|
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
import argparse
|
|
|
|
|
import torch
|
|
|
|
|
from clip_interrogator import Config, Interrogator, list_caption_models, list_clip_models
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
import gradio as gr
|
|
|
|
|
except ImportError:
|
|
|
|
|
print("Gradio is not installed, please install it with 'pip install gradio'")
|
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
parser.add_argument("--lowvram", action='store_true', help="Optimize settings for low VRAM")
|
|
|
|
|
parser.add_argument('-s', '--share', action='store_true', help='Create a public link')
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
if not torch.cuda.is_available():
|
|
|
|
|
print("CUDA is not available, using CPU. Warning: this will be very slow!")
|
|
|
|
|
|
|
|
|
|
config = Config(cache_path="cache")
|
|
|
|
|
if args.lowvram:
|
|
|
|
|
config.apply_low_vram_defaults()
|
|
|
|
|
ci = Interrogator(config)
|
|
|
|
|
|
|
|
|
|
def image_analysis(image, clip_model_name):
|
|
|
|
|
if clip_model_name != ci.config.clip_model_name:
|
|
|
|
|
ci.config.clip_model_name = clip_model_name
|
|
|
|
|
ci.load_clip_model()
|
|
|
|
|
|
|
|
|
|
image = image.convert('RGB')
|
|
|
|
|
image_features = ci.image_to_features(image)
|
|
|
|
|
|
|
|
|
|
top_mediums = ci.mediums.rank(image_features, 5)
|
|
|
|
|
top_artists = ci.artists.rank(image_features, 5)
|
|
|
|
|
top_movements = ci.movements.rank(image_features, 5)
|
|
|
|
|
top_trendings = ci.trendings.rank(image_features, 5)
|
|
|
|
|
top_flavors = ci.flavors.rank(image_features, 5)
|
|
|
|
|
|
|
|
|
|
medium_ranks = {medium: sim for medium, sim in zip(top_mediums, ci.similarities(image_features, top_mediums))}
|
|
|
|
|
artist_ranks = {artist: sim for artist, sim in zip(top_artists, ci.similarities(image_features, top_artists))}
|
|
|
|
|
movement_ranks = {movement: sim for movement, sim in zip(top_movements, ci.similarities(image_features, top_movements))}
|
|
|
|
|
trending_ranks = {trending: sim for trending, sim in zip(top_trendings, ci.similarities(image_features, top_trendings))}
|
|
|
|
|
flavor_ranks = {flavor: sim for flavor, sim in zip(top_flavors, ci.similarities(image_features, top_flavors))}
|
|
|
|
|
|
|
|
|
|
return medium_ranks, artist_ranks, movement_ranks, trending_ranks, flavor_ranks
|
|
|
|
|
|
|
|
|
|
def image_to_prompt(image, mode, clip_model_name, blip_model_name):
|
|
|
|
|
if blip_model_name != ci.config.caption_model_name:
|
|
|
|
|
ci.config.caption_model_name = blip_model_name
|
|
|
|
|
ci.load_caption_model()
|
|
|
|
|
|
|
|
|
|
if clip_model_name != ci.config.clip_model_name:
|
|
|
|
|
ci.config.clip_model_name = clip_model_name
|
|
|
|
|
ci.load_clip_model()
|
|
|
|
|
|
|
|
|
|
image = image.convert('RGB')
|
|
|
|
|
if mode == 'best':
|
|
|
|
|
return ci.interrogate(image)
|
|
|
|
|
elif mode == 'classic':
|
|
|
|
|
return ci.interrogate_classic(image)
|
|
|
|
|
elif mode == 'fast':
|
|
|
|
|
return ci.interrogate_fast(image)
|
|
|
|
|
elif mode == 'negative':
|
|
|
|
|
return ci.interrogate_negative(image)
|
|
|
|
|
|
|
|
|
|
def prompt_tab():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
with gr.Row():
|
|
|
|
|
image = gr.Image(type='pil', label="Image")
|
|
|
|
|
with gr.Column():
|
|
|
|
|
mode = gr.Radio(['best', 'fast', 'classic', 'negative'], label='Mode', value='best')
|
|
|
|
|
clip_model = gr.Dropdown(list_clip_models(), value=ci.config.clip_model_name, label='CLIP Model')
|
|
|
|
|
blip_model = gr.Dropdown(list_caption_models(), value=ci.config.caption_model_name, label='Caption Model')
|
|
|
|
|
prompt = gr.Textbox(label="Prompt")
|
|
|
|
|
button = gr.Button("Generate prompt")
|
|
|
|
|
button.click(image_to_prompt, inputs=[image, mode, clip_model, blip_model], outputs=prompt)
|
|
|
|
|
|
|
|
|
|
def analyze_tab():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
with gr.Row():
|
|
|
|
|
image = gr.Image(type='pil', label="Image")
|
|
|
|
|
model = gr.Dropdown(list_clip_models(), value='ViT-L-14/openai', label='CLIP Model')
|
|
|
|
|
with gr.Row():
|
|
|
|
|
medium = gr.Label(label="Medium", num_top_classes=5)
|
|
|
|
|
artist = gr.Label(label="Artist", num_top_classes=5)
|
|
|
|
|
movement = gr.Label(label="Movement", num_top_classes=5)
|
|
|
|
|
trending = gr.Label(label="Trending", num_top_classes=5)
|
|
|
|
|
flavor = gr.Label(label="Flavor", num_top_classes=5)
|
|
|
|
|
button = gr.Button("Analyze")
|
|
|
|
|
button.click(image_analysis, inputs=[image, model], outputs=[medium, artist, movement, trending, flavor])
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as ui:
|
|
|
|
|
gr.Markdown("# <center>🕵️♂️ CLIP Interrogator 🕵️♂️</center>")
|
|
|
|
|
with gr.Tab("Prompt"):
|
|
|
|
|
prompt_tab()
|
|
|
|
|
with gr.Tab("Analyze"):
|
|
|
|
|
analyze_tab()
|
|
|
|
|
|
|
|
|
|
ui.launch(show_api=False, debug=True, share=args.share)
|