder
|
|
|
|
from PIL import Image
|
|
|
|
from torchvision import transforms
|
|
|
|
from torchvision.transforms.functional import InterpolationMode
|
|
|
|
from tqdm import tqdm
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
BLIP_MODELS = {
|
|
|
|
"base": "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth",
|
|
|
|
"large": "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth",
|
|
|
|
}
|
|
|
|
|
|
|
|
CACHE_URLS_VITL = [
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_artists.pkl",
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_flavors.pkl",
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_mediums.pkl",
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_movements.pkl",
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-L-14_openai_trendings.pkl",
|
|
|
|
]
|
|
|
|
|
|
|
|
CACHE_URLS_VITH = [
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl",
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl",
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl",
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl",
|
|
|
|
"https://huggingface.co/pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl",
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class Config:
|
|
|
|
# models can optionally be passed in directly
|
|
|
|
blip_model: BLIP_Decoder = None
|
|
|
|
clip_model = None
|
|
|
|
clip_preprocess = None
|
|
|
|
|
|
|
|
# blip settings
|
|
|
|
blip_image_eval_size: int = 384
|
|
|
|
blip_max_length: int = 32
|
|
|
|
blip_model_type: str = "large" # choose between 'base' or 'large'
|
|
|
|
blip_num_beams: int = 8
|
|
|
|
blip_offload: bool = False
|
|
|
|
|
|
|
|
# clip settings
|
|
|
|
clip_model_name: str = "ViT-L-14/openai"
|
|
|
|
clip_model_path: str = None
|
|
|
|
|
|
|
|
# interrogator settings
|
|
|
|
cache_path: str = "cache" # path to store cached text embeddings
|
|
|
|
download_cache: bool = (
|
|
|
|
True # when true, cached embeds are downloaded from huggingface
|
|
|
|
)
|
|
|
|
chunk_size: int = 2048 # batch size for CLIP, use smaller for lower VRAM
|
|
|
|
data_path: str = os.path.join(os.path.dirname(__file__), "data")
|
|
|
|
device: str = (
|
|
|
|
"mps"
|
|
|
|
if torch.backends.mps.is_available()
|
|
|
|
else "cuda"
|
|
|
|
if torch.cuda.is_available()
|
|
|
|
else "cpu"
|
|
|
|
)
|
|
|
|
flavor_intermediate_count: int = 2048
|
|
|
|
quiet: bool = False # when quiet progress bars are not shown
|
|
|
|
|
|
|
|
|
|
|
|
class Interrogator:
|
|
|
|
def __init__(self, config: Config):
|
|
|
|
self.config = config
|
|
|
|
self.device = config.device
|
|
|
|
# Record which model is on the target device
|
|
|
|
self.blip_loaded = True
|
|
|
|
|
|
|
|
# Load BLIP model (to intended device)
|
|
|
|
if config.blip_model is None:
|
|
|
|
if not config.quiet:
|
|
|
|
print("Loading BLIP model...")
|
|
|
|
blip_path = os.path.dirname(inspect.getfile(blip_decoder))
|
|
|
|
configs_path = os.path.join(os.path.dirname(blip_path), "configs")
|
|
|
|
med_config = os.path.join(configs_path, "med_config.json")
|
|
|
|
blip_model = blip_decoder(
|
|
|
|
pretrained=BLIP_MODELS[config.blip_model_type],
|
|
|
|
image_size=config.blip_image_eval_size,
|
|
|
|
vit=config.blip_model_type,
|
|
|
|
med_config=med_config,
|
|
|
|
)
|
|
|
|
blip_model.eval()
|
|
|
|
blip_model = blip_model.to(config.device)
|
|
|
|
self.blip_model = blip_model
|
|
|
|
else:
|
|
|
|
self.blip_model = config.blip_model
|
|
|
|
|
|
|
|
# Load CLIP (to CPU)
|
|
|
|
self.load_clip_model()
|
|
|
|
|
|
|
|
def download_cache(self, clip_model_name: str):
|
|
|
|
if clip_model_name == "ViT-L-14/openai":
|
|
|
|
cache_urls = CACHE_URLS_VITL
|
|
|
|
elif clip_model_name == "ViT-H-14/laion2b_s32b_b79k":
|
|
|
|
cache_urls = CACHE_URLS_VITH
|
|
|
|
else:
|
|
|
|
# text embeddings will be precomputed and cached locally
|
|
|
|
return
|
|
|
|
|
|
|
|
os.makedirs(self.config.cache_path, exist_ok=True)
|
|
|
|
for url in cache_urls:
|
|
|
|
filepath = os.path.join(self.config.cache_path, url.split("/")[-1])
|
|
|
|
if not os.path.exists(filepath):
|
|
|
|
_download_file(url, filepath, quiet=self.config.quiet)
|
|
|
|
|
|
|
|
def load_clip_model(self):
|
|
|
|
start_time = time.time()
|
|
|
|
config = self.config
|
|
|
|
|
|
|
|
if config.clip_model is None:
|
|
|
|
if not config.quiet:
|
|
|
|
print("Loading CLIP model...")
