Version 1 still available in Colab for comparing different CLIP models
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/v1/clip_interrogator.ipynb)
The **CLIP Interrogator** is a prompt engineering tool that combines OpenAI's [CLIP](https://openai.com/blog/clip/) and Salesforce's [BLIP](https://blog.salesforceairesearch.com/blip-bootstrapping-language-image-pretraining/) to optimize text prompts to match a given image. Use the resulting prompts with text-to-image models like [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on [DreamStudio](https://beta.dreamstudio.ai/) to create cool art!
The `Config` object lets you configure CLIP Interrogator's processing.
*`clip_model_name`: which of the OpenCLIP pretrained CLIP models to use
*`cache_path`: path where to save precomputed text embeddings
*`download_cache`: when True will download the precomputed embeddings from huggingface
*`chunk_size`: batch size for CLIP, use smaller for lower VRAM
*`quiet`: when True no progress bars or text output will be displayed
See the [run_cli.py](https://github.com/pharmapsychotic/clip-interrogator/blob/main/run_cli.py) and [run_gradio.py](https://github.com/pharmapsychotic/clip-interrogator/blob/main/run_gradio.py) for more examples on using Config and Interrogator classes.