|
|
|
|
|
|
|
|
clip_model_name, clip_model_pretrained_name = config.clip_model_name.split(
|
|
|
|
"/", 2
|
|
|
|
)
|
|
|
|
(
|
|
|
|
self.clip_model,
|
|
|
|
_,
|
|
|
|
self.clip_preprocess,
|
|
|
|
) = open_clip.create_model_and_transforms(
|
|
|
|
clip_model_name,
|
|
|
|
pretrained=clip_model_pretrained_name,
|
|
|
|
precision="fp16" if config.device == "cuda" else "fp32",
|
|
|
|
device="cpu",
|
|
|
|
jit=False,
|
|
|
|
cache_dir=config.clip_model_path,
|
|
|
|
)
|
|
|
|
self.clip_model.eval()
|
|
|
|
else:
|
|
|
|
self.clip_model = config.clip_model
|
|
|
|
self.clip_preprocess = config.clip_preprocess
|
|
|
|
self.tokenize = open_clip.get_tokenizer(clip_model_name)
|
|
|
|
|
|
|
|
sites = [
|
|
|
|
"Artstation",
|
|
|
|
"behance",
|
|
|
|
"cg society",
|
|
|
|
"cgsociety",
|
|
|
|
"deviantart",
|
|
|
|
"dribble",
|
|
|
|
"flickr",
|
|
|
|
"instagram",
|
|
|
|
"pexels",
|
|
|
|
"pinterest",
|
|
|
|
"pixabay",
|
|
|
|
"pixiv",
|
|
|
|
"polycount",
|
|
|
|
"reddit",
|
|
|
|
"shutterstock",
|
|
|
|
"tumblr",
|
|
|
|
"unsplash",
|
|
|
|
"zbrush central",
|
|
|
|
]
|
|
|
|
trending_list = [site for site in sites]
|
|
|
|
trending_list.extend(["trending on " + site for site in sites])
|
|
|
|
trending_list.extend(["featured on " + site for site in sites])
|
|
|
|
trending_list.extend([site + " contest winner" for site in sites])
|
|
|
|
|
|
|
|
raw_artists = _load_list(config.data_path, "artists.txt")
|
|
|
|
artists = [f"by {a}" for a in raw_artists]
|
|
|
|
artists.extend([f"inspired by {a}" for a in raw_artists])
|
|
|
|
|
|
|
|
if config.download_cache:
|
|
|
|
self.download_cache(config.clip_model_name)
|
|
|
|
|
|
|
|
self.artists = LabelTable(
|
|
|
|
artists, "artists", self.clip_model, self.tokenize, config
|
|
|
|
)
|
|
|
|
self.flavors = LabelTable(
|
|
|
|
_load_list(config.data_path, "flavors.txt"),
|
|
|
|
"flavors",
|
|
|
|
self.clip_model,
|
|
|
|
self.tokenize,
|
|
|
|
config,
|
|
|
|
)
|
|
|
|
self.mediums = LabelTable(
|
|
|
|
_load_list(config.data_path, "mediums.txt"),
|
|
|
|
"mediums",
|
|
|
|
self.clip_model,
|
|
|
|
self.tokenize,
|
|
|
|
config,
|
|
|
|
)
|
|
|
|
self.movements = LabelTable(
|
|
|
|
_load_list(config.data_path, "movements.txt"),
|
|
|
|
"movements",
|
|
|
|
self.clip_model,
|
|
|
|
self.tokenize,
|
|
|
|
config,
|
|
|
|
)
|
|
|
|
self.trendings = LabelTable(
|
|
|
|
trending_list, "trendings", self.clip_model, self.tokenize, config
|
|
|
|
)
|
|
|
|
self.negative = LabelTable(
|
|
|
|
_load_list(config.data_path, "negative.txt"),
|
|
|
|
"negative",
|
|
|
|
self.clip_model,
|
|
|
|
self.tokenize,
|
|
|
|
config,
|
|
|
|
)
|
|
|
|
|
|
|
|
end_time = time.time()
|
|
|
|
if not config.quiet:
|
|
|
|
print(f"Loaded CLIP model and data in {end_time-start_time:.2f} seconds.")
|
|
|
|
|
|
|
|
def chain(
|
|
|
|
self,
|
|
|
|
image_features: torch.Tensor,
|
|
|
|
phrases: List[str],
|
|
|
|
best_prompt: str = "",
|
|
|
|
best_sim: float = 0,
|
|
|
|
min_count: int = 8,
|
|
|
|
max_count: int = 32,
|
|
|
|
desc="Chaining",
|
|
|
|
reverse: bool = False,
|
|
|
|
) -> str:
|
|
|
|
phrases = set(phrases)
|
|
|
|
if not best_prompt:
|
|
|
|
best_prompt = self.rank_top(
|
|
|
|
image_features, [f for f in phrases], reverse=reverse
|
|
|
|
)
|
|
|
|
best_sim = self.similarity(image_features, best_prompt)
|
|
|
|
phrases.remove(best_prompt)
|
|
|
|
curr_prompt, curr_sim = best_prompt, best_sim
|
|
|
|
|
|
|
|
def check(addition: str, idx: int) -> bool:
|
|
|
|
nonlocal best_prompt, best_sim, curr_prompt, curr_sim
|
|
|
|
prompt = curr_prompt + ", " + addition
|
|
|
|
sim = self.similarity(image_features, prompt)
|
|
|
|
if reverse:
|
|
|
|
sim = -sim
|
|
|
|
|
|
|
|
if sim > best_sim:
|
|
|
|
best_prompt, best_sim = prompt, sim
|
|
|
|
if sim > curr_sim or idx < min_count:
|
|
|
|
curr_prompt, curr_sim = prompt, sim
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
for idx in tqdm(range(max_count), desc=desc, disable=self.config.quiet):
|
|
|
|
best = self.rank_top(
|
|
|
|
image_features,
|
|
|
|
[f"{curr_prompt}, {f}" for f in phrases],
|
|
|
|
reverse=reverse,
|
|
|
|
)
|
|
|
|
flave = best[len(curr_prompt) + 2 :]
|
|
|
|
if not check(flave, idx):
|
|
|
|
break
|
|
|
|
if _prompt_at_max_len(curr_prompt, self.tokenize):
|
|
|
|
break
|
|
|
|
phrases.remove(flave)
|
|
|
|
|
|
|
|
return best_prompt
|
|
|
|
|
|
|
|
def generate_caption(self, pil_image: Image) -> str:
|
|
|
|
if self.config.blip_offload:
|
|
|
|
self.blip_model = self.blip_model.to(self.device)
|
|
|
|
size = self.config.blip_image_eval_size
|
|
|
|
gpu_image = (
|
|
|
|
transforms.Compose(
|
|
|
|
[
|
|
|
|
transforms.Resize(
|
|
|
|
(size, size), interpolation=InterpolationMode.BICUBIC
|
|
|
|
),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize(
|
|
|
|
(0.48145466, 0.4578275, 0.40821073),
|
|
|
|
(0.26862954, 0.26130258, 0.27577711),
|
|
|
|
),
|
|
|
|
]
|
|
|
|
)(pil_image)
|
|
|
|
.unsqueeze(0)
|
|
|
|
.to(self.device)
|
|
|
|
)
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
caption = self.blip_model.generate(
|
|
|
|
gpu_image,
|
|
|
|
sample=False,
|
|
|
|
num_beams=self.config.blip_num_beams,
|
|
|
|
max_length=self.config.blip_max_length,
|
|
|
|
min_length=5,
|
|
|
|
)
|
|
|
|
if self.config.blip_offload:
|
|
|
|
self.blip_model = self.blip_model.to("cpu")
|
|
|
|
return caption[0]
|
|
|
|
|
|
|
|
def image_to_features(self, image: Image) -> torch.Tensor:
|
|
|
|
images = self.clip_preprocess(image).unsqueeze(0).to(self.device)
|
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast():
|
|
|
|
image_features = self.clip_model.encode_image(images)
|
|
|
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
|
|
return image_features
|
|
|
|
|
|
|
|
def _first_bit(self, image: Image) -> (str, torch.Tensor):
|
|
|
|
if self.blip_loaded:
|
|
|
|
caption = self.generate_caption(image)
|
|
|
|
|
|
|
|
# Move BLIP to RAM
|
|
|
|
self.blip_model.to("cpu")
|
|
|
|
# Move CLIP to intended device
|
|
|
|
self.clip_model.to(self.device)
|
|
|
|
|
|
|
|
image_features = self.image_to_features(image)
|
|
|
|
else: # CLIP is loaded
|
|
|
|
image_features = self.image_to_features(image)
|
|
|
|
|
|
|
|
# Move CLIP to RAM
|
|
|
|
self.clip_model.to("cpu")
|
|
|
|
# Move BLIP to intended device
|
|
|
|
self.blip_model.to(self.device)
|
|
|
|
|
|
|
|
caption = self.generate_caption(image)
|
|
|
|
|
|
|
|
# Toggle `blip_loaded`
|
|
|
|
self.blip_loaded ^= True
|
|
|
|
|
|
|
|
return caption, image_features
|
|
|
|
|
|
|
|
def _first_bit_batch(self, images: list[Image]) -> (list[str], list[torch.Tensor]):
|
|
|
|
image_features: list[torch.Tensor] = []
|
|
|
|
if self.blip_loaded:
|
|
|
|
captions = [self.generate_caption(img) for img in images]
|
|
|
|
|
|
|
|
# Move BLIP to RAM
|
|
|
|
self.blip_model.to("cpu")
|
|
|
|
# Move CLIP to intended device
|
|
|
|
self.clip_model.to(self.device)
|
|
|
|
|
|
|
|
image_features = [self.image_to_features(img) for img in images]
|
|
|
|
else: # CLIP is loaded
|
|
|
|
image_features = [self.image_to_features(img) for img in images]
|
|
|
|
|
|
|
|
# Move CLIP to RAM
|
|
|
|
self.clip_model.to("cpu")
|
|
|
|
# Move BLIP to intended device
|
|
|
|
self.blip_model.to(self.device)
|
|
|
|
|
|
|
|
captions = [self.generate_caption(img) for img in images]
|
|
|
|
|
|
|
|
# Toggle `blip_loaded`
|
|
|
|
self.blip_loaded ^= True
|
|
|
|
|
|
|
|
return captions, image_features
|
|
|
|
|
|
|
|
def _interrogate_classic(
|
|
|
|
self, caption: str, image_features: torch.Tensor, max_flavours: int = 3
|
|
|
|
) -> str:
|
|
|
|
medium = self.mediums.rank(image_features, 1)[0]
|
|
|
|
artist = self.artists.rank(image_features, 1)[0]
|
|
|
|
trending = self.trendings.rank(image_features, 1)[0]
|
|
|
|
movement = self.movements.rank(image_features, 1)[0]
|
|
|
|
flaves = ", ".join(self.flavors.rank(image_features, max_flavours))
|
|
|
|
|
|
|
|
if caption.startswith(medium):
|
|
|
|
prompt = f"{caption} {artist}, {trending}, {movement}, {flaves}"
|
|
|
|
else:
|
|
|
|
prompt = f"{caption}, {medium} {artist}, {trending}, {movement}, {flaves}"
|
|
|
|
|
|
|
|
return _truncate_to_fit(prompt, self.tokenize)
|
|
|
|
|
|
|
|
def interrogate_classic(self, image: Image, max_flavors: int = 3) -> str:
|
|
|
|
"""Classic mode creates a prompt in a standard format first describing the image,
|
|
|
|
then listing the artist, trending, movement, and flavor text modifiers."""
|
|
|
|
caption, image_features = self._first_bit(image)
|
|
|
|
|
|
|
|
return self._interrogate_classic(caption, image_features, max_flavors)
|
|
|
|
|
|
|
|
def interrogate_classic_batch(
|
|
|
|
self, images: list[Image], max_flavors: int = 3
|
|
|
|
) -> list[str]:
|
|
|
|
"""Classic mode creates a prompt in a standard format first describing the image,
|
|
|
|
then listing the artist, trending, movement, and flavor text modifiers.
|
|
|
|
|
|
|
|
This function interrogates a batch of images (more efficient than doing
|
|
|
|
it individually)."""
|
|
|
|
captions, image_features = self._first_bit_batch(images)
|
|
|
|
|
|
|
|
returns: list[str] = [
|
|
|
|
self._interrogate_classic(caption, feature, max_flavors)
|
|
|
|
for caption, feature in zip(captions, image_features)
|
|
|
|
]
|
|
|
|
|
|
|
|
return returns
|
|
|
|
|
|
|
|
def _interrogate_fast(
|
|
|
|
self, caption: str, image_features: torch.Tensor, max_flavours: int = 32
|
|
|
|
) -> str:
|
|
|
|
merged = _merge_tables(
|
|
|
|
[self.artists, self.flavors, self.mediums, self.movements, self.trendings],
|
|
|
|
self.config,
|
|
|
|
)
|
|
|
|
tops = merged.rank(image_features, max_flavours)
|
|
|
|
return _truncate_to_fit(caption + ", " + ", ".join(tops), self.tokenize)
|
|
|
|
|
|
|
|
def interrogate_fast(self, image: Image, max_flavors: int = 32) -> str:
|
|
|
|
"""Fast mode simply adds the top ranked terms after a caption. It generally results in
|
|
|
|
better similarity between generated prompt and image than classic mode, but the prompts
|
|
|
|
are less readable."""
|
|
|
|
caption, image_features = self._first_bit(image)
|
|
|
|
|
|
|
|
return self._interrogate_fast(caption, image_features, max_flavors)
|
|
|
|
|
|
|
|
def interrogate_fast_batch(self, images: list[Image], max_flavors: int = 32) -> str:
|
|
|
|
"""Fast mode simply adds the top ranked terms after a caption. It generally results in
|
|
|
|
better similarity between generated prompt and image than classic mode, but the prompts
|
|
|
|
are less readable.
|
|
|
|
|
|
|
|
This function interrogates a batch of images (more efficient than doing
|
|
|
|
it individually)."""
|
|
|
|
captions, image_features = self._first_bit_batch(images)
|
|
|
|
|
|
|
|
returns: list[str] = [
|
|
|
|
self._interrogate_fast(caption, feature, max_flavors)
|
|
|
|
for caption, feature in zip(captions, image_features)
|
|
|
|
]
|
|
|
|
|
|
|
|
return returns
|
|
|
|
|
|
|
|
def interrogate_negative(self, image: Image, max_flavors: int = 32) -> str:
|
|
|
|
"""Negative mode chains together the most dissimilar terms to the image. It can be used
|
|
|
|
to help build a negative prompt to pair with the regular positive prompt and often
|
|
|
|
improve the results of generated images particularly with Stable Diffusion 2."""
|
|
|
|
if self.blip_loaded: # Move CLIP to intended device
|
|
|
|
self.blip_model.to("cpu")
|
|
|
|
self.cli_model.to(self.device)
|
|
|
|
|
|
|
|
image_features = self.image_to_features(image)
|
|
|
|
flaves = self.flavors.rank(
|
|
|
|
image_features, self.config.flavor_intermediate_count, reverse=True
|
|
|
|
)
|
|
|
|
flaves = flaves + self.negative.labels
|
|
|
|
return self.chain(
|
|
|
|
image_features,
|
|
|
|
flaves,
|
|
|
|
max_count=max_flavors,
|
|
|
|
reverse=True,
|
|
|
|
desc="Negative chain",
|
|
|
|
)
|
|
|
|
|
|
|
|
def _interrogate(
|
|
|
|
self,
|
|
|
|
caption: str,
|
|
|
|
image_features: torch.Tensor,
|
|
|
|
min_flavours: int = 8,
|
|
|
|
max_flavours: int = 32,
|
|
|
|
) -> str:
|
|
|
|
merged = _merge_tables(
|
|
|
|
[self.artists, self.flavors, self.mediums, self.movements, self.trendings],
|
|
|
|
self.config,
|
|
|
|
)
|
|
|
|
flaves = merged.rank(image_features, self.config.flavor_intermediate_count)
|
|
|
|
|
|
|
|
best_prompt, best_sim = caption, self.similarity(image_features, caption)
|
|
|
|
best_prompt = self.chain(
|
|
|
|
image_features,
|
|
|
|
flaves,
|
|
|
|
best_prompt,
|
|
|
|
best_sim,
|
|
|
|
min_count=min_flavours,
|
|
|
|
max_count=max_flavours,
|
|
|
|
desc="Flavor chain",
|
|
|
|
)
|
|
|
|
|
|
|
|
fast_prompt = self._interrogate_fast(caption, image_features, max_flavours)
|
|
|
|
classic_prompt = self.interrogate_classic(caption, image_features, max_flavours)
|
|
|
|
candidates = [caption, classic_prompt, fast_prompt, best_prompt]
|
|
|
|
return candidates[np.argmax(self.similarities(image_features, candidates))]
|
|
|
|
|
|
|
|
def interrogate(
|
|
|
|
self, image: Image, min_flavors: int = 8, max_flavors: int = 32
|
|
|
|
) -> str:
|
|
|
|
caption, image_features = self._first_bit(image)
|
|
|
|
|
|
|
|
return self._interrogate(caption, image_features, min_flavors, max_flavors)
|
|
|
|
|
|
|
|
def interrogate_batch(
|
|
|
|
self, images: list[Image], min_flavors: int = 8, max_flavors: int = 32
|
|
|
|
) -> list[str]:
|
|
|
|
"""This function interrogates a batch of images (more efficient than doing
|
|
|
|
it individually)."""
|
|
|
|
captions, image_features = self._first_bit_batch(images)
|
|
|
|
|
|
|
|
returns: list[str] = [
|
|
|
|
self._interrogate(caption, features, min_flavors, max_flavors)
|
|
|
|
for caption, features in zip(captions, image_features)
|
|
|
|
]
|
|
|
|
|
|
|
|
return returns
|
|
|
|
|
|
|
|
def rank_top(
|
|
|
|
self, image_features: torch.Tensor, text_array: List[str], reverse: bool = False
|
|
|
|
) -> str:
|
|
|
|
text_tokens = self.tokenize([text for text in text_array]).to(self.device)
|
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast():
|
|
|
|
text_features = self.clip_model.encode_text(text_tokens)
|
|
|
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
|
similarity = text_features @ image_features.T
|
|
|
|
if reverse:
|
|
|
|
similarity = -similarity
|
|
|
|
return text_array[similarity.argmax().item()]
|
|
|
|
|
|
|
|
def similarity(self, image_features: torch.Tensor, text: str) -> float:
|
|
|
|
text_tokens = self.tokenize([text]).to(self.device)
|
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast():
|
|
|
|
text_features = self.clip_model.encode_text(text_tokens)
|
|
|
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
|
similarity = text_features @ image_features.T
|
|
|
|
return similarity[0][0].item()
|
|
|
|
|
|
|
|
def similarities(
|
|
|
|
self, image_features: torch.Tensor, text_array: List[str]
|
|
|
|
) -> List[float]:
|
|
|
|
text_tokens = self.tokenize([text for text in text_array]).to(self.device)
|
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast():
|
|
|
|
text_features = self.clip_model.encode_text(text_tokens)
|
|
|
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
|
similarity = text_features @ image_features.T
|
|
|
|
return similarity.T[0].tolist()
|
|
|
|
|
|
|
|
|
|
|
|
class LabelTable:
|
|
|
|
def __init__(
|
|
|
|
self, labels: List[str], desc: str, clip_model, tokenize, config: Config
|
|
|
|
):
|
|
|
|
self.chunk_size = config.chunk_size
|
|
|
|
self.config = config
|
|
|
|
self.device = config.device
|
|
|
|
self.embeds = []
|
|
|
|
self.labels = labels
|
|
|
|
self.tokenize = tokenize
|
|
|
|
|
|
|
|
hash = hashlib.sha256(",".join(labels).encode()).hexdigest()
|
|
|
|
|
|
|
|
cache_filepath = None
|
|
|
|
if config.cache_path is not None and desc is not None:
|
|
|
|
os.makedirs(config.cache_path, exist_ok=True)
|
|
|
|
sanitized_name = config.clip_model_name.replace("/", "_").replace("@", "_")
|
|
|
|
cache_filepath = os.path.join(
|
|
|
|
config.cache_path, f"{sanitized_name}_{desc}.pkl"
|
|
|
|
)
|
|
|
|
if desc is not None and os.path.exists(cache_filepath):
|
|
|
|
with open(cache_filepath, "rb") as f:
|
|
|
|
try:
|
|
|
|
data = pickle.load(f)
|
|
|
|
if data.get("hash") == hash:
|
|
|
|
self.labels = data["labels"]
|
|
|
|
self.embeds = data["embeds"]
|
|
|
|
except Exception as e:
|
|
|
|
print(f"Error loading cached table {desc}: {e}")
|
|
|
|
|
|
|
|
if len(self.labels) != len(self.embeds):
|
|
|
|
self.embeds = []
|
|
|
|
chunks = np.array_split(
|
|
|
|
self.labels, max(1, len(self.labels) / config.chunk_size)
|
|
|
|
)
|
|
|
|
for chunk in tqdm(
|
|
|
|
chunks,
|
|
|
|
desc=f"Preprocessing {desc}" if desc else None,
|
|
|
|
disable=self.config.quiet,
|
|
|
|
):
|
|
|
|
text_tokens = self.tokenize(chunk).to(self.device)
|
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast():
|
|
|
|
text_features = clip_model.encode_text(text_tokens)
|
|
|
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
|
text_features = text_features.half().cpu().numpy()
|
|
|
|
for i in range(text_features.shape[0]):
|
|
|
|
self.embeds.append(text_features[i])
|
|
|
|
|
|
|
|
if cache_filepath is not None:
|
|
|
|
with open(cache_filepath, "wb") as f:
|
|
|
|
pickle.dump(
|
|
|
|
{
|
|
|
|
"labels": self.labels,
|
|
|
|
"embeds": self.embeds,
|
|
|
|
"hash": hash,
|
|
|
|
"model": config.clip_model_name,
|
|
|
|
},
|
|
|
|
f,
|
|
|
|
)
|
|
|
|
|
|
|
|
if self.device == "cpu" or self.device == torch.device("cpu"):
|
|
|
|
self.embeds = [e.astype(np.float32) for e in self.embeds]
|
|
|
|
|
|
|
|
def _rank(
|
|
|
|
self,
|
|
|
|
image_features: torch.Tensor,
|
|
|
|
text_embeds: torch.Tensor,
|
|
|
|
top_count: int = 1,
|
|
|
|
reverse: bool = False,
|
|
|
|
) -> str:
|
|
|
|
top_count = min(top_count, len(text_embeds))
|
|
|
|
text_embeds = torch.stack([torch.from_numpy(t) for t in text_embeds]).to(
|
|
|
|
self.device
|
|
|
|
)
|
|
|
|
with torch.cuda.amp.autocast():
|
|
|
|
similarity = image_features @ text_embeds.T
|
|
|
|
if reverse:
|
|
|
|
similarity = -similarity
|
|
|
|
_, top_labels = similarity.float().cpu().topk(top_count, dim=-1)
|
|
|
|
return [top_labels[0][i].numpy() for i in range(top_count)]
|
|
|
|
|
|
|
|
def rank(
|
|
|
|
self, image_features: torch.Tensor, top_count: int = 1, reverse: bool = False
|
|
|
|
) -> List[str]:
|
|
|
|
if len(self.labels) <= self.chunk_size:
|
|
|
|
tops = self._rank(
|
|
|
|
image_features, self.embeds, top_count=top_count, reverse=reverse
|
|
|
|
)
|
|
|
|
return [self.labels[i] for i in tops]
|
|
|
|
|
|
|
|
num_chunks = int(math.ceil(len(self.labels) / self.chunk_size))
|
|
|
|
keep_per_chunk = int(self.chunk_size / num_chunks)
|
|
|
|
|
|
|
|
top_labels, top_embeds = [], []
|
|
|
|
for chunk_idx in tqdm(range(num_chunks), disable=self.config.quiet):
|
|
|
|
start = chunk_idx * self.chunk_size
|
|
|
|
stop = min(start + self.chunk_size, len(self.embeds))
|
|
|
|
tops = self._rank(
|
|
|
|
image_features,
|
|
|
|
self.embeds[start:stop],
|
|
|
|
top_count=keep_per_chunk,
|
|
|
|
reverse=reverse,
|
|
|
|
)
|
|
|
|
top_labels.extend([self.labels[start + i] for i in tops])
|
|
|
|
top_embeds.extend([self.embeds[start + i] for i in tops])
|
|
|
|
|
|
|
|
tops = self._rank(image_features, top_embeds, top_count=top_count)
|
|
|
|
return [top_labels[i] for i in tops]
|
|
|
|
|
|
|
|
|
|
|
|
def _download_file(
|
|
|
|
url: str, filepath: str, chunk_size: int = 64 * 1024, quiet: bool = False
|
|
|
|
):
|
|
|
|
r = requests.get(url, stream=True)
|
|
|
|
file_size = int(r.headers.get("Content-Length", 0))
|
|
|
|
filename = url.split("/")[-1]
|
|
|
|
progress = tqdm(
|
|
|
|
total=file_size, unit="B", unit_scale=True, desc=filename, disable=quiet
|
|
|
|
)
|
|
|
|
with open(filepath, "wb") as f:
|
|
|
|
for chunk in r.iter_content(chunk_size=chunk_size):
|
|
|
|
if chunk:
|
|
|
|
f.write(chunk)
|
|
|
|
progress.update(len(chunk))
|
|
|
|
progress.close()
|
|
|
|
|
|
|
|
|
|
|
|
def _load_list(data_path: str, filename: str) -> List[str]:
|
|
|
|
with open(
|
|
|
|
os.path.join(data_path, filename), "r", encoding="utf-8", errors="replace"
|
|
|
|
) as f:
|
|
|
|
items = [line.strip() for line in f.readlines()]
|
|
|
|
return items
|
|
|
|
|
|
|
|
|
|
|
|
def _merge_tables(tables: List[LabelTable], config: Config) -> LabelTable:
|
|
|
|
m = LabelTable([], None, None, None, config)
|
|
|
|
for table in tables:
|
|
|
|
m.labels.extend(table.labels)
|
|
|
|
m.embeds.extend(table.embeds)
|
|
|
|
return m
|
|
|
|
|
|
|
|
|
|
|
|
def _prompt_at_max_len(text: str, tokenize) -> bool:
|
|
|
|
tokens = tokenize([text])
|
|
|
|
return tokens[0][-1] != 0
|
|
|
|
|
|
|
|
|
|
|
|
def _truncate_to_fit(text: str, tokenize) -> str:
|
|
|
|
parts = text.split(", ")
|
|
|
|
new_text = parts[0]
|
|
|
|
for part in parts[1:]:
|
|
|
|
if _prompt_at_max_len(new_text + part, tokenize):
|
|
|
|
break
|
|
|
|
new_text += ", " + part
|
|
|
|
return new_text
|